
Clocked Logic

. Part l: The
Don Lancaster

SYNERGETICS

Here it is. You software types

and novices who have been

looking for some good intro-

ductory material to logic

elements have found the

place! You say you've been

looking for something on

flip-flops and how they

work? So have we, and it's

for sure we couldn't have

found a better writer to

present it for you than Don
Lancaster. In this first of

three articles he's f*ken

material from his upcoming

book entitled CMOS Cook-

book (to be published by

Howard Sams) and come up

with some of the best

material you'll find on the

operation of the JK and
D-Type flip-flops. Although

he's discussing the operation

of the CMOS 4027 Dual JK
and the 4013 Dual D-Type,

the fundamentals and opera-

tion will apply equally well to

their TTL cousins, the 7473

and 7474.

If this turns out to be an

education for you, consider it

a state-of-the-art one. You'll

be doing your learning

around a discussion of Com-
plementary Metal-Oxide
Semiconductor (CMOS)
devices. With their low-power

characteristics they're

destined to become the next

logic family to come on the

scene and stir things up a

little. — John.

In clocked, synchronous or

step-by-step logic, the out-

puts of logic blocks don't

change immediately after

their inputs change. Instead,

the logic block waits till a

specific time set by a wave-

form on a clock input. Only

then are output changes

allowed. There are two essen-

tial steps to the clocked logic

process. In the setup step,

inputs decide what the logic

block is going to do. In the

clocking step, the logic block

actually does what it was told

to and provides an output.

There are lots of advan-

tages to clocked logic. First

and foremost is the orderli-

ness of the process. Logic

signals move one and only

one stage at a time. This lets

us move data from one block

to another without un-

checked races and domino

effects, where a logic one or

zero goes galloping several

stages beyond where it was

first headed. What's equally

important is that a logic

block's outputs can now
determine or at least influ-

ence its own next output

conditions without any

preferential states or wild

oscillations taking place.

Clocked logic also internal-

izes the variable processing

delays from logic block to

This article is excerpted from the

CMOS Cookbook, copyright 1977

by Howard Sams. Reprinted by
permission.

logic block. So long as the

slowest block completes its

internal operations before the

next clock arrives, all outputs

of all stages will be valid and

predictable at the instant of

clocking, so we automatically

know when to look for valid

data. As a side benefit, most

modern clock logic is edge

sensitive. This edge sensitivity

eliminates any need for resis-

tors and capacitors to deter-

mine a leading or a trailing

edge of a logic signal.

Clocked logic is used in

virtually all advanced elec-

tronic systems. This is par-

ticularly true if counting,

shifting of data, or storage of

characters is needed. In this

article, we'll be looking first

at a do-it-yourself clocked

logic block, followed by a

check into the 4013 Type D
flip-flop and the 4027 JK
flip-flop. These devices are

extremely useful by them-

selves as the detailed applica-

tions catalog later in the arti-

cle will show you. The same

operating principles will be

important as the basic build-

ing blocks when discussing

the heavier counters and

registers.

CMOS Clocked Logic

Most CMOS logic blocks

are clocked on the positive

edge of the clock. This is the

ground to positive transition

of the clock input. Clocking

is defined in a positive logic

sense for most CMOS devices.

There are a few exceptions

to this positive clocking rule.

Binary ripple counters such as

110

D type and JK flip-flops
the 4020, 4024, 4040, and

4060 are clocked on the nega-

tive edge or positive to

ground transition of the

clock. This lets you cascade

binary stages for longer count

lengths. A few CMOS
counters give you a choice of

clock polarity, set by a logic

signal on a separate pin. The
4518 and 4520 dual decade

and dual hexadecimal
counters are the most impor-

tant of these. They give you a

choice of positive edge clock-

ing for synchronous counting

systems or negative edge

clocking for cascaded ripple

counting.

Except for a few easy-to-

live-with setups and hold time

limitations, it is only the

input conditions that exist at

the instant of the docking
transition or edge that mat-

ter. Inputs can change regard-

less of whether the clock is

high or low, eliminating the

one swallowing problems that

plagued early TTL level

clocked flip-flops.

