Don Lancaster
Synergetics

Cheap Video for
Your Heathkit H8

Here’s a first look at part of Don Lancaster’s latest Sams book, Son of Cheap Video. The TV
6-5/8 he talks about is a full graphics update of the original TVT-6L we ran in the June 1977
issue of Kilobaud, is a PAIA kit and is detailed in Lancaster’s Cheap Video Cookbook.

You'll find things more chal-
lenging when you add
cheap video to an 8080 or Z-80
system, compared to the easy
6500 conversions. There are
several new hassles involved
that will get in your way and
somehow have to be resolved.

In most cases, these hassles
will take extra coding, more
low-cost ICs and very careful
attention to your system timing.
The bottom line is this: Cheap
video should go on most any
8080 or Z-80 system, but it will
take more effort, more code
and more parts to get compara-
ble results.

Let's see just what these
hassles are. First, we’ll look at
an 8080 in general to see what

the hardware and software dif-
ferences will be. Then we’ll
check into a general-use 8080/
Z-80 adapter that goes between
your computer and the TVT
6-5/8. Finally, we’ll show you
the software you will need to
put cheap video on a Heathkit
H8.

We’'ll assume your system is
bus oriented and that your
cheap video system is to be a
piggyback add-on to an exist-
ing RAM plug-in card. We’'ll fur-
ther assume the usual 2 MHz
8080 speed. Your RAM should
be fast enough that it does not
use the READY command to
hold up CPU time. We'll also as-
sumeyoursystem s big enough
that nonvolatile scan firmware

2uSEC

N\

(0) CPU STATES |

2

2]314%:#

{b) ADDRESS BUS

RIGHT

E3
Ed
- — -
z
ol

| wrong! |
[

1
|

(c) RAM i wRoNG! RIGHT | wrong! |
] - 1
X ACCESS '
i TIME [}
1]
(d) DBIN 1 |
i i
1 1
(o) Mi | | i
i '
] 1
(1) MEMR 0 [ | !
i f
] 1
\ .
(g) 92 cLock | l | | ] ] l ,__| ,_‘ [—

Fig. 1. The H8 is a typical 2 MHz 8080A system. Here are the
waveforms involved in reading a NOP command out of RAM.

24

is more important than mini-
mizing the total words of scan
coding.

Be forewarned that what we
are going to look at has only
been tested on the Benton Har-
bor 50-pin bus. While there is no
obvious reason why you can’t
do the same thing on an S-100
bus system or with a Z-80, we
have not tried it just yet, and
neither should you...unless
you have a good triggered scope
on hand and thoroughly under-
stand the 8080 CPU timing.

Our main 8080 hassles are
these:

1. The address bus has gar-
bage on it at times.
2. The program counter usually

can change only once every two
microseconds. This is only half
as fast as we need for areason-
able number of characters or
chunks on a line.
3. Clocking and timing signals
are different.
4. Literal translation of scan
programs will be far too slow.
In general, we’'ll get around
hassle #1 by latching and hold-
ing both address and upstream
tap data lines using suitably
spaced timing. We’'ll beat #2 by
adding a *‘speed doubling” cir-
cuit that creates the illusion of
a once-per-microsecond pro-
gram counter advance. This il-
lusion will appear only at the
display memory and then only

SEO TVT 6-5/8

*SEE TEXT

cs
DISPLAY

MEMORY

FROM DISPLAY
MEMORY —
UPSTREAM 8
TAP .
Al12-A15 —+— D Q | |
b«
c
[— 74LS174 o
MEMRD -
741500 ne
AO-A4 s
D0-D7 s
+5v
74L500
cs
DECODER
CUT FOIL

Fig. 2. Minimum 8080A-TVT 6-5/8 interface is limited to 2 usec

character or chunk times.




Tl

CALL

DISPLAY
MEMORY

(o) NORMAL 8080 OPERATION
DURING A SCAN, ADDRESSES
ADVANCE ONLY ONCE EVERY
TWO MICROSECONDS, TOO SLOW
TO OUTPUT CHARACTERS.

CALL

SO00KH2
SQUARE

WAVE DISPLAY

MEMORY

(b) A9 SWITCHED 8080 OPERATION

DURING A SCAN, 500 KHz CLOCK ON
A9 LINE PRODUCES NEW ADDRESS
EACH MICROSECOND ; CHARACTERS
OUTPUT AT PROPER RATE.

Fig. 3. A stock 8080 system can’t change display memory ad-
dresses each microsecond. Here's how to use A9 switching for

speedup.

during a TVT scan. Everything
else stays the usual speed.
Hassle #3 goes away when we
solve #2. Finally, we can get
scan software that is fast
enough by using the powerful
register-to-register commands
of the 8080 or by using brute
force (all ROM, non-modifying)
coding.
On to the fine print.

Hardware

Suppose we have a normal,
functional H8 executing a string
of no operations (NOP) from a
plug-in RAM card. What will
this timing look like? How can
we trick the H8 into using the
same sort of timing— with add-
ons—to run a TVT 6-5/8? Fig. 1
gives us some ciues.

Execution of a NOP takes
two microseconds (actually,
siightiy less than this on the
H8). Four CPU states (Fig. 1a),
each taking around half a mi-
crosecond, are Involved. The
object of these four states s to
put the program counter on the
address bus, read an addressed
memory location, enter it into
the CPU and then act on the
command. When the CPU finds
out the command is a NOP, it
will spend the tail end of the
cycle essentially doing nothing.

Our first hassle appears in
Fig. 1b. We see that the ad-
dress bus only has the correct
information on it three-quarters
of the time. For the remaining

quarter of the time, the address
bus has invalld information on
it. Now, If we address a memory
with the wrong address, we will,
of course, get the wrong infor-
mation out of the memory.
Worse still, since the memory
has its own access time to con-
tend with, the amount of time
that useful information comes
out of the memory is even
shorter than the time the ad-
dress bus is valid (Fig. 1c). So,
the bad news is that both data
and address have all kinds of
holes in them and don’t seem
directly usable.

There are some system-level
signals that may help us out of
this bind. Signal DBIN In Fig. 1d
determines the time when the
CPU must have vaiid data; but
this signal is not available on
the system bus... for a very
good reason. Anyone who tries
to use this signal will be cutting
into the CPU’s own processing
time and degrading perfor-
mance. Instead, two signals are
derived for bus use. These slig-
nals occur early enough so that
enables, decoding, settling
times and so on are complete
before the CPU needs valid
data. These signals are called
M1 (Fig. 1e) and MEMR (Fig. 1f).

M1 starts after the address is
valid but ends before DBIN.
MEMR includes both the M1
and DBIN times. Unfortunately,
both M1 and MEMR start before
we are sure that the memory is

outputting valid data. The
theory here is that output en-
ables and bus access can take
placeduring the same time that
the memory Is still accessing It-
self, so long as everything ends
up stable by the start of DBIN
time. A final waveform we will
find useful is the 02 system
ciock shown in Fig. 1g.

The ieast we can get away
with and stiii get cheap video
on an 8080is latching the upper
four address lines. If we don’t
do this, all the commands out
of our TVT Instruction decoder
PROM, including the row com-
mands and the sync pulses, will
have big holes chopped in
them.

Fig. 2 shows a minimum 8080-
to-TVT 6-5/8 interface. In this
circuit, +5, ground, blanking,
the upstream tap and the data
bus are connected in the usual
way. Address lines A12 through
A15 are connected to a latch
that catches the valid ad-
dresses. This is done on the
leading edge of the memory
read command, MEMR.

Our chip select output CSO
is shown going to an AND gate

that gives us an external nega-
tlve logic OR combination of
the old display memory chip
select and the one needed for
TVT scanning. A foil cut is in-
volved here. The chip select in-
put, CSI, is shown permanently
enabled. Depending on your de-
code PROM, this can go to a
TVT enable switch, do nothing
or be used as an internal chip
select combiner, eliminating
the external gate.

The TVT is only allowed to
gain data bus control during a
scan and then only when the
computer wants to read it. To
do this, we use the computer’s
memory read MEMR command
and NAND it with the decode
enable, DEN, to get a suitabie
scan enable SEI input.

MEMR also goes to the clock
input of the TVT 6-5/8. But,
since our load command in the
TVT is derlved from the falling
edge of VCL, it is the trailing
edge of MEMR that loads our
video shift register. The time
difference of about 750 nano-
seconds gives our character
generator more than enough
time to produce a valid output.

A9
SOURCE

(A9X)

A9 10 il
DISPLAY
MEMORY

SEO W

74LS00

DEN

EXTERNAL
INVERTER

CLOCK

TVY 6-5/8

A12-AI5

o
]
SET
3 +5V
2 680 | 470
©
74LS00 ng_
[ 150pF
A1z -A15 0 @ a
(] 74LS174
UPSTREAM [ o aq
TaP
Lol
FROM 74L5273
cs
DECODER

VDO -VD?

cso

T0
DISPLAY

74LS11

é———csx

MEMORY
cs

\

J

Fig. 4. Speed-doubling 8080A-TVT 6-5/8 interface gives 1 usec

character or chunk times.

25




Now, this is a quick and dirty
circuit that you may want to try
just to get some video out of
your 8080 in a hurry. But, there
are several problems we still
have to attackto get something
good enough for final system
use.

One minor hang-up is that
you may only have comple-
ments of your data bus or ad-
dress bus available. We'll soon
see how to change the coding
in your Scan and Decode
PROMs to get around this. The
coding, of course, has to be
changed anyway since the 8080
gets all bent out of shape when
it receives 6502 commands. In-
verters or inverting gates can
also be used to invert bus,
clock, data or control lines as
needed.

