
This enhancement works on all Ap

ples and Apple knockoffs. There are

additional monitor features available

in the Apple lie.

Enhancement

TEARING INTO

MACHINE-LANGUAGE CODE

This method of breaking down and
understanding someone else's
Apple II machine-language pro

gram is - to say the least -
unique. Here are complete details
on how to rapidly "crack" both
the form and function of any tough
program. It takes only one-tenth
of the time of orthodox methods.

TEARING INTO MACHINE-LANGUAGE CODE

Check into the top thirty Apple programs used today and guess what? At this
writing, thirty out of thirty will run wholly, or at least partly, in machine lan
guage!

So, while BASIC language people are busy foisting computer literacy off onto
the unwashed masses, and while Pascal people are stuffily trying to salvage
what scant few shards remain of the once mighty computer science theocracy,
and while FORTH people are out acting like spoiled brats . . . while all of this

is happening . .
Machine-language programmers are laughing to themselves all the way to

the bank!

30 Enhancement 3

The evidence is in and it is overwhelming. Cash on the line. If you want to
write a classic program or a best selling program, it must execute either
wholly, or in part, in machine language.

Why?
Because machine language is far and away the fastest running, the most

compact, the most flexible, the most versatile, and the one and only language
that most fully utilizes all of the Apple's resources.

The only sure way to learn machine-language programming is to do lots of
it on your own. But one thing that can help you a lot is to tear apart the winning
machine-language programs of others to see what makes them tick.

You might also like to modify someone else's machine-language program to
suit your own needs. Maybe you would like to find the scroll hooks in the HRCG
High-Resolution Character Generator. Or perhaps you want to modify the origi
nal Apple Writer to output imbedded print format commands to your daisy
wheel. Or change F/Oto add your own "undelete file" command. Or maybe
you have to modify a printer driver to handle HIRES graphics dumps. Or you
might need some stunning animation. Or want to know what makes an adven
ture tick. Or whatever.

At any rate, if you brute-force attack someone else's machine-language pro
gram and if the program is more than a few hundred bytes long, chances are it
will take you a very long time to crack it to the point where you think you
understand it.

I'd like to share with you a method I use that will crack any unknown machine
language program astonishingly fast. The method does odd things odd ways, but
ends up taking one tenth the time and one tenth · the effort of any usual
approach.

We'll assume you already know and have done some machine-language
programming, and that the target program you want to tear into was written by
an experienced and more or less rational programmer who didn't go very far
out of his way to make things rough for you.

Let's see what is involved.

THE TOOLS

First, we'll have to put together a toolkit. You should have a tractor-feed
printer along with some heavy white paper, preferably 20-pound paper. Natural
ly, you will also need a plastic 6502 Programming Card and, of course, the 6502
Programming Manudl. The following listing gives a breakdown of the tools you
will need to effectively tear apart machine-language programs.

You will also want all the usual Apple manuals, along with a copy of the
Apple Monitor Peeled, and, if you can find one, a copy of the old red Apple
Book. I'm also laboring under the delusion that you'll find Don Lancaster's
Micro Cookbook, Volumes 1 and 2, of help (SAMS #21828 and #21829).

Try to get an Apple that has access to both an autostart ROM on a switchable
plug-in card, and the old monitor ROM, without autostart, in socket F8 on the
mainframe. This original ROM has the Trace feature, which was removed to
make way for the autostart function. More importantly, the "old" ROM gives
you the absolute control that is needed to stop any program at any time for any
reason. Ads in Computer Shopper offer this ROM for $10.00.

Note that many newer programs will not let you drop into the monitor when
you use the autostart ROM. Instead, they adjust the pointers so that they return
to themselves on a system reset. Thus, an old ROM may be absolutely essential
to let you view the target code. The Apple lie may need custom EPROMs.

Tearing Into Machine-Language Code J 1

MACHINE-LANGUAGE
TOOLKIT

TOOLKIT SOURCES

() 48K Apple II, preferably with
an old ROM in mainframe
and switchable autostart
ROM on plug-in card.

() 6502 PROGRAMMING MANUAL

Rockwell International
Box 3669
Anaheim, CA 92803
Tel: 714-632-0950

() Tractor-feed printer.

() Heavy white tractor paper.

() 6502 Programming Card.

() 6502 PLASTIC CARD

Micro Logic Corp.
Box 174

() 6502 Programming Manual.

() All Apple manuals.

Hackensack, NJ 07602
Tel: 201-342-6518

() APPLE MONITOR PEELED

William Dougherty () Apple red book.

() Apple Monitor Peeled book.