There is one important

clock restriction that remains

with CMOS and applies to

just about any logic restric-

tion that remains with CMOS
and applies to just about any

logic family:

In any clocked logic sys-

tem, the clock must cycle

only once, noiselessly and

bounce-free, per intended

output change.

This means that all our

clocking signals must be

clean. In particular, clocking

commands that come from

the outside world or from
mechanical pushbuttons must
be properly conditioned to

give you one and only one
clean transition per desired

output change.

With CMOS, it also pays to

keep the clock risetime as fast

as possible. Five micro-

seconds is a normal worst-

case maximum clock transi-

tion time. If possible, make
your clock signals have much
faster risetimes than this.

Slower risetimes may let one

stage output a new state

before the next stage has a

chance to complete clocking.

This mixes old and new data

and generates garbage for

you. In large CMOS systems,

it pays to avoid clock slew

problems by deriving all clock

signals from the same source

or from parallel sources with

identical delay.

A Clocked Logic Block

One inherent feature of

clocked logic is that it takes

two regular flip-flops or stor-

age devices to build one

clocked one. One of these

flip-flops takes care of accept-

ing and setting up the input

information, while the second

actually carries out the in-

tended operation and holds

the result for us as an output.

In the dim distant past,

one of these two storage

elements consisted of a

diode-capacitor memory or

steering network. More re-

cently, the stored charge in a

base-emitter junction of a

transistor served the same
purpose, with presence or

absence of stored charge

representing a one or a zero.

Today's CMOS, along with

many other families, uses two
distinct flip-flops — an input

or setup storage device called

the master and an output

flip-flop called the slave. On
the clocking edge, the con-

tents of the previously setup

master flip-flop is transferred

to the slave. The slave flip-

flop then provides us with the

final output and between-

clocking storage of output

data.

Once again, the all impor-

tant purpose of the two step

process is to give us an order-

ly one-stage-at-a-time shift of

data between clocked logic

blocks and to let us count or

binarily divide without get-

ting into preferential state

and hangup problems. Let's

see what kind of trouble we
can get into by trying to

make an ordinary set-reset

flip-flop binarily divide, alter-

nating states on every input

command:
In Fig. 1a is a NOR logic

set-reset flip-flop. With both

set and reset low, the flip-flop

holds the last state it was put

into, with Q andTTproviding
complementary outputs. A
high on SET drives Q high

and Q low, while a high on
RESET does the opposite.

Driving both SET and RESET
high at the same time gives us

a disallowed state, and the

last input to go to ground

decides the final result.

In Fig. 1b, we've con-

verted this into sort of a

clocked set-reset flip-flop. We

do this by adding AND gates

to the inputs, controlled by a

new CLOCK line. When
CLOCK is low, inputs are

ignored. When CLOCK is

high, inputs are accepted. We
can now at least set up what
the flip-flop is going to do
while the clock is low and

actually carry out the opera-

tion by briefly bringing the

clock high.

So far, so good. This is a

useful clocked logic block.

We can obviously make it

binarily divide by cross

coupling Q to SET and Q to

RESET (Fig. 1c). Now every

time the clock goes high, the

flip-flop will change state,

400I

(a)

400I

•0

RESET

(b)

(c) (won't work!)

Fig. 1. Steps toward clocked logic

flip-flops, (a) NOR logic set-reset

flip-flop, (b) Adding AND gates

gives clocking ability . . . clock

input must go high to allow

change of state, (c) An attempt at

building a binary divider or

counter that fails miserably.

111

SETUP
OR

"MASTER"
FLIP FLOP

OUTPUT
OR

"SLAVE"
FLIP FLOP

SET •-

CLOCK
J"L ^>,

RESET •-

4081 4001

COMPLEMENT OF CLOCK

• Q

S Q

C

R

SYMBOL

Fig. 3. Key to reliable clocked logic is the use of Master-Slave pairs of

clocked flip-flops. Only one flip-flop is active at any time, eliminating

unchecked races and preferential states.

since it was told to go to the

opposite state. Right?

Well, not quite.

Sure enough, the instant

the clock goes high, the out-

puts change state. But what if

the clock stays high? These

new output states reach

around and change the input

which changes the output

which changes the input

which What you really

end up with is a complicated

and unpredictable gated oscil-

lator that runs while the

clock is high and stops in one

state or the other while the

clock is low. Hardly what we
had in mind.