The big hassle is that the
character or chunk times will
be two microseconds each,
rather than just one. This
means that, so far, even a 32
character line won’t run at nor-
mal horizontal scan frequen-
cies. Beating this particular
hassle soundly about the head
and ears is the key to practical
cheap video on the 8080.

But how?

Speed Doubling
Via A9 Switching

We want to get our chunk
and character times down to a
decent rate of one microsecond.
We can either speed up the mi-
croprocessor or else do some-
thing else that creates the ii-

377

377
AVAILABLE FOR
NORMAL USE
VER
SYNC
SCAN
ROW 7
L SCAN
| ROW 6
SCAN
ROW 5

SCAN
ROW 4

340 000

300 000
RESERVED FOR

TVT USE DURING
A SCAN OR WHEN
TVT IS ENABLED

240 000

SCAN
ROW 3

SCAN
ROW 2

SCAN
ROW |

BLANK
SCAN

200 000

140 000

100 000

AVAILABLE FOR
NORMAL USE

040 000

000 000

Fig. 6. H8 address map.
26

lusion of a microprocessor
speedup at the display memory
and in the adapter circuits.
Speedup maybeeasy for you
if you have a Z-80, provided your
display memory is also fast
enough to not use the READY
command. If you do run faster,
you probably would like to latch
the upstream tap data to make
sure you have enough process-
ing time for your character

generator. While a simple.

speedup will work in some sys-
tems, there is a much better
way called A9 switching.

The object of A9 switching is
to create the illusion of a once-
per-microsecond address ad-
vance at the display memory.
Fig. 3 gives us details on how
this works. We break our most
significant display space ad-
dress line and connect it to a
carefully timed 500 kHz square
wave during a scan. For a 16 x
64 or a 12x80 alphanumeric
display, this will be address line
A9.

Now, a 500 kHz square wave
is low for one microsecond and
high for another one. While all
theregular addresses below A9
are changing at their usual two-
microsecond rate, A9 is busy
addressing one character or
chunk location on the first mi-
crosecond and another loca-
tion on the second. Thus, we
get characters or chunks out of
our display memory at a one-
per-microsecond speed.

But why on earth use A9?
Wouldn't it be simpler to use AQ
instead? If we do this, we would
have to add an address multi-
plexer to all inputs of the dis-
play memory—a 10-pole double
throw switch or its Tri-state
equivalent. This is obviously
something we want to avoid if
we are piggybacking video onto
an existing memory card. All A9
switching takes a single foil cut
and some add-on wires to the
memory card.

There is a catch. It is a ““yeah-
but” rather than a ‘‘gotcha.”
The characters and chunks are
no longer in the display mem-
ory in sequential order if you
use A9 switching. So, your cur-
sor or controlling loader soft-
ware has to have a few words
added to complement A9 each
successive location.

2uSEC

—

(@) CPU STATE

T e ! ! [ z| 3 [ e
- 1

=
—

(b

ADDRESS BUS [ wronel ' ]
[}

RIGHT | _wrong! |

(c) DISPLAY RAM | WRONG!

T

RIGHT | WRONG!

(d) MEMR

(e) $2 CLOCK

(f) Q1

(¢) QU |

(n) ADDRESS

LATCHING

(i VIDEQ DATA t

LATCHING

TVT

(k) VIDEO SHIFT

REGISTER
LOAD U

(1) seTIx

1] Ji]
P—— IuSEC —f

s v

Fig. 5. Speed-doubling waveforms.

For instance, say your dis-
play memory starts at 000 000.
The next character or chunk
will be at 002 000. Your charac-
ters will follow in this order:

1st character 000 000
2nd character 002 000
3rd character 000 001
4th character 002 001
5th character 000 002
6th character 002 002
1022nd character 003 376
1023rd character 001 377
1024th character 003 377

This seems awful, but it
works. And it is a simple way to
double the apparent memory
access speed of an 8080 so we
can get information out of RAM
once per microsecond under
block access. And all it takesto
do the job is some simple hard-
ware between computer and
TVT, a few software words and
one extra foil cut on the mem-
ory. The hardware involved is
shown in Fig. 4, along with the
timing details of Fig. 5.

Two new D-flip-flops are
added to our interface. The first
delays and expands the MEMR
signal to give us a controlled
phase 500 kHz square wave we
can use for the speed doubling
A9 address switching. The sec-
ond divides the system clock by
two and is used to latch the
video data and to provide a TVT
clock.

Waveforms (a), (b), (c) and (d)

in Fig. 5 are as before. Wave-
form (e) is a 02 clock, which has
to be an inverted replica of the
Heath bus 02 clock signal.
Waveform (f) shows us the 500
kHz square wave that results
when we clock MEMR. Since
the clocking is delayed from
the MEMR leading edge, the
flip-flop’s output is wider than
MEMR and is almost a micro-
second long. This results in a
square wave that is low for one
microsecond and high for the
next, locked to (but following)
MEMR.

This particular flip-flop is
only allowed to run during a
scan. Otherwise, it is held high
by DEN. The uppermost two
gates combine the old A9 infor-
mation with the speed-doubling
new A9 signal, acting as a single
pole, double throw selector
switch. During computer times,
the display memory A9 line is
connected to the computer.
During scan microinstruction
times, the display memory A9
line is connected so it is low for
one microsecond and high for
the next.

Waveform (g) shows us the
one megahertz clock we get by
dividing down 02. This clock is
used to sample and latch the
display memory output immedi-
ately after the data is valid and
then latch again one microsec-
ond later, well after the A9




658-HD8

PROM NUMBER

O-"" mm-""
(POSITIVE LOGIC)

USE FOR TVT 6-5/8 ON AN 8080 SYSTEM WITH INVERTED

A12,A13, Al4, AI5 LINES.

CG LINE "2" IS USED AS GRAPHICS "BLANKING" OUTPUT.
CG LINE "4" IS USED AS GRAPHICS "UPPER-LOWER" CHUNK

SELECT OUTPUT.

INPUTS OQUTPUTS

@8 |a7|a6 |a5[/Q4 Q3 |a2]al
wl o

et uii = : =z
WHAT DOES e 20 2]e° |~ |-

THIS WORD 54 ol 1 [t D
- ale|3|uw|S|olE]|Z]Z2
o °13l=l8|lEl&13]S]|5
S SolSlB]5]5]|e]e]e
= x|lo|o|o|>|<-]Oo|o]|@©
0| NORMAL cojm B OO0 0O00O0OODO
1| VERTICAL SYNC ejm @ O®m0O0O0O0O
2] LINE 7 SCAN 27|00 00O EE®E
3| LINE 6 SCAN |00 MO OEEO
4| LINE 5 SCAN 2|00 OO0 m®m
o] 5| LINE 4 scan 2|00 mMO O ®@0OO
Z| 6| LINE 3 SCAN 2|00 000 E®E
S| 7] LINE 2 SCAN zzDD—EIDD-D
Wl 8] LINE | SCAN 2|00 0000 =
S1 9] BLANK scaN 00O O0O0O0O
“110o| NormaL colmm OO0 0O O0OO0OO
11| NORMAL cojm m OO0 0 0O0ODOCOoO
12| NORMAL cojlm B OO0 O0ODO0OO0O
13| NORMAL colm B OOCOOOO
14| NORMAL colm e OO0 O0OD0ODO
15| NORMAL comm OB 0 a8 0oa
16| NORMAL cojlm m OO0 OO0
17|  NORMAL (efo)] | (M 138 [ & [N e [ e [ e Y
18] NORMAL cojlm m OO0 O O0OOO
19] NORMAL cojm OO0 0O00ODO
20| NORMAL colm m OO OOCOO
Sl2!] NORmAL colm OO0 O00O0O
2122] NORMAL cojm ®m OO0 0O0OOO
<123] NORMAL cojm OO0 O0O0OO0O
S24] NORMAL colm B OO0 DO OOO
(25| NORMAL cojm m OO O O0OO0ODO
+|26] NORMAL colmmOO0OO0Oo0odoOo
27| NORMAL colm B OO0 O0OO0OO0O
28| NORMAL colm m OO0 OCOO0O
29| NORMAL cojlm m OO0 000
30| NORMAL cojm m OO DO OOCO
31| NORMAL cojm m O OO0 0O OO0

Fig. 7. Truth table for 8080 Decode PROM having inverted address

inputs (used on Heathkit HS).

change has been accepted. The
first sample gives us an A9=0
data value, while the second
handles the A9=1 case. The
TVT's video shift register Is
clocked on the falling edge of
this one megahertz clock. Since
there Is a one-half microsecond
delay between the leading and
trailing clock edges, enough
time is available for the charac-
ter generator or the data-to-
video converter to accept the
latched video data and process
It.

Our A9-generating flip-flop
automatically Initlalizes Itself
on MEMR since it is simply de-
laying this signal. But the clock-
dividing flip-flop can be in either
state at the beginning of a scan
mlicroinstruction. Unless we
somehow Initlalize this flip-flop
to the right state, we’ll get gar-
bage out of the display memory
caused by sampling at the

wrong times.

We initialize this clock-divid-
ing flip-flop by inverting MEMR
and using the leading edge to
SET the divide flip-flop to the
desired state. This initialization
is very important since the
usual CALL instruction preced-
ing the scan microinstruction
has an odd number of clock
cycles in it.

TVT scan enabling and the
display memory chlp selecting
are done the same way as the
slower interface of Fig. 2. We
enable the TVT Scan Enable In-
put (SEl) only during MEMR
time to give us data for a scan
microinstruction only when it is
called for and only when the
computer will allow data bus
access. The display memory
chip select Is a negative logic
OR of the computer’s chip
selectandtheCSOthatthe TVT
provides.

