
Read Only
Memory Technology

by
Don Lancaster
Synergetics

64

Read Only Memories are a useful element of the hardware
of microcomputer systems. This month, Don Lancaster pro-
vides information on Read Only Memories - a tutorial article
taken from Chapter 3 of his forthcoming book, TV Typewriter
Cookbook, to be published by Howard W. Sams, Indianapolis,
Indiana.

Low cost and compact
memory components are the
key to simple and reasonable
TV typewriter and
microcomputer systems.
Today there are many ICs

available that will cram
-thousands or more bits of
storage in a single package at
costs of a fraction of a cent
per bit. The problem is to
pick the memory components
that are the cheapest, the
easiest to use, and the ones

with the fewest unpleasant
surprises.

What does memory do for
us? Well, it remembers. If it
remembers extremely well it
can be used as a fixed logic

element or to store an

often -used software routine.

An important example of
this is the character generator
memory that converts our
ASCII code into a group of
dot patterns suitable for
video use. The same type of
memory might be used to
change the keyboard switch
closures and shift
combinations into selected
ASCII codes. We also use
permanent memory for code
conversions such as going
from ASCII to SELECTRIC,
and permanent memory is

usually used to store the
program and control
commands for an external

Fig. 1. Read Only Memories
(ROMs) are non -volatile and used
typically for programming of
"firm" microcomputer software,
for fixed lookup tables, or for
code conversions.

microprocessor or
minicomputer system.

This particular type of
memory is called a read only
memory, or ROM. Once
taught, it does the same thing
forever, even if supply power
is repeatedly applied and
removed. There are several

ways this memory type can

be taught. One is to use a

factory programmed mask at
the time of manufacture.
Another is to use some field
programming technique such
as melting internal silicon or
metallic fuses. This is handy
whenever you are doing a

special, low volume code or
program, or whenever you

INPUT
WORD
SELECT

0

ROM OUTPUT
WORD

D -
.1111-1.

b

OUTPUT
ENABLE

aren't sure what you arc
doing is really what you want
to end up with. Such pro-
grammable read only
memories (PROMs) allow
customizing for special pur-
poses. Some of the more
expensive programmable read
only memories can be bulk -
erased through exposure to
ultraviolet light or X -rays;
these erasable read only
memories (EROMs) can be

re- programmed in the event
of an error.

Most read only memories
can also be called code
converters or table lookup
devices, and are usually
organized as shown in Fig. 1.

Each ROM is a fixed logic
block that has several inputs
and several outputs. For each

and every possible input
address combination of ones

and zeros, some unique
combination of output ones

and zeros will result. There
doesn't have to be any
rational relationship between
these two code words. Either
you or the manufacturer
decides what these
combinations are going to be

at the time the ROM is

programmed. A ROM is

completely universal; it's
inherently set up to provide
all possible combinations of
input /output word
arrangements. When you
program your ROM, you
limit these all possible
combinations to a single
specific word exchange that
you want.

One popular smaller ROM
arrangement is called a 32 x 8

ROM. This means you can

program 32 eight bit words.
Since 32 words can be

represented with binary
combinations on five lines,
this particular ROM has five
input lines and eight output
lines. This type of ROM has

256 possible memory
locations. At each and every
location, we have the option
of permanently or
semi -permanently placing a

one or a zero. This leaves us

with 2256 possible programs
we can teach our ROM, an

incredibly large number. The
only thing that changes with
a particular program is where
you put the ones and zeros.
All the rest of the circuit
stays the same.

ROMs work by decoding
each and every possible input
state into a one -of -n code and
then recombining certain
selected combinations of
decodings into output words
using OR circuits. Which
combinations you use picks
what the output word is

going to be.

There are several ways to
program a ROM. It can be

done at the factory where
metal jumpers are provided or
omitted to the tune of holes
or no holes in a mask.
Factory programming is

cheap but must be done with
a high volume product that
has one internal code that
lots of users can agree to use.

