
Don Lancaster

SYNERGETICS

Clocked Logic

Part 2: Some basic applications

Last month Don Lancaster presented us with a good intro-

duction to the world of flip-flops. His discussion this month
covers devices such as basic counters, dividers, shift and
storage registers, and multivibrators. In this second of a three

part series he has taken material from his upcoming book
entitled CMOS Cookbook (to be published by Howard W.

Sams). — John.

Let's discuss some of the

many different things

we can do with the basic

clocked logic D and JK flip-

flops. These techniques are

useful with the 4013 and

4027 by themselves or in

simple circuits.

Most often, you'll prob-

ably only want to use a few

4013s or 4027s in your cir-

cuit as the fancier MSI blocks

cram much more perfor-

mance in a single package. If

you find yourself using lots

and lots of JK or D flops, try

to find a MSI substitute or a

different approach that will

simplify the job for you. On
the other hand, it's a very

rare CMOS circuit that

doesn't have two or three

4013s and maybe a 4027
tucked away in a corner

somewhere to pick up some
loose ends that the MSI can't

handle directly. So it pays to

be aware of all the different

good things you can do with

these basic clocked logic

blocks.

Binary Counters

Binary counters are prob-

ably the oldest of clocked

flip-flop uses. We can get a

single stage to divide by two
either by cross coupling Q to

D on a 4013 or by making

both J and K high on a 4027.

The output alternates states,

giving us a square wave with a

50-50 duty cycle of one-half

the input clock frequency.

We can cascade binary

counters as shown in Fig. 7.

This lets us count to numbers
higher than two or divide an

input clock by a higher ratio.

If the output of one divide-

by-two (Fig. 7(a)) is con-

nected to a second so its

output clocks the second

This article is excerpted from the
CMOS Cookbook, copyright 1977
by Howard Sams. Reprinted by
permission.

stage, we end up with the

divide-by-four of Fig. 7(b).

Add another stage, and we
pick up the divide-by-eight of

Fig. 7(c). More stages mean
more possible count states

and a higher division ratio.

Four stages is particularly

interesting. By itself, it can

represent sixteen different

things, count to sixteen, or

scale an input frequency by

sixteen. But, if we properly

tamper with the count

sequence, we can shorten our

divide-by-sixteen into a

divide-by-ten or decimal

counter and do "by tens"

counting and arithmetic.

These binary counters are

called ripple counters. One
stage has to change com-

pletely before the next stage

can start its changing. Note

FlNo-
D

C

Q

(A) DIVIDE BY TWO

F/2
9

F IN o-

F/4

•-T

D

C

-» F/2 OUT

40I3

F INo-

J

c

K

6

V

-oF/2 OUT

4027

F/2
i

FIN>

40I3

F/4
o

J O

C

K

V V

(B) DIVIDE BY FOUR

F/2

9

F/4 F/8

F INo- C

Q

D Q

C

5

C

F/2

9

402 7

F/4

tr

F IN«-

J

C

K _T"
C

1 <>- K

J

F/8

9

J

c

K

V
« C
V

40I3 4027

(C) DIVIDE BY EIGHT

Fig. 7. Binary ripple counters.

22

r\r r\a r\n

QA

OB

OC
|

1

1 2 3 4 5 6 7

A*l B-2

G OB OB
r-»

1

.010
1 1

1

1 1

1 1

—
1 1 1

J

c

K

J

c

K

~~L_J LJ L_r o r—»0
,

1
1

F IN • <

v*

—

1 1 1

"~
1

r ~L 4027

(WAVEFORMS)

(A) CIRCUIT (B) TRUTH TABLE

(TRUTH TABLE)

(A) NORMAL, "ADD" OR UP-COUNTER. STAGES CHANGE ON HIGH TO LOW TRANSITION
W PHE^VOAJS STAGE.

OC OB OA

1

1

1

1

1

1

1

1 1

1

1

—

7 6 5 4 3 2 1 7

OA ' |

1 1 1 1

1

-L_r-L_

OB l~
1 1 i

OC l~
1

i

V

(TRUTH TABLE) (WAVEFORMS)

(B) REVERSE, "SUBTRACT" OR DOWN-COUNTER. STAGES CHANGE ON LOW TO HIGH

TRANSITION OF PREVIOUS STAGE

OA

OB

OA

OB

4001 "0"

-o"2*

12
f in n n n rL_rL_
OA

OB

"O"

J L

J L

J L J L

(C) DECODING STATES (D)WAVEFORMS

Fig. 9. Synchronous divide-by-three is weighted 1-2.