Our speed doubling interface
takes two foil cuts on the mem-
ory board—one on the A9 ad-
dress line and one on the chip
select line. All other connec-
tions are add-ons derived from
signals available on a typical
plug-in memory card. Five low-
cost integrated circuits are in-
volved In this particular adapter.

Software

Let’s take a look at the PROM
firmware and some of the soft-
ware involved in getting cheap
video on your 8080A system.
For right now, we’ll stick to the
older address-mapped and sub-
routine-scanned methods we
used in the Cheap Video Cook-
book. Most likely you can sim-
plify things a great deal by
going to the Scungy Video*
route of break-mapping and in-
terrupt-scanning. The strongIn-
put/Output commands in the
8080A make this a very attrac-
tive idea.

If you use address mapping,

refer to the computer memory
map shown in Fig. 6. A block of
addresses from 6K to 60K Is re-
served for TVT use when the
TVT is enabled. On the H8, this
leaves thHe bottom 8K for the
PAM monitor and operating
system and 16K for enough
RAM to hold a display memory
and run Extended BASIC at the
same time. The uppermost 4K
of addresses are also available
as needed.

Should you want more ad-
dress space for other uses, you
can use the TVT enable to free
addresses during non-display
times. You can also go the
Scungy Video route and use I/O
instructions and a parallel port
instead of address mapping the
row commands. Yet another al-
ternative Is to use further de-
coding to activate the TVT only
during valid display memory
addresses. For instance, if you
are only using 1K of display
memory, 3K of all the scan
blocks can be used for other

*Scungy Videoisanalternate method and is detailed in Chapter 10f Sonof Cheap Video.

658-HS64

PROM NUMBER

O-"" m-""
(POSITIVE LOGIC)

USE FOR TVT 6-5/8 ON AN 8080 SYSTEM WITH TRUE AO-A7

LINES AND INVERTED DATA BUS

NO REPACKING

INPUTS OUTPUTS
e8| a7 |a6 a5/ 04 |a3 [a2]al
w
WHAT DOES el
THIS WORD )
- Do? o
o (=]
8 delsle|z|ale|a|e
= Ilo|lo|oe|eo]|]aea|loe]|lal|e
o NOP FFlom o B0 @ = = = =
| NOP FFjlmm = @ = = m ..
2 NOP FFlum om om = = = = =
3 NOP FF|um B o = = = = =
4 NOP FF|m | - - - = ..
s NOP FFlum =@ @ = = = m .
6 NOP FFlum o o0 = = = = =
7 NOP FFlom o0 o0 & =@ = = =
8 NOP FFlum om om = = = = =
9 NOP FFlom om o = = = = =
10 NOP FF|ll = @ =W @ m Emm.
1" NOP FFlum o =0 = @ = = =
12 NOP FFlum om o = = = = =
13 NOP FFlmm = = = - . ..
14 NOP FFlom == = -
15 NOP FFlom == = ----
16 NOP FFlem m = --..
17 NOP. FFlom = = - .-Em-.
18 NOP FF|mm om om on = = = =
19 NOP FFlum o B0 = @ = m m
20 NOP FFlum om o = = = = =
21 NOP FFlum om =0 = = @ = =
22 NOP FFlom 0 = @ = = ==
23 NOP FF|mm om0 @ @ @ ..
24 NOP FFlom o o == == = ==
25 NOP FF|om 0 o & = = | .
26 NOP FFlum mm om = = = = =
27 NOP FFlom om o0 == = = = =
28 NOP FFlem om om = = = = =
29 NOP FFlmm m o a m m @ =
30 NOP FF|mm o I @ mm .
31 RET 36|00 OB m O EB B0

Fig. 8. Truth table for 8080 Scan PROM having no repacking, true
address inputs and inverted data outputs.

27




658-HS80

PROM NUMBER

O:"" m:"1"
(POSITIVE LOGIC)

USE ONLY FOR 80 CHARACTER REPACKED LINES ON AN 8080
SYSTEM WITH TRUE AO-A7 LINES AND INVERTED DATA BUS.

INPUTS OUTPUTS
Q8| a7 fas|0s5|a4fa3|02]al
WHAT DOES 8
THIS WORD 2
- Do? 4
2 o
« x|r|lo]lo]ls|m]|]aul -}oO
o wlo|o|lo|o|o|o|o|a@
Ed zlo|o|o|e|e|o|o|e
[ NOP FFj|ll I @ @ @ . Em.
| NOP FF|Im B @ B @B EEme.
2 NOP FF|om o0 =0 @ = @ = .
3 NOP FFlm = @ B B EEe.
4 NOP FFjmm B0 = &= @ = | -
= NOP FFjlum = @B B @B B E.
6 NOP FFlm m B B B B @8
7 NOP FF/IR @ @ @ o ...
8 NOP FFlmm = @ @ @ @B E®
9 NOP FFlom & = @ @ = |-
10 NOP FFlm B E B B m @8
11 RET OO0 M EBOEB®BO0O
12 NOP FF|om @ = & @ mm .
13 NOP FFll B Bm B B B E®
14 NOP FF/Il @ B B B B E .
15 NOP FFlA @ B @ B @B @8
16 NOP FFjIm @ @ @ B B B E
117 NOP FF|m @ @ @ e EmEme.
18 : NOP FF|Il @ B B EEEe
19 NOP FElIm B I @ BB T I
20 NOP FF|mm & = =@ = = - .
21 RET OO0 M EBOEEO0O
22 NOP FFj|mm | - - - - Emm.
23 NOP FFj|Il B B B B B B8
24 NOP FFjmm @ m @ - mEm.
25 NOP FFjlmm B - mEmeEEme
26 NOP FFl B Em B B B E 8
27 NOP FFjmt o 0 @ = = = =
28] NOP .| RE] 35 D I I 0 . .
29 NOP FF/EE I @ B Ea ..
30 NOP FFll B @B @ @B EE.
31 RET ==l B Eel BN e

Fig. 9. Truth table for 80 character 8080 Scan PROM (true address

inputs, inverted data outputs).

purposes if you add suitable
decoding.

A quicklook at the H8-3 mem-
ory board shows that only some
of the address an data lines
are available in their true form;
most of them are Inverted. The
data-out buffer on this memory
card must be disabled for the
upstream tap needed by cheap
video. This means that the out-
put of our Scan Microinstruc-
tion PROM has to directly drive
the system data bus and thus
must output inverted (negative
logic) data. We also see that ad-
dress lines A13, A14 and A15
aren’t available except as com-
plements. The simplest way out
of this situation is to code our
Decode PROM to respond di-
rectly to complemented ad-
dresses.

Fig. 7 shows us the H8 De-
code PROM truth table, 658-
HD8. We input lines A12, A13,
A14 and A15, along with a TVT
enable using the old CSI line.
This PROM outputs code to the

28

row commands of the charac-
ter generator or else routes
blanking and selectlon com-
mands to a graphics data-to-
video converter. The Decode
PROM also outputs system
controliing signals DEN, SEO,
CSO and the vertical sync VRF
pulses.

Since we are using comple-
mented address inputs, this
PROM runs ‘“backwards” from
the earlier PROMs we looked at.
The netresult of a “frontwards”
PROM with true address inputs
or a “backwards” PROM with
inverted address inputs is the
same.

Holding the CSI line positive
disables the TVT and frees
most all addresses for other
uses. Grounding CSI enables
the TVT scanning and reserves
the needed address blocks for
TVT use. This particular PROM
coding needs an external AND
gate for chip selectlon and
combination.

There are two types of Scan

PROM coding we might like to
use, depending on whether we
are using “binary” line lengths
or are repacking ‘“non-binary”
line lengths for maximum mem-
ory efficiency. Fig. 8 shows a
Scan PROM coding intended
for 64 character lines, but
usable for 32 character lines,
most graphics and other
lengths without memory re-
packing. This is numbered 658-
HS64.

We use a NOP to advance the
program counter in the comput-
er and an RET coding to return
from the called scan microin-
struction. Since we are output-
ting complemented data, these
outputs are inverted. On the H8,
address iines A0 through A6 are
availabie in true form, so we do
not have to complement the ad-
dress inputs. Thus, our Scan
PROMs run “frontwards” but
output complemented code.

We can use the 658-HS80
Scan PROM truth tablein Fig. 9
for memory repacked scans of
80 characters per line, three
lines per page. Once again, this
PROM coding is driven by true
addresses and outputs compie-
mentary data directly to the H8
data bus.

Our address lines are con-
nected differently on an 8080
system than on a 6502. Remem-
ber that we used every second
address change on the 6502 to
advance our Scan PROM one
count. On an 8080 we use every
address change to advance the
Scan PROM one count, but use
A9 switching to get two charac-
ters out of memory per one
Scan PROM count advance.
Either way, the Scan PROM re-
sponds to an input address

ADDRESS
LINES

A6

change once every two micro-
seconds, and everything comes
out even.

This means that, in general
on an 8080 system, the Scan
PROM's inputs are usually con-
nected to one address line /ess
than usual for a 6502 system.
Fig. 10 shows our address line
management for an 8080 adapt-
er. It also shows how two new
switches can be added along
with a gate to let you use either
a 658-HS64 or a 658-HS80 Scan
PROM on an 8080 system with-
out needing any rewiring.

Several examples will show
how this address management
works.