Dot matrix character
generators, some keyboard
encoders, trig lookup tables
for calculators and so on are

typical factory programmed
ROMs. Field programmable
ROMs are programmed by
the user, or by a distributor
or someone else who is set up
to do programming. A
programmable ROM arrives
from the factory either all

ones or all zeros, depending
on the type. You then do
something to change the bits
you want to suit your code.
In one type of ROM, fusable
links are melted. These links
are made of a metal such as

nichrome, or of a

semiconductor such as

silicon. These techniques are

most commonly used on
bipolar or TTL -like ROMs.
These ROMs are usually fast
and relatively small. Another
type of programming injects
large voltage pulses that
avalanche charge storage
areas, electret style. This type
of programming is used on
MOS read only memories.
They are usually slower but
have more bits available per
pac kage.

Some premium ROMs are

reprogrammable. In one type,

you take off an opaque lid
and bulk erase the chip with
strong ultraviolet light. A
second type can have ones or
zeros selectively and more or
less permanently written into
it. Reprogrammable ROMs
cost more but can be used
over. More important, if you
make a programming mistake,
you can reuse the same chip,
correcting the error later on.

We can also classify ROMs
as general purpose devices
and dedicated ones. A general
purpose ROM can be made
into whatever you like and
used for just about anything,
such as for code conversion,
or to store programs for a

microcomputer or
microprocessor. Dedicated
ROMs are usually part of a

larger integrated circuit and
have very specific uses.

Typical examples are in a dot
matrix character generator,
the word converter in a

premium keyboard encoder,
and the program storage in

many calculator integrated
circuits.

Let's see how ROMs work
and what devices are available
by looking at two important

Fig. 2. Removing redundant
information from the 7- segment
calculator display code.

"If you do a PROM
design and end up with
a ridiculous number of
bits, you can almost
always go through a

rethinking and
reduction process that
will minimize things a

bunch."

(a) Segment callou ts.

(b) Numerals with segments
"c" and "cl" missing are still
identifiable.

65

"Even with bulk erasable PROMs, a mistake on bit

1874 of a 2k PROM can be enough to ruin your whole

day."

Fig. 3. ROM -organized logic to convert 7segment calculator code to Fig. 4. Single IC 7 segment code converter uses 32 x 8 read only
memory. BCD or ASCII code.

7- SEGMENT
INPUTS

a
bo
co(NC)
cl O(NC)I
e o--
f

go

4 LINE TO
1/16 DECODERS

4514 (CMOS)

2

4 -
en

st +o-.

15

NVERTER

o

O

2

4
8
en

st
15

OR
GATES

64 32 16

I00K
TYP uuuuu 1.. ...

.......... nno.u,,
I II I' II III

uuuuu° (2) nuuu.uu uuuou.s (9)

Ili ill Ill li! 81

11, . 11/

I)
(7)

(0)

B 4

ASCII OR BCD OUTPUTS

uses for ROMs - a seven bar
to ASCII converter that can

be used to tie a calculator
into a TV typewriter or

microcomputer; and an

ASCII to SELECTRIC code
converter that lets us drive a

Selectric typewriter.

Seven Segment Converter

Many calculator chips
output only a seven segment
code that is not directly
compatible with
microcomputer software
unless it is changed to a

Binary Coded Decimal (BCD)
or ASCII coding. While
several conversion ICs exist,
at this writing, they are

neither cheap nor readily
available. Can we do the job
with a read only memory?

At first glance, it would
seem that we'd need a ROM
with seven inputs or 27 = 128
words minimum. But, with

66

b

practically every ROM
application, a little bit of
rethinking can usually
drastically cut down the size

and cost of the ROM we'll
need. For instance, Fig. 2

shows how we can simply
ignore the bottom and
bottom right segments ("c"
and "d ") of the segment code
and still have ten distinct and
identifiable characters. This
cuts us down to 32 words,
getting us by with five inputs,
and one fourth the size of the
ROM we started with.

Fig. 3 shows us how we

might build our own
"pseudo -ROM" using some
CMOS gates and decoders.
While you would rarely want
to go this route, it's useful to
look at since it shows us how
the real ROMs work inside.
You might occasionally use a

circuit like this to verify
programs and truth tables

7 SEGMENT
INPUT

(a) Circuit using 32 x 8 ROM.

8256

(b) Programming.

