
A Faster Deterministic Approach
To Magic Sinewave Zero Solutions

Don Lancaster
Synergetics, Box 809, Thatcher, AZ 85552
copyright c2006 as GuruGram #72
http://www.tinaja.com
don@tinaja.com
(928) 428-4073

Magic Sinewaves are a newly discovered class of mathematical functions that
hold significant potential to dramatically improve the efficiency and power quality
of solar energy synchronous inverters, electric hybrid automobiles, and industrial
motor controls, among many others. An executive summary can be found here, a
slideshow type intro presentation here, a development proposal here and detailed
additional tutorials and design calculators here.

Major goals of such digital sinewave generation including offering the maximum
possible efficiency by using the fewest of simplest possible switching transitions;
offering the lowest possible distortion by zeroing out a maximum number of low
harmonics that impact power quality, whine, vibration, and circulating currents;
and by using all digital techniques that are extremely low end microprocessor
and/or microcontroller friendly.

Magic sinewaves have two remarkable properties: Any number of desired low
harmonics can be forced exactly to zero in theory, and to astonishingly low
levels when quantized to 8-bit compatible levels. And magic sinewaves use the
absolute minimum possible and simplest energy-robbing transitions to achieve
such harmonic suppression.

A typical magic sinewave might look something like this…

— 72.1 —

http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com
mailto:don@tinaja.com
http://www.tinaja.com/glib/msinexec.pdf
http://www.tinaja.com/glib/msintro1.pdf
http://www.tinaja.com/glib/msinprop.pdf
http://www.tinaja.com/magsn01.asp
http://www.tinaja.com/magsn01.asp

Magic sinewaves are extremely exacting in their solutions. A typical equation set
for a seven pulse per quadrant best efficiency magic sinewave might be…

 cos(1*p1s) -cos(1*p1e)+…+cos(1*p7s) -cos(1*p7e) = ampl*pi/4
 cos(3*p1s) -cos(3*p1e)+…+cos(3*p7s) -cos(3*p7e) = 0
 cos(5*p1s) -cos(5*p1e)+…+cos(5*p7s) -cos(5*p7e) = 0
 cos(7*p1s) -cos(7*p1e)+…+cos(7*p7s) -cos(7*p7e) = 0
 cos(9*p1s) -cos(9*p1e)+…+cos(9*p7s) -cos(9*p7e) = 0
 cos(11*p1s) -cos(11*p1e)+…+cos(11*p7s) -cos(11*p7e) = 0
 cos(13*p1s) -cos(13*p1e)+…+cos(13*p7s) -cos(13*p7e) = 0
 cos(15*p1s) -cos(15*p1e)+…+cos(15*p7s) -cos(15*p7e) = 0
 cos(17*p1s) -cos(17*p1e)+…+cos(17*p7s) -cos(17*p7e) = 0
 cos(19*p1s) -cos(19*p1e)+…+cos(19*p7s) -cos(19*p7e) = 0
 cos(21*p1s) -cos(21*p1e)+…+cos(21*p7s) -cos(21*p7e) = 0
 cos(23*p1s) -cos(23*p1e)+…+cos(23*p7s) -cos(23*p7e) = 0
 cos(25*p1s) -cos(25*p1e)+…+cos(25*p7s) -cos(25*p7e) = 0
 cos(27*p1s) -cos(27*p1e)+…+cos(27*p7s) -cos(27*p7e) = 0

Power polynomials of this complexity are exceptionally unlikely to have a direct
solution. Instead, Newton’s Method, otherwise known as "shake the box" has
proven to be an effective solution route.

In which a good guess is made based on a previously useful result or a nearby
amplitude. One pulse edge, such as p1s is changed slightly to see if the distortion
(the rms sum of the present nonzero harmonic values) increases or decreases.
Increments in p1s are repeated till a minimum is found. The increment size is
decreased and the process repeated until a desired precision level is reached. The
process is then repeated for the other pulse edges. Continuing as needed.

An extensive set of JavaScript based interactive calculators is found here. At
present, these calculators use a brute force iterative method that now requires
repeated trig calculations to seek the harmonic distortion minimums. While quite
effective and useful, the computing time becomes excessively long when many
dozens or hundreds of harmonics are to be zeroed.

An alternate and fully deterministic method is proposed in this GuruGram. In
which far fewer and much simpler calculations done in many fewer iterations can
apparently be used to get the same results. At significantly faster speeds. Only the
method will be explored here. Actual implementation and verification await
additional funding and a more specific need.