1. For 32 character lines using
speed doubling, use PROM 658-
HS64 and set your switches to
Ad="+" A5="+" and “32.”
2. For 64 character lines using
speed doubling, use PROM 658-
HS64 and set your switches to
A4="A4," A5=""+"and "“32.”
3. For 80 character lines using
speed doubling and memory re-
packing, use PROM 658-HS80
and set your switches to A4 =
“A4,” A5 =*“A5" and “64.”

In our first example, the up-
per half of a Scan PROM s
cycled through in 16 counts
lasting 32 microseconds. In the
second example, the entire
Scan PROM is cycled through
in 32 counts lasting 64 micro-
seconds. In the final example, if
we wanted to, the entire Scan
PROM could be scanned in 32
counts lasting 256 microsec-
onds. But with memory repack-
ing and A9 switching, we only
use slightly under a third of the
80 line Scan PROM per scan,
ending up with ten counts per
scan lasting 80 microseconds.

32)
+

(AS)

(A4) (64)

SCAN
PROM

AS AS
N % (a3)
A4 as

(A2)

A3

A2

(A1)

Al

ADAPTER

AO

8080

( )=OLDTVT 65/8 CALLOUT NOT
MEANINGFUL IN 8080 SYSTEM
USE

TVT 6-5/8

Fig. 10. The Scan PROM address inputs on the TVT 6-5/8 have to
be redefined for 8080 use. The gate and switches let you run or-
dinary or repacked memory PROMs without wire changes.




Your turn: Show the Scan PROM
truth table and switch settings
for an H8 Scan of 40 repacked
characters per line.

Front Panel Interaction

The H8 front panel works by
interrupting a running program

once every two milliseconds. If
we try to run scan software and
the front panel at the same
time, the display will be badly
torn up. So, we can either turn
the front panel off during dis-
play times or else combine the
front panel and the video scan

(a) SCHEMATIC
1 . DISABLE
iNT 10 3 ez [,
443-54 I ® -
(H-8 FRONT PANEL) b L
u 470
0 l FOIL (®ADD swITCH
s ADD RESISTOR
VF 21 o2 ®
— L5
€02 | igonus
CLK " 443-6
3
(b) PICTORIAL
LED LED LED LED
101 102 103 104
e Vv
(H-8 FRONT PANEL) 102
===
2 L
107 108
o
o
o

®Ocut FoL—=

GND

+5Vv

Fig. 11. A switch to temporarily defeat the H8 front panel display
will be useful for TVT debugging and checkout.

A. Toverify that the Scan Microinstruction is alive and well:

read
300376 for 000 (NOP)
300 377 for 311  (RET)
301000 for 000 (NOP)

Either the HS64 or the HS80 Scan PROM may be used.
The address switches may be in any position.
B. To pass control to and from the Scan Microinstruction at a TV Horizontal rate:
For Scan PROM HS64
Set switches to *“32"; A5 =" +" and A4 ="A4"

STAHTtOdO 100 CALL 315 010 320
040 103 JMP 303 100 040

For Scan PROM HS80
Set switches to *'64''; A5 =''A5" and A4 =“A4"

START 040 100 CALL 315 030 320
040 103 JMP 303 100 040

Scan seventh dot row
Repeat

Scan seventh dot row
Repeat

This will display continuous vertical stripes that correspond to the seventh dot
row of a random character load. The front panel should be switch disabled
during viewing times.

H8 Scan time is 63 microseconds for a horizontal scan frequency of 15.898 kHz.
There is no vertical sync.

Fig. 12. Two test routines useful in 8080/TVT debugging.
30

into a single program. Just
turning the front panel off is far
simpler and usually all you will
need to do.

The H8 front panel monitor
does have a ‘“‘turn the display
off” software word. But this
won’t help us. While this com-
mand shortens the interrupt
and keeps it from lighting the
display, the interrupt still exists.

One hardware solution is
shown in Fig. 11. A new switch
is added to the front panel that
prevents timer-generated level
10 interrupts from happening.
This, in turn, keeps the panel
display off and the video dis-
play in one piece. This switch
will be very handy during your
initial test and debugging of
video displays. You should only
turn off the front panel after
you have a video display, and
turn it back on before returning
to other uses. The RST/0 com-
mand does bypass this switch
so that you can reset under any
conditions.

This switch will most likely
not be needed when your prop-
erly designed and debugged
scan software is operational.
You probably can eliminate it
from the final use circuitry.

The obvious question is how
to use software instead. We
have a good old DI, or “‘disable
interrupts,” command in the
8080 instruction set. Can’'t we
simply use this?

Unfortunately, there is one
very noisy gotcha that may
keep you from doing this—
unless you are careful.

If you try an immediate DI

command in an H8 program,
the speaker will latch on and
stay on. That little beep you get
when you hit the GO key—or
any other key—needs two more
interrupts after your program
starts. No interrupts, no stop-
ping. The two interrupts time
out afourmillisecond ticforthe
horn circuit.
The H8 front panel monitor
needs a few milliseconds after
it is exited before you can dis-
able any interrupts. If you dis-
able an interrupt too soon you
will lock the speaker on.

You can use the DI command
to turn off the front panel, but
you must delay at least five mil-
liseconds after your program

starts or the speaker won't quit.
Thus, one properly placed soft-
wareword is all you need to get
full front panel and video dis-
play compatibility.

Test Software

Two useful test routines are
shown in Fig. 12. Fig. 12a
checks Scan PROM access and
operation. If this test fails, you
are eitherincorrectly pickingup
scan microinstructions or are
missing them entirely. Erratic
switching between 311 (return)
and 000 (no operation) means
you have speed-doubling prob-
lems. All 000s means you are
never activating the Scan
PROM, while all 311s means
you are permanently trying to
return from a Scan Microin-
struction call. This particular
test works with either HS64 or
HS80 Scan PROMs and can
have the address switches in
any position.

Your turn: Why?

Don't ever try going beyond
this test if the test fails. If you
cannot read the proper return
from a scan microinstruction, it
will not execute, and anything
elseyou add in the way of soft-
ware or time or effort will only
compound the felony.

Test sequence Fig. 12b lets
you transfer control of the H8
from computer to TVT scanning
and back again. Note that the
test coding differs for each
Scan PROM and that each Scan
PROM has to have the address
switches set as shown.

The scanning process is ad-
justed to output aTV horizontal
scan at normal scan frequen-
cies. In a completely working
system with a disabled front
panel, you’'ll get a continuous
series of vertical stripes. This
corresponds to the seventh dot
row of arandom character load.
A wildly wrong horizontal scan
frequency usually means the
wrong switch settings or the
wrong Scan PROM. Vertical
stripes that have teeth in them
may be caused by erratic data
latching or improper speed-
doubling operation.

While these two tests appear
trivially simple, don’t overlook
them as major debugging aids.
If these two won’t go, no other
software will run either.




Self-Modifying
vs Brute Force Scans

The obvious next thing to do
is take the old 6502 scan soft-
ware programs and literally
translate them, replacing a
CALL for a JSR and so on. But
we really get into trouble in a
hurry if we try this. First, some
commands will be longer or
shorter than their 6502 counter-
parts, messing up the critical
horizontal-edge-to-horizontal-
edge timing. Worse yet, the
execution time of an 8080 work-
ing with literally translated
6502 commands is pitifully
slow—so slow that the critical
timing loop may take over 30
microseconds, compared to
the 21 used in the 6502. This
makes the long horizontal lines
so long we don’t want to even
think about using them.

One solution is to make the
8080 into an 8080 rather than an
imitation 6502. You can do this
using the fast register-to-regis-
ter transfer commands and get
your loop times down only
slightly longer than those in the
6502 programs.

But is this really what we
want in an 8080 system? Re-
member that on a bare-bones
KIM-1 our back was to the wall
in finding room for a scan pro-
gram. We had to get by withthe
absolute minimum-length scan
programs in order to get any
video at all.

One result of this restriction
wasthatourscancode was self-
modifying. This meant that the
scan program computed its next
set of memory locations rather
than looking them up. This, in
turn, meant that the scan pro-
gram had to be in RAM during
final operation, at least on a

- KIM.

Usually our 8080 systems
have enough RAM and PROM
available that we needn’t worry
too much about minimizing
code. So, why not use brute
force coding that calls each
scan address as it is needed?
We can store the whole scan
program in ROM or PROM this
way and never have to load it
again...or worry about it
bombing when something bad
happens in RAM.

Brute force coding will also
be much faster. It will be much

easier to write, modify and de-
bug. But, as usual, there is a
price. Brute force coding can
be much longer than self-modi-
fying coding. On a one-line dis-
play, this turns out to be a no-
hassle 43 words versus the 30
words we needed on a KIM with
self-modifying code. But on a
long and involved program
such as a 24 x80 double-
stuffed scan, it could take 600
or more words of code to get us
by. Still, that's only little over
half a 2708 or slightly over a
quarter of a 2716 EPROM and
no real big deal these days.

Let’s use this brute force ap-
proach to generate a simple
one line display and then apply
it to a 12 x 80 scan program.

1x56Scan Program

Fig. 13 shows a brute force
scan program for a one line, 56
character no-interlace 8080/TVT
6-5/8 display. Each successive
dot row is called by a scan sub-
routine as it is needed. We start
in 040 100 with a short blank
scan to get us off on the right

foot. Then we sequentially call
dot rows 1 through 7 of the
characters to be displayed.
This live scanning is followed
by a vertical sync pulse.