INPUT
gf e b a

NUMERAL OUTPUT
kp 8 4 2 1

0 0 0 0 0 o o o o 0

0 0 0 0 1 o o o o 0

0 0 0 1 0 1 o o o

0 0 0 1 1 7 o

0 0 1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0

0 0 1 1 1 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0

0 1 0 1 1 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0

0 1 1 0 1 0 0 0 0 0

0 1 1 1 0 0 0 0 0 0

0 1 1 1 1 0 1 0 0 0 0

1 0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 0 0

1 0 0 1 0 0 0 0 0 0

1 0 0 1 1 3 1 0 0 1 1

1 0 1 0 0 0 0 0 0 0
1 0 1 0 1 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0

1 0 1 1 1 2 1 0 0 1 0

1 1 0 0 0 0 0 0 0 0

1 1 0 0 1 5 1 0 1 0 1

1 1 0 1 0 4 1 0 1 0 0

1 1 0 1 1 9 1 1 0 0 1

1 1 1 0 0 0 0 0 0 0

1 1 1 0 1 6 1 0 1 1 0

1 1 1 1 0 0 0 0 0 0

1 1 1 1 1 8 1 1 0 0 0

since it is easy to change.
Our five input lines

(ignoring the redundant c and
d segments) are decoded to a

one -high- out -of -32 code. For
each and every possible input
combination, one and only
one of the horizontal rails
goes to a "1"; the rest stay
low. The OR gates on the
output re- encode this into a

1 -2 -4 -8 Binary Coded
Decimal code. We decide
what our OR gates do by
where we put the dot
connections between the
horizontal and vertical rails.
To get from BCD to ASCII,
we can simply tack a hard
wired 011 in front of the
BCD word.

While we could dream up a

possibly simpler "logical
minimum" circuit to do the
same job, this particular
circuit has a unique advantage
- if our OR gates are "wide"
enough, it will convert ANY
five bit input word into ANY
four bit output word, with no
change in hardware. All that
changes is the positions of the
dots. This is the beauty of the
read only memory - only a

single integrated circuit is

needed to do an incredible
variety of specialized jobs,
depending only on how you
program it.

Fig. 4 shows how we take
a stock 32 x 8, 256 bit
Programmable Read Only
Memory, or PROM, and do
the whole job with one
integrated circuit. Since we
have extra outputs left over,
we can use one for a "valid
keypressed" output that can

tell the difference between a

zero code and no key pressed.
The remaining three outputs
can be used for detecting a

"9" output or for other
housekeeping that's handy
when you demultiplex the
scanning digit outputs of the
calculator IC. To program the
ROM, the truth table of Fig.
4(b) is entered into the
integrated circuit, selectively
putting ones and zeros as

needed.

MANUFACTURER PART BITS ORG. TYPE ERASABLE?

AMERICAN MICRO DEVICES 27508, 09 256 32x8 BIPOLAR NO
27510, 11 1024 256,4 BIPOLAR NO
1702 2048 256x8 MOS VES

HARRIS SEMICONDUCTOR 1256 256 256x1 BIPOLAR NO
8256 256 32x8 BIPOLAR NO
0512 512 64,8 BIPOLAR NO
1024 1024 256,4 BIPOLAR NO
2048 2046 512x4 BIPOLAR NO

FAIRCHILD 93421 256 32x8 BIPOLAR NO
93416,26 1024 256x4 BIPOLAR NO
93436,46 2048 512x4 BIPOLAR NO

INTEL 3601 1024 256x4 BIPOLAR NO
3602,22 2048 512x4 BIPOLAR NO
1702 2048 256x8 MOS YES
3604,24 4096 512x8 BIPOLAR NO
2704 4096 512x8 MOS YES
2708 8192 1024x8 MOS VES

INTERSIL 5600,10 256 32x8 BIPOLAR NO
5603,23 1024 256x4 BIPOLAR NO
5604,24 2048 256,03 BIPOLAR NO

MONOLITHIC MEMORIES 6330,31 256 32x8 BIPOLAR NO
6300,01 1024 256x4 BIPOLAR NO
6305,06 2048 512x4 BIPOLAR NO
6340,41 4096 512x8 BIPOLAR NO