We might try to beat the

problem by picking just wide

enough a clock pulse to let

one and only one change take

place. But this will be time,

loading, device, temperature,

and supply dependent. It will

probably also depend on the

price of yak butter futures.

The point is that there is now
reliable way to let a single

clocked flip-flop count or

shift information. That's why
we have to use two separate

storage elements or master-

slave pairs of flip-flops for

workable clocked logic.

An Alternate Action Push-

button

Fig. 2 shows us an alter-

nate action pushbutton that

does work reliably. It changes

its output state every time

the button is pushed. At the

same time, it provides free

debouncing and contact

conditioning.

While this circuit looks

almost as simple as Fig. 1c,

there is a crucial difference.

Here we have two storage

devices, a master capacitor

and a slave flip-flop. The

capacitor remembers what

L S

c

R Q

ji

(TOGGLE)
k - A

I

S

c

n nw • u

CLOCK

^ T

5

SYMBOL

- -

— c

SYMBOL

BOTH (J ft K) INPUTS

Q BOTH INPUTS HIGH
ALTERNATES

J Q

6

DIFFERENT INPUT
SHIFTS OR STORE

S
s

L

K 6

SYMBOL

Fig. 4. Converting a clocked RS flip-flop into other clocked flip-flops.

(a) Type T flip-flop can only binary divide or alternate output
states. (T represents toggle.)

(b) Type D flip-flop shifts or stores information. (D represents data

or delay.)

(c) Type JK flip-flop shifts, stores, binary divides, or does nothing.

the new state is going to be.

When the button is pressed,

the capacitor voltage is trans-

ferred to the slave flip-flop.

No race or oscillation is pos-

sible since the capacitor can't

recharge much as long as the

button is pressed, and after

the button is released, no

problem remains. This is a

low frequency circuit ideally

suited to manual button

pressing.

4.7K
-wv-

4069 4069

-•OUTPUT

220K

047

Fig. 2. Alternate action (Push on
— Push off) bounce/ess push-

button. Resistor and capacitor

form temporary storage for

"steering.

"

A Master-Slave Clocked Logic

Block

Fig. 3 replaces the capaci-

tor master with a conven-

tional flip-flop. What we've

done here is use two of the

previous clocked NOR flip-

flops. The first or master

flip-flop accepts data only

when the clock is low; the

second or slave flip-flop only

accepts data when the clock

is high.

Now, when the clock is

low, the master or input flip-

flop can accept data and will

remember the last input to go

high. When the clock goes

high, the input flip-flop is

disconnected from the Set

and Reset inputs and is no

longer allowed to change

state. But, with the clock

high, the second or slave flip-

flop is enabled and the con-

tents of the master is trans-

ferred to the slave and

appears as an output
immediately after the clock

goes high.

Even if we crosscoupled

the outputs back to the

inputs or cascaded stages, a

wild race can't result because

the next flip-flop down the

line is not enabled at any

particular instant.

Our circuit is said to clock

on the positive edge since

that's the time an output

apparently appears. In reality,

clocking is continuous, with

the low clock state accepting

data into the master and the

high clock state transferring

master to slave.

If we wanted a negative

edge clocked flip-flop instead,

we'd move the inverter so the

first stage is active with clock

high and the second with

clock low. Note that with

either system, inputs can

change virtually at any time

without one swallowing or

similar problems.

We call this particular

circuit a clocked RS flip-flop,

and unlike our Fig. 1 circuits,

its a genuinely useful building

block without race or state

problems. Just sitting there

by itself, it can't binary

divide and it still has disal-

lowed input conditions when

both Set and Reset are high,

but we can fix these limita-

tions.

It's an easy matter to con-

vert the clocked RS flip-flop

into the more useful and

more common clocked logic

blocks, as Fig. 4 shows us.

These more common flip-

flops are the type T flip-flop,

the type D flip-flop, and the

JK flip-flop.