After this, a word that sets
the number of blank scans is
loaded in the accumulator (365).
As many blank scans as needed
are generated in turn. Each time
a blank scan is completed, the
accumulator word is decre-
mented till the word hits zero.
At that time, the program jumps
to the top line blank scan and

FLOWCHART:

4 START ’

repeats for the next field.
Unlike a 6502, an 8080 can
take an even or an odd number
of half microseconds to com-
plete an instruction. In most
scan programs, some equaliza-
tion will be needed to make up
for this half-microsecond jitter.
The command MOVAA, or
“move the accumulator to it-
self,” takes 2.5 microseconds
and is a benign instruction.
This lets us shift timing by half
amicrosecond if used once and
by one microsecond if used

(040 100)

(040 100-040 127)

(040 130-040 134)

DO BLANK
SCAN

(040 135-040 141)

(040 142-040 153)

Fig. 13a. Program flowchart.

uP-8080A
System-H8

START—p—= 040
040
040
040

100
103
106
111

040
040
040
040

114
117
122
125

040
040
040
040

130
133
135
140

040
040
040
040

141
142
145
146

040
—040

147
150

Mods:

than A9 switching.

Notes:

to run.

Start-JMP 040 100 Displayed 340 004 to 340 037
End-RST/O0 342 004 to 342 037
Program Space 040 100 to 040 152
(43 words)
CALL 315 017 140 Do short blank scan
CALL 315 004 160 Scan Dot row #1
CALL 315 004 200 Scan Dot row #2
CALL 315 004 220 Scan Dot row #3
CALL 315 004 240 Scan Dot row #4
CALL 315 004 260 Scan Dot row #5
CALL 315 004 300 Scan Dot row #6
CALL 315 004 320 Scan Dot row #7
LDA 072 000 340 Output Vertical sync pulse
MVIA 076 365 Load # of blank scans
CALL 315 011 140 Do blank scan
DCRA 075 One less scan
MOVAA 177 Equalize 2.5 microseconds
JNZ 302 (135) (040) One more blank scan?
MOVAA 177 Equalize 5.0 microseconds
MOVAA 177 continued
DI 363 Shut off horn
JMP 303 (100)(040) Go to live scans

To relocate display space, use program jumpers on memory card or else
change starting address of dot scans.
To put both halves of display space closer together, use A4 switching rather

For double height characters, repeat scan of each dot row twice.

® TVT 6-5/8 must be connected via an 8080 adapter, and both the 658-HD8 and 658-HS64 PROMs must be in circuit for the program

® Horizontal frequency 15.174 kHz; Vertical frequency 59.976 Hz. 2500 second hum bar.
® Address switches must be in ‘32", A5 =" +", and A4 ='‘A4" positions.
©® Character sequence goes 340 004; 342 004; 340 005; 342 005; 340 006; 342 006; 340 007
®() denotes an absolute address that is program location sensitive.

® This program is not self-modifying and may be placed in PROM or ROM.

Fig. 13 Program for a one line, 56-character, no-interlace TVT 6-5/8 8080 raster scan.

31




Fig. 14. Program for a 12 line, 80-character-per-line, full-interlace, double-stuffed TVT 6-5/8 raster scan.  twice. This is the purpose of

those strange “177" instruc-

uP-8080A Start-RUN 040 100 ‘ .
System-H8 End-RST/O tions in the program.

Displayed 340 010 to 343 377 In step 040 147, we disable
Program Space 040 100 to 042 007 (455 words)

the interrupts. This turns off

(even field) our front panel but does so late

START-T—=040 100 CALL 315 023 140 Do short blank scan enough that we will not lock the
040 103 CALL 315 010 140 Scan dot row O, character line 1 speaker on. Since the code is
e vy = - : not self-modifying, you can put
040 114 CALL 315 010 300 LY 6 " 1 it in your choice of RAM, ROM,
040 117 CALL 315 010 140 Do blank scan PROM. EPROM or E2PROM.
040 122 CALL 315 060 140 Scan dot row 0, character line 2 Naturally, you'll want to check
040 125 CALL 315 060 200 L g 2 ; ; i
040 130 CALL 315 060 240 . 7 a 2 thlngs. o‘ut in RAM first before
040 133 CALL 315 060 300 © 6 " 2 committing yourself to perma-
040 136 CALL 315 060 140 Do blank scan nent code.

040 141 CALL 315 130 140 Scan dot row O, character line 3 Your turn: Show the coding
040 144 CALL 315 130 200 e 2 " 3 P 32 1x64 and
040 147 CALL 315 130 240 " 4 " 3 needed for 1x32, 1x64 an
040 152 CALL 315 130 300 @ 6 w 3 1x 80 scans.
040 155 CALL 315 130 140 Do blank scan y .
As a hint that will save you
040 160 CALL 315 210 140 Scan dot row O, character line 4 : .
040 163 CALL 315 210 200 " 2 " 4 lots of trial and error or cailc'u'la
040 166 CALL 315 210 240 o 4 " 4 tions, keep your blank initial
040 171 CALL 315 210 300 " 6 o 4 ;
040 174 CALL 315 210 140 Do blank scan scan nine counts short of the
" live scans and keep the retrace
040 177 CALL 315 260 1 Scan dot row O, character line 5 i
040 202 CALL 315 260 200 " W s blank scans five counts short
040 205 CALL 315 260 240 " 4 L 5 of your live scans. A stationary
040 210 CALL 315 260 300 " 6 " 5 1 )
040 213 CALL 315 260 140 Do blank scan or near-stationary '_“"“ bar is
picked up by adjusting 040 134
040 216 CALL 315 330 140 Scan dot row O, character line 6 :
040 221 CALL 315 330 200 " " 6 as needed. A more obvious
040 224 CALL 315 330 240 @ 4 18 6 route to shorter scans is to sim-
040 227 CALL 315 330 300 g 6 o 6
040 232 CALL 315 330 140 Do blank scan ply use the 1x56 and load
Bt 2N o X S E blanks as needed in unused
4 L 0 14 can dot row O, character line 7 .
040 240 CALL 315 010 201 " 2 " 7 character locations.
040 243 CALL 315 010 241 g 4 & 7
040 246 CALL 315 010 301 @ 6 U 7
040 251 CALL 315 010 141 Do blank scan TV Retrace Hassles
040 254 CALL 315 060 141 Scan dot row O, character line 8 : :
040 257 CALL 315 060 201 - 2 b 8 Callln.g and returning from a
040 262 CALL 315 060 241 W 4 e 8 subroutine takes around 13.5
040 265 CALL 315 060 301 " 6 " 8 ; .
040 270 CALL 315 060 141 Do blank scan microseconds on a 'typ|ca|
8080. Two of these microsec-
040 273 CALL 315 130 141 Scan dot row O, character line 9 .
040 276 CALL 315 130 201 ¥ e 9 onds are spent on the live scan,
040 301 CALL 315 130 241 o 4 * 9 leaving us with a retrace time of
040 304 CALL 315 130 301 L 6 " 9 : :
040 307 CALL 315 130 141 Do blank scan 11.5 microseconds. Since tr\e
H8 is slightly faster than this,
040 312 CALL 315 210 141 Scan dot row O, character line 10 . . .
040 315 CALL 315 210 201 " 2 " 10 our available retrace time is
040 320 CALL 315 210 241 i 4 B 10 around 11.2 microseconds.
040 323 CALL 315 210 301 o 6 or 10 :
040 326 CALL 315 210 141 Do blank scan Naturally, we would like to
. " keep our retrace times as short
040 331 CALL 315 260 141 Scan dot row O, character 1line g ]
040 334 CALL 315 260 201 " 2 " 11 as possible. This lets you put
040 337 CALL 315 260 241 " 4 " 11 more characters on the line for
040 342 CALL 315 260 301 e 6 e il .
040 345 CALL 315 260 141 Do blank scan standard horizontal rates or
— . - g lets you run long character
040 350 CALL 330 4 Scan dot row O, character ne i .
040 353 CALL 315 330 201 " 2 " 12 lines with more nearly normal
040 356 CALL 315 330 241 & 4 " 12 horizontal frequencies.
040 361 CALL 315 330 301 " 6 ] 2 .
040 364 CALL 315 330 141 Do blank scan But 11 microseconds may
not be enough time for your
040 367 MVIA 076 006 Delay 48.5 microseconds B
040 371 DCRA 075 continued monitor or TV set to cleanly get
040 372 JNZ 302 (371)(040) continued from the end of one line to the
040 375 IDA 072 000 340 Output //VERTICAL SYNC// pulse beginning of the next. Formost
041 000 CALL 315 363 140 Do short blank scan monitors and some TV sets, 11
041 003 LDA 072 000 000 Delay 6.5 microseconds - ) . ’
041 006 MVIA 076 175 Load # of vertical blank scans microseconds will be just barely
enough.
041 010 CALL 315 015 140 Do //BLANK VERTICAL SCANS// g X :
[041 013 DCRA 075 One less blank scan If you are having trouble dis-
041 014 MOVAA 177 Equalize 2.5 microseconds laying all the characters, here
041 015 JNZ 302 (010)(041)  Repeat blank scans if not done PRI = '
are some hints that may help
041 020 MOvVAA 177 Equalize 5 microseconds you:
041 021 MOVAA 177 continued F ] g
041 022 DI 363 Shut off horn ® Your simplest out is to adjust

32




the display centering so that 041 023 JMP 303 (100)(041) Jump to odd field

the first character is always (041 026 to 041 077 are spares)

legible. Always stop short of (odd field)

the maximum disp|ay |ength on 041 100 CALL 315 023 140 Do short blank scan

your statements. 041 103 CALL 315 010 160 Scan dot row 1, character line 1
. 041 106 CALL 315 010 220 z 3 @ 1

®Use the maximum possible 041 111 CALL 315 010 260 " 5 " 1

i T 041 114 CALL 315 010 320 " 7 " il
vl TRt SN o ST 041 117 CALL 315 010 140 Do blank scan
ductance (see Cheap Video

H " ks 041 122 CALL 315 060 160 Scan dot row 1, character line 2
Cookbook, Fig. 3-33) can. length 041 125 CALL 315 080 230 = 3 % 2
en the needed retrace time. 041 130 CALL 315 060 260 Y 5 oy 2
’ " 041 133 CALL 315 060 320 o 7 o 2
il o sty 041 136 CALL 315 060 140 Do blank scan
character line and put perma-
041 141 CALL 315 130 160 Scan dot row 1, character line 3
nent blanks where they are 041 144 CALL 315 130 220 = 3 i 3
called for. 041 147 CALL 315 130 260 " 5 iy 3
P 041 152 CALL 315 130 320 o 7 ey 3
© AANINIENERIGR (o Iamgtian 041 155 CALL 315 130 140 Do blank scan
each CALL sequence. While . .