NATIONAL 8573.74 1024 256x4 BIPOLAR NO
5202,03 2048 256x8 MOS YES
5204 4096 512x8 MOS YES

NITRON 7002 1024 512x2 MOS YES
7002 1024 1024x1 MOS YES

SI ONETICS 8223 256 32x8 BIPOLAR NO
82126,29 1024 256x4 BIPOLAR NO
82130,31 2048 256x8 BIPOLAR NO
82115 4096 512x8 BIPOLAR NO

TEXAS INSTRUMENTS 74188 256 32x8 BIPOLAR NO
74186 512 64x8 BIPOLAR NO
74287 1024 256x4 BIPOLAR NO

Fig. 5. Some commercially available programmable ROMs.

Working With PROMs

Fig. 5 is a listing of some
currently available PROMs.
Where two numbers are
shown, one is usually an open
collector output, the other
tri- state. At this writing,
PROMs cost from $5
upwards, with surplus
versions (unused) starting
at $3. Bipolar PROMs are

based on a TTL technology,
usually work off a single +5
volt supply, and are rather
fast, typically 50 to 70
nanoseconds access time.
MOS PROMs often take two
power supplies (+5 and -12
usually) and are slower,
typically having a one
microsecond access time.
MOS PROMs are often
cheaper per bit and many
MOS types are bulk erasable
by exposure to strong ultra-
violet light. A few ultra -fast
ECL PROMs also exist, but
are reserved for special uses

and are expensive.
Two good choices for

home brew computing are the
32 x 8 bipolar PROM such as

the Intersil 5600 or the
Signetics 8223; and the 256 x

8 erasable MOS PROM,
including the Intel 1702 and
its second sources.

While you can program
your own PROM with
nothing but a power supply
and a meter, the "zero
defects" nature of this work
and its "up the wall" aspects
turn the job into quite a

hassle. Even with bulk
erasable PROMs, a mistake on
bit #1874 of a 2k PROM can
be enough to ruin your whole
day. Instead of this, you can
buy programming services at
very low cost from many
electronic distributors, as well
as from surplus and computer
hobby supply houses.
Programming machines that
simplify the job a bunch are
available for several hundred
dollars. [Once you have a

microcomputer system up
and running, it is quite
possible to construct an ROM
programming peripheral for
the purpose of permanently
burning in your software.
Local computer clubs might
consider building the ROM
burner peripheral and related
software as an attraction of
membership ...cth]

A quarter's worth of
gating can cut the size
of a ROM in half.

When you design your
own PROM circuit, be

absolutely sure your truth
table is correct before you
order any programming. The
program service will only
guarantee that what you sent
in is what you get back, and
nothing more. They have no
way of second guessing what
you really wanted.

If you do a PROM design
and end up with a ridiculous
number of bits, you can
almost always go through a

rethinking and reduction
process that will minimize
things a bunch. Leaving off
the two redundant segments
of a seven bar code is one
obvious example. Other
possibilities are to put simple
logic outside the PROM, for

67

Fig. 6. ASCII to SELECTRIC interface using PROM.

ASCII
INPUTS

al O

a2 O
03 0
a4 0
a5 0
a6 O

a70
n

KPO-

L-

AND

64 X 8
PROM

INAND LAND
SHIFT

O ROTATE I L0 ROTATE 2

1-O ROTATE 2A
O ROTATE 5 - O TILT I

TILT 2
ro SHIFT

I(

SPACE

LOWEEIC 1
AND

LOG
R

NOR AND
OPTIONAL
C.R.
GATING

CTRL
LOGIC

NOR
AND

O KP TO SPACE
SOLENOID

BALL
OUTPUTS

KP TO RETURN O SOLENOID

o KP TO PRINT
SOLENOID

often a gate or two can
significantly reduce the
PROM size. Bypassing control
commands around a PROM is

one way to do this.
Sometimes symmetry and
mirror techniques can be

used, particularly when
working with trig waveforms,
music waveshapes, and other
data tables that have some
sort of symmetry. In PROM
microcomputer programs,
sneaky programming tricks
can often drastically cut the
number of steps needed;
extensive use of subroutines
is one route to this end.