Fig. 8. Binary counter waveforms.

that invalid output counts

will happen during the set-

tling times caused by the

stage-to-s tage propagation

delays.

We can control the count

direction, depending on how
we drive the clock of each

stage. Fig. 8 gives details. If

we clock from of the pre-

vious stage, we get a normal,

add, or binary up sequence as

shown in Fig. 8(a). On the

other hand, if we use the Q
output to drive a positive

edge clocked next stage, we
end up with a backwards,

subtract or down counter, as

shown in Fig. 8(b). If our

logic blocks are negative edge

clocked (such as the 4024),

the exact opposite is true —
cascade from Q for a normal

or up sequence and from

for a reverse or down se-

quence.

Divide-by-Three

Fig. 9 shows us asynchro-

nous divide-by-three counter

using a 4027. Note that both

stages are clocked at the same
time from the input, so we
don't have the propagation

and ripple delay effects of

cascaded stages. The output

of this counter is said to be

weighted 1-2, meaning that

one output counts for "1"
if

it's there and the other one

counts for "2" if it is present.

So, you can directly look at

the states and immediately

tell what count is stored in

the circuit. This circuit is the

shortest example of the odd
length walking ring counter.

Two of the three counter

states are self-decoding; the

third is picked up with the

NOR gate shown in Fig. 9(c).

Divide-by-Four

A synchronous alternate

to the ripple divide-by-four is

shown in Fig. 10. We use the

J and K low "do-nothing"

state of a 4027 to inhibit the

counting of the second stage

half the time. Weighting is

also 1-2. Four two-input

AND gates may be used to

decode the individual stages

as shown.

This "do-nothing" inhibit-

ing of a JK flip-flop is the key

to longer synchronous
counter. For a divide-by-

eight, you only let the third

stage count one-fourth of the

time and inhibit it three-

fourths of the time. A divide-

by-sixteen can count only

one-eighth of the time and so

on. You can either use multi-

ple input gates or a cascaded

sequence of enabling two-

input gates for longer

synchronous counters.

Divide-by-Five

Here is another example of

our odd-length walking ring

counter. As Fig. 11 shows us,

the circuit is synchronous

with all stages clocked di-

V

F IN *-

B«2

j o

c

K 6

J

c

K 5

-o F/4 OUT

4027

OB OA

I

—

">0

I

I

I—
| I

(A) CIRCUIT

OA

OB

OA

OB

OA

OB

OA

OB

O"

(B) TRUTH TABLE

I

'« n j~i

2 3

_TL_rL_rL
oa -] r
OB ~~l_

o J l_

i i i

_j i

i

V
O

I

?

3

J L

408I
J L

(C) DECODING STATES (D) WAVEFORMS

Fig. 10. Synchronous divide-by-four is weighted 1-2.

F IN«-

J

C

k o

J

C

K

J

C

K

OC OB OA

-o F/5 OUT

402 7

(A) CIRCUIT

I

I I

1 I

1 O /

(B) TRUTH TABLE

L

OA

OC

OA

OB

OB

OC

OA

OB

OB

OC o

-o O

-o 2

-o3

408I

-o4

(C) DECODING

F IN

I
OA

I

OB r I

oc —|
I I

_r I

I

I

I ~L_
2 r I

3

« ~L_
I I

I I

(D) WAVEFORMS

Fig. 1 1. Synchronous divide-by-five has 3:2 output duty cycle.

23

rectly from the input. We can

decode this particular circuit

with five two-input AND
gates as shown. The output is

unweighted and has a 3:2

duty cycle.

Any of these counters can

be reset to zero by using the

Direct Reset inputs. You do

have to be sure the direct

input goes back low before

the next clock pulse arrives.

With combinations of direct

set and direct reset, you can

load any desired count into

your circuit any time you

want.

Shift Registers

A shift register is built as

shown in Fig. 12. We cascade

the Q output of a D flip-flop

to the D input of the next

stage. With JK flip-flops, we
connect Q to J and Q to K,

making sure the first stage

always sees complementary

data on the J and K inputs.