: . 041 160 CALL 315 210 Scan dot row 1, character line 4
this is the obvious and cleanest 041 163 CALL 315 210 220 7 3 5 4
route, it can add many words to 041 166 CALL 315 210 ggg s 5 " 4

041 171 CALL 315 210 % % " 4
a brute force scan program. 041 174 CALL 315 210 140 Do blank scan
® |f you thoroughly understand & P— . & g -
. f 041 177 ALL 5 160 can dot row 1, character line
TV horizontal scanning and 041 202 CALL 315 260 220 " 3 " 5
have a decent scope and full TV 031 2?2 gﬁii gig ggg 260 i ;’; " g
g : 041 2 320 il "
documentation, modify the fly- 041 213 CALL 315 260 3140 Do blank scan
back capacitor value as needed B s bos b B . a g e . —
160 can dot row 1, character ne
to get a faster retrace. But, be 041 221 CALL 315 330 220 " 3 " 6
careful to not exceed the peak 8;11 gg; g:ﬁ gig ggg ggg " g i g
allowable horizontal output 041 232 CALL 315 330 140 Do blank scan
transistor voltage when you do
041 235 CALL 315 010 161 Scan dot row 1, character line 7
this. 041 240 CALL 315 010 221 7) 3 i @
041 243 CALL 315 010 261 5 5 0 7
041 246 CALL 315 010 321 o 7 Jl 7
More Characters 041 251 CALL 315 010 141 Do blank scan

Our 1x56 scan has several 041 254 CALL 315 060 161 Scan dot row 1, character line 8

obvious limitations. From this 041 257  CALL 315 060 221 " 3 ¢ 8

) X r 041 262 CALL 315 060 261 » 5 " 8
starting point, we’ll want to add 041 265 CALL 315 060 321 " 7 " 8

i i 041 270 CALL 315 060 1141 Do blank scan
Interlace, double stuffing and 041 273 CALL 315 130 161 Sean dot row 'l \cheracter line O
lots more characters. 041 276 CALL 315 130 22] & 3 o 9
: o 041 301 CALL 315 130 261 ° 5 o 9

The optimum numb'er of char 041 304 CALL 315 130 391 & 2 i =
acters or chunks per line seems 041 307 CALL 315 130 141 Do blank scan
to be 56 for.an H8 system using 041 312 CALL 315 210 161 Scan dot row 1, character line 10
A9 switching for speed dou- 041 315 CALL 315 210 221 g 3 G 10

= e 041 320 CALL 315 210 261 o0 5 0 10
bling. This 56-character Ie'ngth 041 323 CALL 315 210 321 - 7 7 i
lets you use a standard horizon- 041 326 CALL 315 210 141 Do blank scan
ta) TR Tl BER = 041 331 CALL 315 260 161 Scan dot row 1, character line 11
on either a color or a black and 041 334 CALL 315 260 221 @ 3 o) 11
— 041 337 CALL 315 260 261 - 5 £ 11

i 041 342 CALL 315 260 321 4 7 2 L

But there seems to be some- 041 345 CALL 315 260 141 Do blank scan
thing magical about 80 charac- 041 350 CALL 315 330 161 Scan dot row 1, character line 12
ter lines that appeals to people, 041 353 CALL 315 330 221 K 3 W 12

: 041 356 CALL 315 330 261 w 5 Z 12
even though this many charac- 041 361 CALL 315 330 321 " 7 " 12
‘ters are hard to read and are 041 364 CALL 315 330 141 Do blank scan
rarely, it ever, needed. So, to 041 367 LDA 072 000 340 Output //VERTICAL SYNC// pulse
prove it can be done, we're 041 372 MVIA 076 175 Load # of vertical blank scans
going to show you how to dis- 041 374 CALL 315 015 140 Do //BLANK VERTICAL SCANS//
play 80 character lines on your [041 377 DCRA 075 One less blank scan

g 042 000 MOVAA 177 Fqualize 2.5 microseconds
H8 and then put those lines on 042 001 JNZ 302 (374)(041)  Repeat blank scans if not done
a TV with unmodified video D el n i .
n qua ze microseconds

bandwidth or over an rf modula- 042 005 MOVAA 177 Yo B |
tor. Remember, though, that gzg ggﬁ %p 383 Shut off horn
we'll have to run at a reduced 7 285, ((188)(0g0)
horizontal rate, which will take Notes: S R —— et

s sge i @ TVT 6-5/8 must be connected viaan 8080 adapter, and both the 658-HD8 an - s must bein circuit for the program
width and hold modifications 7 iy
to your small-screen, trans- ® Address switches must be in “‘64"; A5 =A5"; and A4 ="‘A4" positions.
former-operated, Photofact- ® Horizontal frequency = 11.191 kHz Vertical frequency =60.006 Hertz. 166 second hum bar.

ildblo: Black dwihiit t ® This program is not self-modifyingand may be placed in PROM or ROM.
available, black and white set. ® Character sequences goes 340 000; 350 000; 340 001;350 001; 340 002; 350 002; 340 003.......
Furthermore, your wrong choice () denotes an absolute address that is program location sensitive.




FLOWCHART

040 100 ( START )

040 100- 0,2,4,6

040 366 LIVE SCANS
00

040 367- LATE VSYNC

04! 007 ULSE + |
EXTRA SCAN

041 0I10-

0o
041 014 BLANK SCAN

041 015-
041 025

(EVEN FIELD)

041 100-
041 366

DO DOT ROW
1,3,5,7
LIVE SCANS

DO EARLY
VSYNC PULSE

041 367-
041 373

041 374-

0o
BLANK SCAN 042 000

042 00I-
042 011

(0DD FIELD)

Fig. 14a. Program flowchart.

of set could sing objectionably.

12 Lines of 80 Characters

A brute force, interlaced,
double-stuffed 12 x80 scan
program appears in Fig. 14. You
can easily modify it for 24 x 80
or even 36 x 80 displays if you
like. With the double stuffing,
the 12 x80display uses slightly
less than one-third of the H8
throughput time. By going to
suitable transparency tech-
niques, you can save two-thirds
of the computer time to trans-
parently run other programs
such as Extended BASIC.

We've shown you this scan
program with its memory space
at 340 010 to 343 377. This as-
sumes you have at least two
RAM cards in your H8 and have
put this particular one “‘out on
top’ with the “56K" jumper on
the memory card. You may
want to relocate things later,
but this is a handy place to
start.

The TVT 6-5/8 is attached to
the memory card by way of an
8080 adapter similar to Figs. 4
and 10. The TVT does place cer-
tain use restrictions on the 340
000 to 360 000 computer ad-
dress space, since any activity
here also gives you a vertical
sync pulse that might disrupt
an enabled dispiay. You can
use this space for a display
memory RAM; you should not
use this area for the scan pro-
gram or the computer stack. If
youdousethis pagefordisplay
memory RAM, you will have to
watch your cursor program
carefully if transparent charac-
ter entry is important to you.

34

You'll find the 12 x80 pro-
gram shown in two separate
fields. We have an even field
that puts down the even dot
rows of all the characters and
an odd field that puts down the
odd dot rows of all the charac-
ters. When combined, these
fields form an interlaced and
double-stuffed frame. Having
the two fields separate is handy
for debugging. By jumping a
field back on itself, you can dis-
play all-even or all-odd fields to
fix coding ‘errors or make for-
mat changes.

The scan program runs just
about the same way the earlier
1 x 56 program did. First, there
is a short blank scan; then we
put down the even dot rows of
all the characters. Then we
equalize, followed by a /ate ver-
tical sync pulse, at the same
time taking up one entire extra
horizontal scan time. Then we
run the usual blank vertical
scans, completing the field.

When the field is finished, we
jump to the odd field, run a
short blank scan and put down
all the odd dot rows of all the
characters. After this, we run
an early vertical sync pulse and
go on to the usual number of
vertical blank scans. The scan
sequence repeats by jumping
to the start of an even field.

The early and late vertical
sync pulses differ by half a hori-
zontal line. When you combine
this half a line with the extra
horizontal line picked up only in
the even scan, you end up with
an intérlaced scan of 373whole
lines taking one 30 Hz frame.
This 30 Hz frame consists of

two 60 Hz fields of 186.5 lines
each.

The 658-HS80 Scan PROM
lets you repack the 80 charac-
ter lines so you can use your
display memory space effi-
ciently. Fig. 15 shows how the
characters are arranged in
RAM. While this looks like a
royal mess, a few extra cursor
words are all we need to
straighten things out. This is
often a reasonable trade-off for
letting us do long lines with an
8080 in the first place and free-
ing up 600 or so words of sys-
tem RAM for other uses.