I n code converter and
table lookup applications you
usually address your PROM
in a random fashion and you
have no way of knowing what
is going to be needed next.
There are other ways to
address ROMs that open up
other types of applications.
For instance, if you
sequentially clock the PROM,
changing the address one bit
at a time at a constant rate,
you can generate an output
sinewave or a musical timbre
waveform. The clocking rate
will select the output
frequency, and you can get a

symmetrical output by using

68

BALL SOLENOIDS O ENABLE

an up down counter driving
the address inputs. Another
possibility is to let the
PROM's output set the next
input address to the PROM,
or at least influence it. Some

outside latch or storage is

needed to prevent an

unchecked wild race, but this
is easily added.

This particular technique
is called microprogramming,
and is, of course, the key to
calculator and micro-
computer operation. Even

without a CPU, a PROM plus
additional logic can be used

as a programmable controller.
Loops and branches are easily
added by external gating and
using extra PROM inputs.
Several additional details on
P ROM and ROM design
appeared in the February,
1974, Radio Electronics.

A ROM or PROM can be

used to change ASCII coded

signals into SELECTRIC
outputs suitable for the hard
copy techniques output if
you have a converted
Selectric typewriter. While a

few ICs are commercially
available to do this job (such

as the Fairchild 3512 and the
National 4230), at this
writing, it's much cheaper
and simpler to program your
own PROM. You can also add
custom features of your own,
such as converting the ASCII

4 command into a capital
"E" and so on.

Fig. 6 shows us a circuit
that only needs 512 bits
worth of ROM and a few
gates to do the one -way
conversion for us. The PROM
basically works with the
ASCII 6 bit code of upper
case alphabets, numbers and
punctuation. It converts these
ASCII commands into the
seven Selectric shift, rotate

Fig. 7. Listing of ASCII inputs (octal) and Selectric outputs for the PROMs in Fig. 6.

ASCII SELECTRIC ASCII
INPUT CHARACTER OUTPUT INPUT

100
101

102
103
104
105
106
107

110
111

112
113
114
115
116
117

@ 166 040
A 134 041

B 140 042
C 154 043
O 155 044
E 145 045
F 116 046
G 117 047

H 141 050
I 124 051

J 107 052
K 144 053
L 151 054
M 137 055
Al 146 056
O 131 057

120 P 105 060
121 O 104 061
122 R 135 062
123 S 121 063
124 T 147 064

SELECTRIC
CHARACTER OUTPUT

SPACE

$

%

2

3

4

200
177
125

176
171

135
175
025

160
161

174
106
014
000
026
011

061
077
066
076
071

125 U 156 065 5 065
126 V 136 066 6 064
127 W 120 067 7 075

130 X 157 070 074
131 Y 101 071 060
132 Z 167 072 115
133

1 111 073 015
134 \ 164 074 027
135 I 111 075 006
136 A 145 076 127
137 - 100 077 111

ASCII SELECTRIC READING
6 5 4 3 2 1 SP SH T2 T1 RS R2A R2 R1 BITS OCTAL

0
U ~' 1 0 1 1:0- BINARY

2 5 U 1 5 6 OCTAL

and tilt ball commands. The
program appears in Fig. 7.

We've shown it in octal
coding to make it more
com pact.

Most of the characters are

directly converted from
ASCII to their SELECTRIC
equivalents. ASCII < and >
become the Selectric 1/2 and
1/4 respectively, the ASCII
\becomes the Selectric ¢,

and opening and closing
brackets are disallowed and
produce question marks.
ASCI I becomes a

capital "E" to indicate
exponentiation, particularly
when using the BASIC
language on a microcomputer
output display.

The eighth output of our
PROM is used to detect an

ASCII space and break it out
of the code, for a Selectric
space is a machine command,
and an ASCII space is a

printing character. If a space

is detected, the keypressed
output is diverted to the
space solenoid and the ball
moving solenoids are
disabled.