() Lancaster's Micro Cookbook,

14349 San Jose Street
Mission Hills, CA 91345
Tel: 213-896-6553 Volumes 1 and 2.

() Roll of transparent tape. () THE MICRO COOKBOOKS

Howard W. Sams & Co., Inc.
4300 West 62nd Street
Indianapolis, IN 46268

() Case of page highlighters, in
all available colors.

() Fine and regular felt-tip pens Tel: 317-298-5566
of matching colors.

() Serendipity scratch pad.

() What if? quadrille pad.

() PAGE HIGHLIGHTERS

#2500A Major Accent
Sanford Corp.
Bellwood, IL 60104
Tel: 312-547-3272
(SEARS #3KX-3272)

() A quiet workspace.

() The right attitude.

If you really get into machine-language programming, this original firmware
ROM is very, very useful. I suspect these ROMs may eventually become rare,
but with 2716 EPROMs now under $5.00, you can easily clone your own by
adding a simple CS adaptor to ROM socket F8.

You will want at least a 48K machine, and if there is extra RAM on plug-in
cards, so much the better. The big advantage to having more RAM than the
program needs is that you are free to add your own test and debug programs
co-resident with whatever target program you are tearing apart. You should have
both a cassette and at least one disk drive. The cassette can always save any
image of any part of any program at any time, regardless of whether there is a
DOS operating system there or not. Images on the tape can be split up and
relocated as needed, letting you transfer them to disk at your convenience. The
cassette can also let you introduce very small "test" and "hook" programs into
the darndest spaces.

Now, off to the office supply. Get yourself a big roll of transparent mending
tape-the kind you can write on. Then get two cases - yes, cases - of page
highlighters. Throwaway all the extra yellow ones, and get as many different
colors as you can. Match each page highlighter with both a fine point and a
regular felt-tip pen of the same color.

32 Enhancement 3

Don't underestimate the importance of these page high lighters. This method
starts out real stupid like, but you will be astounded when the truth and beauty
of what's happening leaps out at you halfway through. The highlighters are
absolutely essential! Make sure these are the fat "see through" kind.

Get yourself some scratch pads as well. Label the little blank one "Serendip-
ity" and the bit quadrille one "What if?".

You also have to have the right attitude, the right workspace, patience, per-
sistence, curiosity, perversity, and a very distorted sense of humor for this
method to work.

It is extremely important that you do everything that follows hands-on and by
yourself. Do not, under any circumstances, let someone else or the Apple
help you with any tedious or dogwork parts. The method relies heavily on
your subconscious putting together the big picture and sewing up the loose
ends. It can only do this if it has access to everything that the tearing-attack
method needs. Do the dull stuff yourself!

THE FIRST RULE

What can we expect to find inside a machine-language program? The working
code for sure. But, besides that working code, we need files that go with that
code. In most longer machine-language programs, the files often take up far
more room than the working code does.

END r-------,

BUL!<
PILES

ACTION

START L-___ -'

Fig. 3-1. A "typical" machine-language program.

STASH

CODE
MODULE

STASH

CODE
MODULE

Fig. 3- 1 shows your "typical" machine-language program, which is just about
as representative as your "typical" Apple owner or your "typical" rock. Any-
way, we see that there are usually two main areas to a larger machine-language
program. These are the action and the bulk files.

The action is the "real" part of the program that actually does things. The
action, in turn, is made up of two different types of blocks. These blocks are
called code modules and stashes.

A code module is a chunk of working machine-language code that does
something. In most programs, most of the modules are subroutines, and are
called as needed from a very short main program. The advantages of subroutines
are that they break things down into small and understandable chunks and that
they can be accessed from several places in the main program at once.

Tearing Into Machine-Language Code 33

A stash is a short file that works directly with a module. The stash often follows
immediately after the module that uses it. Typical stash entries might be a short
ASCII string, a list of condition codes, or a table of indirect addresses. The stash
holds values needed by the module that it works with.

The bulk files are usually much longer than the stashes. Bulk files normally sit
off by themselves and usually follow the action. An example of a bulk file might
be a high-resolution character set. The action controls how and when the
character codes in the bulk-file character set go on the screen. In a medium-
sized adventure, the bulk files may contain the map, the script, the objects, the
responses, the rooms, and anything else unique to one particular story line. Only
the bulk file has to be changed to change the adventure. The action can often
stay the same.

In animated games or other programs that use the HIRES features, the bulk
file may actually be the HIRES screen pages, or combinations of these pages
with extra file space.

If you are into very fancy machine-language programs, the action may, in fact,
be an interpreter acting as a special-use language. The bulk files will then contain
commands that are run under the action's command interpretation. Zork is a
classic example of this type of thing. In Zork, the action is a LISP-like interpreter
specially written in compact and fast machine-language code.