The T in the T flip-flop of

Fig. 4a stands for Toggle. By

adding two external feedback

leads from Q to reset and Q
to Set, we tell the flip-flop to

change state each time. This

alternates states each clock-

ing. Since the output changes

state each positive clock

transition, you only get half

as many positive transitions

in the output. This gives you

a square wave of one half the

input clocking frequency.

The T flip-flop is not avail-

able separately as a CMOS
package since it is easy to

convert D and JK flip-flops

into binary dividers. The
4024 is an example of seven

cascaded T flip-flops that

toggle on the negative clock

edge.

A Data or Delay or Type
D flip-flop is built by adding

an inverter so that Reset is

always the Complement of

112

Set (Fig. 4b). A one on the D
input gets stored in the flip-

flop on the positive clock

edge and appears at the Q
output. A zero similarly

applied gets clocked in and

appears at the Q output. The
type D flip-flop is useful in

storing or delaying one bit of

information. It is the key to

the shift registers of the next

article. We'll see that shift

registers store data and move
information on an orderly

one-stage-at-a-time basis. We
can convert a type D flip-flop

to a type T flip-flop by

externally feeding back the Q
output to the D input.

The most versatile and

universal clocked flip-flop is

the JK flip-flop of Fig. 4c.

The extra gates on the input

make the JK flip-flop into a

Type D flip-flop if the inputs

are different. It makes the JK
flip-flop into a Type T flip-

flop if the inputs are both

high. Finally, if both J and K
are low, the same state gets

reclocked back into the flip-

flop making it appear to do

nothing.

The JK flip-flop is then a

universal one that can store

data, binarily divide, or do

nothing, all depending on the

input conditions on the J and

K inputs. There are no dis-

allowed states or disallowed

combinations of J and K
logic. When all this versatility

is needed, the JK flip-flop is

the obvious choice to use,

particularly for fancy or

subtle timing sequences.

But the type D flip-flop is

often in a shorter package, is

slightly cheaper, uses some-

what less power, and often

has a simpler and easier PC
board layout. So, the D flip-

flop is most often the best

choice to use, and its a good

policy to save the fancier JK
versions only for those uses

where you definitely need the

do-nothing or inhibit option

of both inputs low.

Direct Inputs

After we've gone to all the

trouble of making our

clocked logic block operate

only when clocked and only

when we want it to without

any races or disallowed state

conditions, we usually go

back and add some new
direct inputs that let us

immediately set or reset the

flip-flop into some state

independently of the clocked

inputs. We can use this to

initialize a flip-flop into a

certain state, to reset a group

of counting flip-flops to zero,

or to preset or jam a certain

count or word into a register

or latch.

These new inputs are

called the Direct Set and
Direct Reset inputs. Similar

direct inputs on the fancier

clocked logic blocks of the

next article may be called

Load, Preset, Reset, Clear,

Jam, or some other name that

suggests immediate operation

independent of the clock.

RESETo-

SET o »

SETUP
(MASTER)

OUTPUT
(SLAVE)

OQ

Note that all direct inputs

to a clocked logic block

must be disabled during

clocked operation.

In CMOS, this usually

means that any direct inputs

are held low except when
they are specifically used to

setup, clear, or change the

contents of the clocked logic

blocks. Direct inputs usually

dominate the clocked ones

and are usually independent

of the clock level or the

conditions on the clocked

inputs.

Generally, its a good rule

to edge couple or pulse direct

inputs when used — this

keeps a steady direct high

from hanging up your

clocked logic system. When
you use direct logic inputs,

they always must be released

before clocking.

Since the direct inputs

behave as ordinary Set- Reset

unclocked flip-flops, only one

direct input should be used at

a time. If you try using both

direct inputs at once, you'll

get a disallowed state condi-

tion. There is, of course, no

reasonable way to let direct

inputs shift or binary divide

without problems — this is

why we went to a clocked

logic block in the first place.

The 4013 Dual D Flip-flop

With CMOS, we can use

CLOCKo--

DATA
TRANSMISSION GATE (T G)

SWITCHES SHOWN IN
CLOCK LOW POSITION

Fig. 5a. Logic diagram of half a 4013 Dual D flip-flop.

transmission gate techniques

to greatly simplify the inter-

nal design of clocked logic

blocks. Let's take a detailed

look at the 4013 dual D
flip-flop and the 4027 dual

JK flip-flops and see how
they work and how transmis-

sion gates simplify the logic

for us.