If a lower case alphabet is

provided, the input logic on
bits a6 and a7 detects lower
case and converts it to its
equivalent upper case ASCII
six bit input code and at the
same time forces the shift
output line to the lowercase
low state. This is a good
example of how a quarter's
worth of gating can cut the
size of a ROM in half.

Another Selectric machine
command we need is a return
command to move the ball
back to the beginning of a

line. This command can be

detected with the lower left
NOR gate (Fig. 6) and used

to divert the keypressed
output to the carriage return
solenoid, at the same time
disabling the ball- moving
solenoids. If there should be

any other control commands
which are to be ignored by
the typewriter, carriage
return detection logic
(OPTIONAL CR GATING in

Fig. 6) can be added to
distinguish carriage returns

Fig. 8. Full function ASCII to SELECTRIC code converter uses larger
PROM.

ASCII
INPUT

al O
a2O I L-.
a 3 OZ
a4
a50-1-11'
a6
a7 0

IL
KP O

.001

256X8
PROM

INVERT AND

AND

O ROTATE I

O ROTATE 2
O ROTATE 2A
O ROTATE 5
O TILTI
O TILT2
O SHIFT

SPACE
RETURN `--O RETURN

O INDEX -O TAB
O BACKSPACE
0 BELL

SPARE

BALL
OUTPUTS

MACHINE
OUTPUTS

o KP TO PRINT
SOLENOID

0 KP TO MACHINE
SOLENOIDS

o BALL SOLENOIDS
ENABLE

GOES TO '1" ON PRINTABLE CHARACTER;
"O" ON MACHINE COMMAND

from the added control
commands.

You can build this ASCII
to Selectric interface using a

single 64 x 8 PROM or a pair
of 32 x 8 PROMs with
parallel outputs selected by
the chip enable inputs. Using
two ICs is sometimes less

expensive than one larger
PROM because the smaller
PROMs are more widely
available as surplus. Fig. 5

lists several typical PROM
parts.

All Selectric functions
including bell, tab, backspace
and index are accommodated
in the circuit of Fig. 8. It
takes a PROM of four times
the size, provides more
functions, and is a simpler
circuit than the one shown in
Fig. 6. The eighth PROM
output is used to decide
whether the ASCII code is a

printed character or a

machine command (which
might be ignored). This
eighth output line feeds back
to the PROM's eighth input
line via the resistor -capacitor
time delay circuit. When bits
1 to 7 of the PROM input
represent a printable
character, the eighth bit
output line switches to a high

level which enables printing.
The ball output codes are

the same as in the simpler
circuit, but their solenoids
must be disabled when the
machine command codes are
received. When a character is

to be printed, the keypressed
pulse (KP in Fig. 8) is routed
by the upper AND gate
(enabled by the logical one
output of the PROM's eighth
bit) to the print solenoids;
the ball solenoid enable is

also taken from the eighth
PROM bit. The result is

movement of the ball
combined with a print stroke.

If, however, a machine
command is presented to the
PROM at the ASCII inputs,
the eighth bit of the PROM
output goes low and disables
both the ball solenoids and
the gate which would route
KP to the print solenoid. This
bit is inverted by the inverter
to present a logical one level
to the lower AND gate in the
figure. This enables the
keypressed pulse (KP) to go
to the machine solenoids.
Any legitimate command
code will result in selection of
one of the machine outputs
in Fig. 8 . T h e

selected machine output line

will enable the corresponding
machine control solenoid's
driver - resulting in one of
the machine control actions
such as a tab. As an example,
suppose a horizontal tab
function (HT in ASCII) is

presented to the PROM: The
PROM decodes a machine
command, inhibits ball
solenoids and the print
solenoid, presents a decoded
logical one level to the tab
solenoid driver, enabling it,
and routes the keypressed
signal (KP) to the other tab
solenoid driver input -
resulting in a tab action.
Since the PROM is to be set

up for only six (or seven)

legitimate machine
commands, any unwanted
ASCII machine control codes
will be ignored.

In this article, we've seen

some background
information on ROM
technology and several of the
many uses to which ROMs
can be put in microcomputer
and logic systems. These are
by no means the only uses of
ROMs. The uses of ROM
technology are for the most
part limited only by your
own imagination.

69