Your turn: Show the coding for
24x80,32x 80,16 x 56,32 x 56,
16 X 64 and 32 x 64 scan pro-
grams. Show ways of signifi-
cantly shortening the 12 x 80
scan program while staying

PROM compatible. Try:(1)using
only one vertical blanking se-
quence and minimizing blank
sequences and unused code
words; (2) using I/0 commands
to free address space; (3) using
interrupt rather than subrou-
tine mapping.

Note that you’ll use the HS64
PROM for 64 and shorter char-
acter lines and most graphics,
while the HS80 PROM is usually
reserved for 80 character lines.
You can do 40 character lines
with the HS64 without repack-
ing, or else you can use your
memory more efficiently by
going to a specially coded
HS40 PROM that uses repack-
ing. Repacking saves you RAM
space but needs a few extra
words in the cursor program
and takes a special Scan

20

— 330

-----—1 080
--— 130

--}— 260

342 E 5 j b | 2b I 3b

4ab

5b J

o [ =

< S
ss[] o

N T

e
ONE CHARACTER LINE
CHARACTER SEQUENCE IS ababab.. .

UNUSED

Fig. 15. Display memory map for 12 x 80 scan.

FROM PARALLEL ASCII KEYBOARD

B2

Ic2

79LI12
REGULATOR
(FRONT VIEW)

HETTHHHDHEE

ci

"

) UART (CI

vee

Ne | Ne
Jso ulu |37 lsslsslsa |33 32|31 {s0]20l28 o o6 o5 [2afes |22 |an
SYageazl3o88I03s5¢8% &5
: - . o o + ’.;

A

v
=
2
o E

[son }—
[ -5

"BAUD"# 16 X INPUT CLOCK
"OUT"= TTL "MARK=HIGH" OUTPUT
F

TO HB-5 OR OTHER
SERIAL INPUT PORT

Fig. 16. This keyboard serial adapter lets you connect a keyboard

to a serial computer input.




PROM.

A Keyboard Serial Adapter

If you have an H8-2 parallel
interface card, it should be fair-
ly easy to interface almost any
old ASCIl keyboard and en-
coder. You could do this essen-
tially the same way we did it on
the parallel KIM inputs back in

(a) SCHEMATIC

.
-18

the Cheap Video Cookbook, but
the H8-2 card is an expensive
optlon and you might not al-
ready have one on hand. More
likely, you’'ll be using the H8-5
serial Interface card Instead,
since you need this one for the
usual cassette and remote ter-
minal uses.

Most ASCIl keyboards and

GND

BUS PIN2

BUS PINO,I

IN-SOCKET JUMPER
FROM out IBRS==
\
XNEXDOARD ez o pin3 ci2e
PN = ___ (UART RECEIVER
(REMOVED) INBSN)
BAUD PIN9 ICII6
(16X, 600 BAUD)
+5v +5v
- 1cI33
= IN-SOCKET JUMPER
4 -, INT
r \\ 6| ON,~ =<
o | IC1228 1O —e— INTERRUPT LINE
] —— GATING IC129

O wr
(REMOVED) OFF

(b) PICTORIAL

18 102

REMOVE ICI22
ADD JUMPERS

FROM
KEYBOARD
SERIAL
ADAPTER

MO-5 SERIAL
1/0 CARD

Fig. 17. Connecting your keyboard serial adapter to an H8-5 inter-

encoders provide only a parallel
(all-the-bits-at-once) output. To
enter a serial port, we have to
convert this parallel word Into a
serlal (one-bit-at-a-time) se-
quence. A simple adapter to do
this Is shown in Fig. 16.

The clrcuit can use the trans-
mitter half of nearly any old
UART (universal asynchronous
receiver-transmitter). We first
looked at UARTs back in Chap-
ter 7 of the TVT Cookbook.
You’il find this circuit easier
and more inexpensive when
you use a modern, single-supply
CMOS chip such as an Intersil
iM6402 or IM6403.

The keyboard serlal adapter
works by borrowing power from
the H8-5 serial Interface and
feeding +5 volts and optlonally
—12 volts to your existing key-
board. Your existing keyboard
outputs are most likely avail-
able in parallel or “all-at-once”
form. These parallel outputs
and a normally-high keypressed
strobe are routed to the trans-
mitter side of the UART in the
adapter. This UART also bor-
rows a 16X baud clock from the
H8-5.

When you press a key, a serial
output Is generated by the
UART. This serial output is then
routed to your computer’s serial
Interface and recelved just as if
it came from a terminal.

You may need as many as
five leads between your adapter
and the H8-5. One is ground,
two are for power, one is the
16X baud rate clock that goes
to the adapter and the final is
the serial output that comes

you how to connect, both pic-
torially and schematically, your
adapter to your H8-5. You can
elther hard-wlire these connec-
tions or add a new connector of
your own.

On your H8-5 board, inte-
grated circuit 1C122 is removed
and replaced with two jumpers
inserted in the socket as
shown. The pin-11-to-pin-13
jumper gives you direct access
to the serlal Input on the UART
present inside the H8-5. The
pin-6-to-pin-7 jumper lets you
use the keyboard in a polled
mode. This polled operation
glves you a transparent scan
program and frees the inter-
rupts for other uses.

The H8 has to be software-
programmed to use your new
adapter. A simple test sequence
that will enter the last-pressed
key into the accumulator and
dispiay it for you is shown in
Fig. 18.

The HB8-5 is first Initialized
with a mode instruction. You
can use 312 and output it to
port 373. This picks two stop
bits, ignores parity, uses a
seven-bit word and runs with a
16X clock. Next, you continue
to inltialize the H8-5 by glving a
command instruction to the
same port. This time, use 004
and once again output it to port
373. This command instruction
will enable only the recelver in
the H8-5 Interface.

After the mode instruction
and the command instruction
are routed to the interface, you
are free toread characters. You
do this by inputting from port

face. from the adapter. Fig. 17 shows  372. The flnal loop in the test
program does this continuous-
ly.
uP-8080A Start-JMP 040 100 As VOLIPIESS & ke.y, its ASClI
System-H8 +H8/5  End-RST/O value will appear in the left
Program Space 040 100to 040 113 (13 words) three digits of the “AF” Regis-
ter display. For Instance, a
(START )=040 100 MVIA 076 312 Initialize mode instruction G
040 102 OUT 323 373 continued IaErreaER 15" g e,
040 104 MVIA 076 004 Initialize command instruction whiie an uppercase “B” will
040 106 ouT 323 373 continued
read 102.
030 110 IN 333 372 Read Keyboard There are a few gotchas in
040 112 JMP 303 (110)(040) Loop this simple test program, so
you’ll want to improve it for ac-
Eos: tual use as part of a cursor. Note
® Thistest program displays a pressed key received via the Keyboard Serial Adapter. To run the program, use: 3 D ]
RST/0-REG-PC-ALTER-0-4-0-1-0-0-ALTER-REG-AF-GO. that this simple program con-
@ ASCII characters should appear as the three leftmost digits on the display. For instance, “A" =101, “a"” =141, “'6" = 068, and tinuousiy rereads characters
“CR" =015. X .
® () Denotes an absolute address that is relocation sensitive. instead of readmg each one
just once. To beat this, there Is
Fig. 18. Keyboard serial adapter test program. avallable a ‘“character ready”
(R x RDY) flag that is set when

36




the character first arrives and is
reset as soon as the computer
uses the character for the first
time.

To use a character only once,
input from port 373, AND what
you get with 002 and test the re-
sult. A nonzero result means
you have a new character ready
to enter. A zero result says you
have already used the charac-
ter on-hand and should ignore
it. We’'ll see an example on this
shortly.

The UART doing the trans-
mitting (in the adapter) and the
one doing the receiving (in the
H8-5) must agree on the baud

uses two stop bits and has an
eight-bit word length. You can
change any or all of these by re-
programming the hard-foil con-
nections of pins 33 through 39
of the UART. Our circuit as-
sumes the keyboard outputs
positive logic and uses a nar-
row goes-to-ground-from-posi-
tive-high strobe that is low only
when data is valid. The output
is a simple TTL logic level.
There is no need to convert to

RS-232or Teletype current loops
for a short interface connection.

Your turn: Show how to use
your keyboard serial adapter
with only two wires between
computer and keyboard, includ-
ing all power supply connec-
tions. Hint: Use the IM6403 with
a crystal and a CMOS-encoded
keyboard. Change the current
when you want to send a zero
and sense this current at the

computer end.

If you really want to get fancy,
use ultrasonicorinfrared trans-
ducers to give you zero connec-
tions between keyboard and
computer. This will, of course,
take batteries inside the key-
board, or will it?