The logic diagram for half

of a 4013 appears as Fig. 5a.

While we could use AND
gates for clocked logic with

CMOS, the CMOS transmis-

sion gate set up as a SPDT
switch greatly simplifies

things for us.

Assume that the direct set

and reset inputs are low. This

reduces our master flip-flop

to a pair of cross-coupleable

inverters and does the same

for the slave.

Assume further that our

clock is low. The slave flip-

flop is cross-coupled through

its transmission gate switch,

so it remembers a previous

answer for us and outputs it

via the buffered Q and C
outputs. These inverting

buffers prevent outside load-

ing from affecting the state or

speed of operation. With the

clock low, our master flip-

flop is not cross-coupled.

Instead it follows the data

input. It will keep following

the data input and remember-
ing its instantaneous value so

long as the clock is low.

As the clock suddenly goes

high, the two SPDT transmis-

sion gate switches jump to

the other side. This now
cross-couples the master flip-

flop, disconnects the master

from the D input, and forces

the master to remember the

last value on the D input at

the instant the clock went
high. Since the D input goes

nowhere when the clock is

high, anything new to happen

to the D input after the posi-

tive clock edge is ignored.

When the clock goes high,

it also breaks the cross-

coupling on the slave flip-

flop, turning the slave into a

pair of inverters that reflect

the state of the master. Thus,

with the clock high, the

master is holding data for us

and ignoring any new D
inputs. The slave is simply

passing on (without remem-
bering) the master's contents

directly to the outputs.

What happens when the

clock goes back low? From
the outside world, apparently

nothing. The switches flip

over to the other side. This

cross-couples the slave output

so it now remembers the data

for us independently of what
the master is up to. The
master is now released and

allowed to follow new input

data. So, while a rather

dramatic internal change

takes place on the falling

clock edge, no outputs can

change, and things externally

appear to stay as they were.

The clock rise time must
be fast. Five microseconds is

the usual limit. The clock

must be conditioned and
bounce free. A slow rise or

fall time can cause switching

problems where old and new
data can get mixed. Note that

the fall time is equally impor-

tant as the rise time for

proper operation. Both must

be fast and clean. Note that

this circuit is fully static. It

can remain in the clock high

or clock low states indefinite-

ly.

We can summarize the

rules for the 4013:

Both Direct inputs must be

113

RESET*

SET*

SETUP
(MASTER)

OUTPUT
(SLAVE)

CLOCKo-

J •

K o-

>—

«

\>— >

TRANSMISSION GATE (T 6.)

SWITCHES SHOWN IN

CLOCK LOW POSITION

INPUT LOGIC

Fig. 6a. Logic diagram of half a 4027 Dual JK flip-flop.

low for normal clocked

operation.

If the D input is high, the

flip-flop goes or stays in the

state with Q high and Q low

on the positive edge of the

clock.

If the D input is low, the

flip-flop goes or stays in the

state with Q low and Q high

on the positive edge of the

clock.

If the D input is cross-

coupled to the"Q^ output, the

flip-flop changes to the other

state on the positive edge of

the clock, behaving as a bi-

nary divider.

If the Direct Set input is

made high by itself, the flip-

flop will immediately go or

stay in the state with Q high

and fflow.

If the Direct Reset input is

made high by itself, the flip-

flop will immediately go or

stay in the state with Q low

and Q high.

If the Direct Set and Direct

Reset inputs are simultane-

ously made high, a disallowed

state results with both Q and
"5" high, independently and

dominantly over the clock

and D inputs. This state is

normally avoided. The last

direct input to go low decides

the final result.

Both direct inputs must be

returned to ground before

clocking can resume.

The clock must be bounceless

and noise free with rise and
fall times faster than five

microseconds.

Fig. 5b summarizes these

rules in a pair of truth tables.

The 4027 Dual JK Flip-flop

A JK flip-flop has two
advantages over a type D
flip-flop. We can make it

binarily divide under external

control and we can make it

appear to do nothing (not

change) despite repeated

clockings. These extra per-

formance features are ob-

tained at the cost of a some-

what larger and more expen-

sive IC that takes slightly

more supply power in a usual-

ly more complex PC layout.