Each stage stores one bit

of data, forming a word equal

in length to the number of

stages in the register. On
clocking, each bit moves one

stage to the right. The first

stage picks up a new one or

zero from the serial input.

The last stage sends its output

on to the outside world or

loses it. The registers shown
in Fig. 12 are usable as

serial-in-serial-out (SISO) or

serial-in-parallel-out (SIPO)

registers. We can also build

shift registers with parallel

loading direct inputs, and, if

we like, we can recirculate

shift register data from out-

put to input.

Storage Register

We can also use a pile of D
flops all at once rather than

having them pass data to each

other. This gives us a storage

register that accepts and

holds a parallel word for us.

An 8 bit parallel storage regis-

ter is shown in Fig. 13.

Storage registers are useful

to catch data on the way by,

particularly from a micro-

processor. They then hold the

data as long as we need it.

You can also use storage

registers to sample data when
it is known to be good,

eliminating any intermediate

garbage caused by settling

times, propagation delays,

and so on. A storage register

on the output of an elec-

tronic music digital keyboard

will hold the note command
for us after key release. This

lets the note decay and fall-

back continue after the note

is let go, still telling the rest

of the circuit what note it

was working on.

Some MSI examples of

storage registers include the

4175 quad, 4174 hex, and

4034 eight-bit devices.

Monostable Multivibrators

A normal monostable

VA

SERIAL INPUT o-

CLOCK Jl o-

C

5

PARALLEL OUTPUTS-

?B ?C

D

C

B

c

9D

D

C

-o SERIAL OUTPUT

40I3

(A) USING D FLIP FLOPS

, PARALLEL OUTP1

|A OB

JTS

C 'D

SERIAL
J 1 J J JINKUT ° *

-|V>^
c

K 5

c

K

c

K 5

c

K 5

1

CLOCK _TL o 1 »

—

<— < >

—

(»

—

4C)27

SERIAL
OUTPUT

DATA
INPUTS

Oo D

I

C

I
o— D

5

2»— D

II— c

3o D

«l c

4o— D

<>— C

50— D~~

60 D Q

lh- c

70 D

{) C

1

1

STORED
OUTPUTS

4013

STORE XL

Fig. 13. 8-bit word storage

latch for a microprocessor.

multivibrator using the 4013
D flop is shown in Fig. 14(a).

Clocking drives Q high, which

charges C through the series

combination of R2 and the

much smaller R1. When the

cycle ends, C is rapidly dis-

charged through R1 only.

Leaving R1 off gives very fast

recovery but distorts the Q
output waveform. If a long

recovery time is available, we
can use R2 only and omit the

diode.

To pick up a retrigger

ability, examine Fig. 14(b).

Here the input clock low time

discharges the capacitor

through R1. The positive

clock edge drives Q high and

R2 charges C for the delay-

until-reset time. The circuit

may be triggered at any time

and will time out from the

last triggering. Note that the

monostable ON cycle cannot

end while the clock is low.

We can also use the alter-

nate trigger method of Fig.

14(c). Here we pulse the SET
input to start timing. This

takes a resistor and a capaci-

tor, but gives us a second way

to positive edge trigger. The

time constant on the trigger

must be shorter than the ON
time for proper operation.

The system reset/power-on

generator of Fig. 14(d) will

give you a clean reset signal

shortly after power is applied

to your system. Applying

supply power triggers the

monostable which then times

out long enough for the sup-

ply to reach a stable value.

The trailing edge of the

monostable can then be used

for a system reset. This type

of circuit is handy for initial-

izing things like microproces-

sors, making sure every

thing comes up in a benign

state when first activated.

TRIGGER

o J~~L

o-i_r

40I3

,s7

(A) BASIC CIRCUIT

~b
OOI $IOOK

TRIGGER J" «)\-
SET

V«— •_TL

cU

Vo-

I7
220K

D

C

40I3 40I3

2 2MEG

~ 1 SEC
USE TRAILING
EDGE FOR
SYSTEM RESET

22

(B) USING JK FLIP FLOPS (C) ANOTHER TRIGGER METHOD
(D) A SYSTEM RESET /POWER ON

GENERATOR

Fig. 12. Shift registers. Fig. 14. Monostable circuits.

24