The Approach

Assume we are near a true solution to the above equations. Assume further that
we wish to optimize edge p1s. Assume further that any changes we make in p1s
will be so small that a linear slope approximation can be made to any small
change of any harmonic cosine.

— 72.2 —

http://www.tinaja.com/magsn01.asp
http://www.tinaja.com/magsn01.asp
http://www.tinaja.com/gurgrm01.asp

What we really have is a partial differential equation in p1s. And if we are only
changing p1s, everything else can be temporarily treated as a constant. The
above zeroed harmonic equations can be temporarily simplified to…

 cos(3*p1s) + k3 = e3
 cos(5*p1s) + k5 = e5

 cos(n*p1s) + kn = en

Where kx is the temporarily constant contribution of every other pulse edge not
changing, and ex is the present nonzero error residue for each harmonic. What
we have is a simple pile of linear equations of plain old form y = mx + b. Where b
is our error and m is our slope. The slope of a cosine is minus its sine, scaled by
its harmonic number.

If we were only interested in zeroing out e3, we could simply adjust the cosine to
take the entire error out. Solving y = mx + b for y = 0 gives us x = -b/m. Once
again, m is our slope which here will be -3sin(3*p1s) and b is our error e3.

It is interesting to plot this relationship…

The straight lines represent an arbitrary absolute plot of y = 2x + 3. The red dot
shows our x = 0 intercept. The true parabola (in this case only) shows us the
square of the error. Our red line predicts a zero error at -b/m or -1.5. Which the
parabola verifies. An input correction of x = -1.5 would thus zero out our error.

A similar straight line correction could usually zero out our Magic Sinewave e3
error. Sadly, if we completely correct our e3 error, some of the other harmonic
errors will get better and some will get worse.

We thus want to seek out an adjustment to p1s that minimizes the total error
terms for all harmonics.

— 72.3 —

http://www.tinaja.com/magsn01.asp

Our harmonic distortion for this near solution will be the square root of…

 e32 + e52+ + e272

We can treat these as a "pile of linear equations" at x = 0 and ask what their value
would be for a common shifted x value…

 f(x) = (m3x + b3)2 + (m5x + b5)2 + …

Expand the squares…

 f(x) = m32x2 + 2m3b3x + b32 + m52x2 + 2m5b3x + b52 + …

We seek a minimum of this function, which is the equivalent of making the best
possible adjustment of p1s. A minimum (or a maximum) can be found by taking
the first derivative and setting it to zero. The derivative is …

 f(x)’ = 2m32x + 2m3b3 + 2m52x + 2m5b5 + … = 0

Rearrange and divide by two…

 (m32 + m52 + …)x = (m3b3 + m5b5 + …)

And solve for x

 Best pulse edge adjustment =

 - (m3b3 + m5b5 + …)/(m32 + m52 + …)

Now, this seems waaaay too easy and waaay too good to be true. But a check
plot seems to verify its validity…

— 72.4 —

You can get the checkplot routine as part of the sourcecode for this document.
Here the parabola looking thingy is the actual rms distortion. And we see that the
red predicted minimum (based on the above equation) does indeed point to our
true minimum. While not a proof, the verification seems to work for random
choices of slopes and errors.

There are two minor gotchas. The routine blows up for zero degrees where all
slopes are zero. But a magic sinewave transition should never occur here. And
other pulse edges should have at least one non-zero harmonic slope. And the
assumption that the edge shift cosines can be linearly approximated may have
slight errors for large harmonic values. But this should be easily cured by two or
more passes through the code. If convergence is needed at all, it likely will be
extremely fast.

Wait! It gets Even Better

Once a good p1s correction is found, the e3 through en errors can be adjusted
for residues. And you should be able to proceed directly to a p1e and higher
adjustments. With an absolute minimum of trig or other complex calculations.
And a bare minimum of iterations.

Potential calculation speedup is by one or two orders of magnitude.

Once again, this GuruGram is only a preliminary discovery. Considerable work
remains to implement the actual fast zero Magic Sinewave calculation curve. Your
participation is invited.

For Additional Assistance

Visit the many Magic Sinewave files at http://www.tinaja.com/magsn01.asp. Or
else email don@tinaja.com. Or call (928) 428-4073.

— 72.5 —

http://www.tinaja.com/glib/detmssol.psl
http://www.tinaja.com/magsn01.asp
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/magsn01.asp
http://www.tinaja.com/glib/msinprop.pdf
http://www.tinaja.com/magsn01.asp
mailto:don@tinaja.com

