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One very interesting geometric form is the catenary. Which is the shape that a
chain will assume when hanging from its own weight. Or inverted, is an arch
form supporting only its own weight in which all stress is along the line of the
arch. With no shear forces.

Attempting to approximate a catenary with one or more Bezier cubic splines
leads to several unexpected surprises. But ends up quite easily and simply done.

Here is a group portrait of several catenaries...

Y=4 .

X=-1 X=0 X=1

There are two common expressions for the catenary, one involving hyperbolic trig
and one involving series. The more used trig form is...
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y = a cosh(x/a)

Control parameter "a" gets set by how long the chain is compared to the width of
its tie points. Most useful catenaries will have a >0.5.

The less used but more informative series form is...

y=1+ x2/21a + x¥/a41a% + x8/61a° + x8/81a” + ...
which reduces to...
y=2+ x2/4 + x*/192 + x5/23040 + ... for a=2
y=1+ x2/2 + x*724 +x%/720 + ... for a=1

y=0.5+ x2 + x%/3 +2x%/45 +x8/315 +... fora=0.5

While others may claim that a catenary is "almost a parabola", those fourth, and
sixth power terms are usually significant. Even the eighth power term makes a
noticeable but small difference at a=0.5 and becomes very important for smaller
values of a. Or for larger values of x.

The catenary slopes may be of interest when cubic spline fitting...

dy/dx = x/2 + x3/48 + x°/3840 + ... fora=2
dy/dx = x + x3/6 +x°/120 + ... fora=1
dy/dx = 2x + 4x3/3 + 4x°/15 + 8x7/315 + .. fora=0.5

Just Plot It

The catenary itself is easily and simply plotted in PostScript. Just as we have done
in our above figure. And may add only 1K or so to file length and may calculate in
less than a tenth of a second. So there might not be much need to actually create
a cubic spline approximation. Even though the spline fit should execute much
faster, store in only a few bytes, and be device and final size independent.

PostScript has no hyperbolic cosine or cosh command, which we can add by this
definition pair...
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/ee 2.718281828 store

/cosh { /x1 exch store /al exch store
x1 a1 div dup ee exch exp exch neg ee
exch exp add a1l mul 2 div } store

We have used this to plot the red portions of our previous figure. Resolution is
100 steps per x unit and can be read from the sourcecode to this GuruGram.

Should you wish to avoid hyperbolic cosines in another language, the power
series approximations can be used instead. The thin black lines overlain on the
above figure for x>0 show how good the series approximations are. Sixth order
curves are used for a=1 and a=2, while an eighth order curve corrects a slight but
measurable error at a=0.5.

You can easily and extremely magnify our figure to note these small differences.

Cubic Spline Catenary Fitting

A review of cubic spline fundamentals appears here. With bunches of additional
support in our Cubic Spline library. A Bezier cubic spline can be normally coded in
PostScript as...

x0 yO moveto x1y1 x2y2 x3 y3 curveto

Here x0 and yO0 are the initial position of our curve, while x3 and y3 are its final

position. x1 and y1 set the direction and enthusiasm (or tension) with which the
spline exits its initial position. While x2 and x3 set the direction and enthusiasm

with which the spline enters its final position.

One rude surprise quickly becomes apparent...

A full and balanced catenary consists of EVEN POWERS only!

A single spline approximation will have a ZERO cubic term!

Thus, a single cubic spline is useless to approximate a catenary because its
zero cubic term will downgrade it into a quadratic. At least two splines will be
needed to accurately approximate a catenary.

One for positive values and one for negative.
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We have already seen several approaches to cubic spline approximations to
various curves and functions in our Cubic Spline library. These included our
original Gonzo Curvetracing and our later Bezier Curve through Four Points.

A method that would likely be better for catenaries is to set up a fitcat routine.
One that accepts an initial and final x and an initial and final tension. Either trial
and error or a least squares process can then be done to give us the best possible
spline with slope and position matches at both ends.

Here is a hand coded routine that is specific to a=0.5 ...

/fitcat.5 { /extent exch store /intent exch store
/x3 exch store /x0 exch store

/y0 0.5 x0 cosh store /y3 0.5 x3 cosh store

/entang x0 findslopea.5 store
/x1 x0 entang cos intent mul add store
/y1 y0 entang sin intent mul add store

/extang x3 findslopea.5 store
/x2 x3 extang cos extent mul neg add store
/y2 y3 extang sin extent mul neg add store

% insert any scaling and offsetting here
% insert optional dot plotting here

x1 y1 x2 y2 x3 y3 curveto

} store

This can be called by 0 1.386 1.10 0.10 fitcat.5 or whatever. Inputting four
values of initial and final x and initial and final slope tension.

The routine directly grabs x0 and x3. It then calculates y0 and y3 via the
hyperbolic cosines of the catenary. It next calculates the input and exit slopes and
converts them to slope angles using the PostScript atan operator. x1 and y1 are
found by scaling the slope angle by the initial tension. x2 and y2 are similarly
found by scaling the slope angle by the final tension. Note that the final tension
is rotated by 180 degrees. Finally, a plain old curveto is done using the captured
or calculated spline control points.

Optional scaling and control point dot plotting can be added as needed. The
scaling used in our figure graph was x’ = 3.3333 x + 10 and y’ = 5y. Control point
viewing is useful when debugging.

The actual slopes are calculated by this or a similar service proc...
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/findslopea.5 { /xx exch store
xx 2 mul xx dup mul xx mul 4 mul 3 div
add xx dup mul xx mul xx dup mul add 4
mul 15 div add xx dup mul xx mul dup
mul xx mul 8 mul 315 div add 1 atan} store

The blue line on the right of the a=0.5 curve in our figure shows this solution.
I've purposely kept this "not quite" optimized so you can experiment with your
own tension values. As before, you can use extreme (up to 6400 percent) Acrobat
magnification to observe how good your fits are.

A single pair of splines looks good enough for most common catenaries. Very low
values of a or higher values of x may require multiple spline fits. The best possible
multiple spline fits likely should have matching entry and exit tensions.

This example code can be further automated and generalized either through
additional consulting or as an exercise for the serious student.
For More Help

As previously mentioned, the sourcecode for this GuruGram includes ready-to-run
PostScript spline fitting routines.

Additional assistance is available via our Cubic Spline and Consulting Infopack
library pages.
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