8080 Cursor Software

Many of the ideas we have al-
ready used for our previous cur-

Fig. 19. Program for a one-line, 56-character TVT 6-5/8 8080 raster scan integrated minimum cursor.

uP-8080A Start-JMP 040 100 Displayed 340 004 to 340 037
rate and the baud cleck factor. SystemH8  End-RST/O 342 004 to 342 037
Usually, the H8-5 will be set on Program Space 040 100 to 040 341
600 baud and 16X clocks with Registers Used -8B, H, L
internal jumpers. If not, orif you Main scan sequence:
are on a different system, be
sure that the transmitting UART START 040 100 MVIA 076 312 Initialize MODE for H8-3
Y 040 102 ouT 323 373 continued
i SRS AT G o 040 104  MVIA 076 004 Initialize COMMAND for H8-3
speaking terms with each 040 106 OUT 323 373 continued
other. — =040 110  CALL 315 017 140 Do short BLANK SCAN
Note that your initialization 040 113 CALL 315 004 160 Scan Dot row #1
040 116 CALL 315 004 200 Scan Dot row #2
of the mode and command 040 121  CALL 315 004 220  Scan Dot row #3
words should be done only T T W ¥
4 Scan Dot row #4
once after reset and before any 040 127  CALL 315 004 260  Scan Dot row #5
input/output activity. If you 040 132 CALL 315 004 300 Scan Dot row #6
don’t initialize, you’ll get no 040 135 CALL 315 004 320 Scan Dot row #7
’
characters at all, and if you 040 140 MVIB 006 364 Load number of blank scans in B
q e 18 040 142 IN 333 373 Is a new key pressed?
continuously re-initialize, char- 040 144  ANI 346 002 Mask kepressed bit
acters will get dumped before 040 146 Jz 312 (154)(040) No, continue scan
you can use them. (040 220)»—040 151 CALL 315 (220)(040) Yes, go to cursor
Your keyboard serial adapter —= 040 154 CALL 315 015 140 Do equalizing BLANK SCAN
. flexible. For inst 040 157 LDA 072 000 340 Output vertical sync pulse
Is very tlexible. For instance, go 040 162 MOVBA 170 170 Get number of blank scans back
over the data sheets to find a
hol d UART ] 040 164 CALL 315 011 140 Do BLANK SCAN
whole unuse receiveron 040 167 DCRA 075 One less scan
the low number pins. The —12 040 170 MOVAA 177 Equalize 2.5 microseconds
3 . Y 040 171 JNZ 302 (164)(040) Do another blank scan?
volt supply is an option. You 040 174 MOVAA 177 177 Equalize 5 microseconds
can eliminate it if you already
040 176 DI 363 Shut Off Horn
have — 12 on hand or use a key- 040 177 JMP 303 (110)(040) Go to new field
board that doesn’t need it. You
. CURSOR
can also use the old-style RETURN
UARTs that need —12 by re- .
. 5 A Cursor Processing Subroutine:
moving the connections on pin
#2 and jumpering to —12.
] " 9 040 151 040 220 MOVAH 174 Get upper cursor address
Should you use the IM6403, (Enter) 040 221  ANI 346 375 Mask A9 out
you can eliminate the 16X baud 040 223 CPI 376 340 Is upper page address valid?
. . 040 225 5177 312 (233)(040) Yes, OK to continue
rate line by connecting a 3.58
M r TV cr ween 040 230 CALL 315 (260)(040) No, clear screen via subroutine
,HZ - e y_Stal TN e_e 040 233 MOVAL 175 Get lower cursor address
pins 17 and 40 while grounding 040 234 ANI 346 037 Put it on the screen
pin 3 of the IM6403. This will 040 236 MOVLA 157 Replace lower cursor
output characters for you at 040 237 IN 333 372 Get character
’ 040 241 CP1 376 015 Is it Carriage Return (Erase)?
110, b,aUd' Y'our b i 040 243 Jz 312 (260)(040) Yes, clear screen via subroutine
serial input will also have to be 040 300 040 246 CALL 315 (300)(040) No, enter character via subroutine
jumpered ol programmed L 040 251 RET 311 Return to scan program
use this new data rate.
As Shownf the keyboard Serl- (040 251 through 040 257 are spares; not used)
al adapter is programmed to
i H (040 320) 040 260 CALL 315 (320)(040) go to clear screen subroutine
provnde‘apermanen.t one.m e 040 263 MVIB 006 331 Equalize # of blank scans remaining
transmitted ASCII bit #8, is con- 040 154 040 265 RET 311 Return to Processing
tinuously enabled, has no parity, (Exit)
37
e ———. et et ——— -




2nd character ...............
3rd character
4th character ..

Enter Character and Increment Subroutine:

040 300 MOVMA 167 Store character at cursed location .
040 301 MOVAH 174 Get upper cursor word 565th character
040 302 XRI 356 002 Change address A9 56th character
040 304 MOVHA 147 Replace upper cursor word
. 3 Now every time we enter a
040 305 ANI 346 002 Is address A9 now zero
(exit_D——040 307 RNZ 300 No, return character, we want to go on to
040 310 INXH 043 Yes, increment HL (cursor address) the next one. So, we first change
(exit 2—040 311  RET 311 Return to Processing B8 Téude i6ib, we uSOaoEEN
040 320 LXIH 041 (004)(340) Home Cursor sive OR 002 of the H register.
040 323 MVIA 076 040 Load Space = e -
040 325  CALL 315 (300)(040) Enter space via ECI subroutine This will automa‘tlcally make
040 330 MVIA 076 040 Is it the end of the screen? A9 a one for a particular charac-
040 332  CMPL 275 continued. .. ter, a zero for the next charac-
040 333 JNC 302 (323)(040) No, add more spaces ter, a one for yet the next char-
040 336 LXIH 041 (004)(340) Yes, home cursor
040 341 RET 311 Return to Processing acter and so on.
If A9 goes from a zero to a
Notes: one, we need do nothing fur-

®TVT6-5/8 mustbe connected viaan8080adapterandboththe 658-HD8 and 658-HS64 PROMs must be in circuit forthe program to
run. Character entry via keyboard, a keyboard serial adapter and the H8-3 serial interface card.

® All characters and all control commands are entered on the screen, except for carriage return (CR), which clears the screen.
@ Horizontal frequency is 15.174 kHz; Vertical frequency is 59.976 Hz. 2500 second hum bar.

® Address switches must be in “32"; A5 =" +"; and A4 =*'A4" positions.
® Character sequence goes 340 004; 342 004; 340 005; 342 005; 340 006; 342 006; 340 007.. ..

® This program is not self-modifying and may be placed in PROM or ROM. Register “B" is used for temporary storage; Registers

“HL" are used to hold the cursor address.

® To aid in debugging, replace 040 147 with 000 and manually defeat front panel interrupt. To shorten number of characters dis-
played for a tv with limited width, use 040 337 vaiue of 005 or higher.
® () denotes an absolute address that is program location sensitive.

sors will carry over to 8080 cur-
sor design. One new hassle
we’ll pick up is the straighten-
ing-out process needed to undo
the A9 speed doubling. But this
is more than offset by the easier
and simpler code using all the
available 8080 registers, partic-
ularly the 16-bit wide HL regis-
ter that is ideal for cursor loca-
tion storage.

Let's look at a simple cursor
that ties the keyboard input to
an 8080 display. We'll use the
1x56 display to keep things
simple. The program and a
flowchart are shown in Fig. 19.

For convenience, we've left
this program in several pieces,
omitted a visible cursor and
done only ‘‘good enough”
equalization. While you can use
this program for a one-line
point-of-sale terminal, as a deaf
communicator or in a prompting
environment, chances are that
you’'ll want to pick up these bits
and pieces and then combine
them with the best of the earlier
cursors to do your own thing.

Our main scan sequence is
about the same as the old 1 x 56
scan program of Fig. 13. We've
added some words at the start
that initialize our H8-5 serial in-
terface so it will accept a key-
board input by way of the key-
board serial adapter. Our brute
force scans are called for next

38

as needed to give us a line of
characters.

After the characters are
down, we test to see if a new
key has been pressed. If not, we
output a vertical sync pulse,
run the blank vertical retrace
scans, and then jump up and re-
peat everything for the next
field. Note that we do not re-ini-
tialize the serial interface each
time. We simply loop back to
the start of the next field.

Now, if a key has been
pressed, we jump to the new
Cursor Processing subroutine
at 040 220 through 040 251. This
cursor processing subroutine
first checks to make sure the
HL register is holding a valid
cursor location. If it isn’t, the
screen is erased and the cursor
fixed before anything happens
to other programs in the ma-
chine.

We then get a character and
testit to seeifitis a CR, or car-
riage return. If it is a CR, we
erase the screen and home the
cursor. CR was chosen over
CAN in this example as it
seems more appropriate for a
one-line display. You can, of
course, use any decoding you
like.

If any key but the carriage re-
turn is pressed, the character is
entered. This is done by way of
an enter-character-and-incre-

ment, or ECI, subroutine. This
ECI subroutine is fancier than
the ones we used before, since
we have the A9 switching to
contend with. Some new rules
and a few extra code words
take care of this for us.
Remember that the A9
switching was used to let us
get characters out of the 8080
fast enough to be useful. To do
this, the display characters are
out of order. Specifically, for
our 1x56 display, the charac-
ter sequence goes like this:
1st character ................ 340 004

(MAIN SCAN)

START

ther. If A9 goes from a one to a
zero, however, we need to move
onto the next pair of character
slots in memory. To do this, we
increment the HL register that
contains the cursor.

So, we change A9 every new
character but increment our HL
cursor only every second char-
acter. All the A9 switching
mess is magically eliminated
with nothing but eight or so pro-
gram words.

Your turn: Show an all-the-bells-
and-whistles cursor for a
24 x 80 display, including a visi-
ble cursor, full equalization and
transparency, all cursor mo-
tions and the usual goodies.

As with the 6502 systems,
there is virtually no limit to how
fancy your cursor programs
can become. All it takes are ex-
tra words of machine-language
code to do almost anything you
can dream up.®

(CURSOR PROCESSING)

INITIALIZE (220-236)
(100-106) SERIAL CLEAR SCREEN
INPUT AND
HOME CURSOR
(260-265)
(110-135) 2O GIVE
SR GET KEY (237-238)
(142-146)
NG (241-242)
(157-161) DO VSYNC
ENTER KEY CLEAR SCREEN
AND AND
INCREMENT
CURSOR HOME CURSOR
DO BLANK
(164-167) 00 8L 5 J
(300-311) (320-341)
A
Yes Aarank D> ALL LOCATIONS PREFIXED 040-XXX
CAN?,
Fig. 19a. Program flowchart.