The JK flip-flop is important

where full performance is

needed, such as in sequencers,

odd-length walking ring

counters, divide-by-three cir-

cuits, fully synchronous

counters, and some other

special uses.

The logic diagram of one

half a 4027 is shown in Fig.

6a. It is the D flop circuit

repeated with some funny

gates added to the input.

These gates respond to a J

input, a K input, and an

internal feedback line that

monitors the present Q out-

put. Since each flip-flop has

one new input, we end up
with a total of 16 pins, com-

pared to the 14 of the dual

4013.

Suppose both J and K are

low when we bring the clock

from the low to the high

state. What happens? The low

K input disables the AND
gate, holding its output low.

The low J input is ignored by

the NOR gate, and the

present Q output is inverted

twice and presented to point

D. On clocking, the old state

of the flip-flop gets reentered.

To the outside world it looks

like nothing happens at all. If

J and K are both low, clock

commands appear to be

ignored.

What happens if J and K
are both high? This will dis-

able the NOR gate and enable

the AND gate. The Q output

gets inverted once and sent to

D. Clocking will change the

flip-flop to the other state.

We alternate states or binarily

divide when J and K are both

high.

If J is high and K is low,

the AND gate is disabled and

a one unconditionally appears

at D and is loaded. Similarly,

if J is low and K is high, a

zero unconditionally appears

at point D. This zero results

as a don't care condition. If Q
is high, it goes through the

AND gate, gets inverted once

and ends up a zero. If Q is

low, it goes through the NOR
gate, gets inverted twice, but

still ends up a zero. Either

way, J low and K high loads a

zero.

Our JK flip-flop acts like a

type D flip-flop if the inputs

are different. If both J and K
are low, the circuit appears to

ignore clock pulses. J and K
high binarily divides.

We can summarize the

rules for the 4027:

Both direct inputs must be

low for normal clocked oper-

ation.

If J is low and K is low, no

apparent output change takes

place on the positive edge of

the clock.

If J is high and K is low, the

flip-flop goes or stays in the

state with Q high and ~5 low
on the positive edge of the

clock.

If J is low and K is high, the

flip-flop goes or stays in the

state with Q low and 13 high

on the positive edge of the

clock.

If J is high and K is high, the

flip-flop changes output

CLOCKED INPUTS'

D CLOCK

s 1

1 T 1

Q S CHANGES

DIRECT INPUTS:

R S

CLOCKED
OPERATION

1 1

I 1

1 1 1 1

(DISALLOWED)

(DIRECT INPUTS MUST BE LOW FOR
CLOCKED OPERATION)

Fig. 5b. Truth tables for 4013.

DIRECT INPUTSCLOCKED INPUTS

K J CLOCK Q

J"
NO

CHANGE

I S I

I S I

I I S CHANGES

R S Q

CLOCKED
OPERATION

I I

I I

I I I 1

(DISALLOWED)

Fig. 6b. Truth tables for 4027.

states, binarily dividing on

the positive edge of the clock.

If the Direct Set input is

made high by itself, the flip-

flop will immediately go or

stay in the state with Q high

andTTlow.

If the Direct Reset input is

made high by itself, the flip-

flop will immediately go or

stay in the state with Q low

and Q high.

If the Direct Set and Direct

Reset imputs are simultane-

ously made high, a disallowed

state results with both Q and

^ high, independently and

dominantly over the clock

and D inputs. This state is

normally avoided. The last

direct input to go low decides

the final result.

Both direct inputs must be

returned to ground before

clocking can resume.

The clock must be bounceless

and noise free with rise and

fall times faster than five

microseconds.

Fig. 6b summarizes these

rules in a pair of truth tables.

An easy way to remember

the operation of the direct

inputs is that if you do

nothing to them (keep them
low), they do nothing. On the

D flip-flop, the D input gets

passed across the flip-flop to

the Q output on clocking.

The same thing happens to

the JK flip-flop with different

J and K inputs. Do nothing to

J and K (keep them low) and

it does nothing. Do every-

thing to J and K (both high),

and you get a binary divid-

er.

114