The absolute key secret to tearing into machine-language code is ...

Find out the STRUCTURE and the
FLOW of any program, and most
of the code will take care of itself!

So, never, never, never start taking apart machine-language code on a line-by-
line basis. This is a total waste of time and will take forever.

Not to mention that it won't work anyhow.
The whole trick is to find out the structure of the program. Separate each

module of the program and then separate each file from everything else. You'll
find out there are very powerful hidden indicators that will leap out at you when
you look for them. These indicators will very rapidly break everything down into
simple, obvious, easy-to-understand, and self-documenting chunks.

Don't believe me? Let's try it and see. We'll use Apple's own HRCG J-Jigh-
Resolution Character Generator as a target program to show you how the
method works and to illustrate key points. We'll go over the method in some
detail. Later, we'll sum everything up in one checklist. HRCG is available on
the DOS 3.3 TOOLKIT diskette, available from most dealers.

You'll get the most out of what follows by actually doing each and every step
using your own copy of HRCG as we go along. Then try the method on a target
program of your own choosing.

THE METHOD

Ready? Here we go.

GROK THE PROGRAM I
You must be thoroughly familiar with what the program does and how it

works before you start. Never try to crack a code until after you have used the
program and really and truly know it.

34 Enhancement 3

For instance, there's absolutely no point in taking apart Pyramid of Doom to
try and find the shovel. If you can't find the shovel, you just aren't cut out for
Adventure. But, you just might want to tear into it to find the last treasure you
need to replace the treasure you have to destroy to get past a certain -uh-
inconvenience halfway up the pyramid. In no way will your first tearing into
Adventure tell you the last treasure is in the dressing room, but you'll learn a lot
about machine language and machine-language programs as you go along.

In the case of the HRCG, use the program and thoroughly explore all the
alternate character fonts, and all the options of each and every mode of opera-
tion.

Know exactly what the program does before you try to tear into it.
One limit to this, though ...

NEVER assume a program works in
a certain manner or "has" to do
something in an obvious way!

Thus, while you are learning how to use the program, and while you may think
you have some good ideas on how the program works, reserve judgement till
later. All your good ideas will invariably turn out to be 100% wrong.

If you can, watch others use the program and look into their reactions of how
the program works and what it does. You may be missing something totally
obvious. Rap with others as much as possible.

GO TO THE HORSE'S WHATEVER I
Read every scrap of documentation that comes with the program, no matter

how badly written or misdirected it may seem. Always ask around to see if the
source code exists somewhere. Be sure to look into updates and revisions as
well. It is infinitely easier to start with the original author's source code and work
into the program, than to start with an unknown bunch of code and try to infer
what the author had in mind in the first place.

If there is no documentation or if it isn't helpful, and if the original source code
isn't available, keep checking. Perhaps others have torn into part of the code or
have made modifications on their own that seem to work. Ask around at your
club, school, computer store, bulletin board, or user group. If anything is avail-
able that seems to help, try it.

Anything else that can give you a clue to where the software author's head
is and where he is coming from will be of great help. Maybe he publishes articles
and stories. Maybe he has a series of programs out that can be of use.

A few moments of asking in the right places can save you months of time.
So, always check around.

HAVE A LIMITED GOAL

Any genuinely experienced programmer will admit to this rule.

A long program is NEVER fully
debugged nor fully understood.

Nor can it ever be.

BELIEVE
IT!

I

Tearing Into Machine-Language Code 35

The entire DEW (Distant Early Warning) defense radar program was never
tested. Not only was it never tested, the DEW program was so hopelessly
complex that there was no possible way it could have been fully tested. Even
if some test method existed, the probability of it passing any test was infinitely
small.

A good and clean program simply has most of its remaining bugs fairly well
hidden and fairly well out of the mainstream. This only happens after the ninth
or tenth revision. But rest assured, there are definitely still bugs there, lying in
"deep cover" and patiently waiting.

What this says is that the original programmer did not fully understand nor
fully debug his program. If he says he has, he is either lying or else hopelessly
naive. Now, if he didn't understand his own program, why should you?

Thus, a goal "to completely understand" some program is not only unrea-
sonable; it is patently ridiculous. Instead, set yourself a reasonable and realistic
goal for your first trip of tearing into machine code. Then, after you have set
this realistic goal, simplify it till it is trivial. Then, simplify that. Then, think up
some really dumb test of a small part of what is left. Something any idiot could
hack. Maybe, just maybe, you will then be in the ball park.

For the HRCG, let's use the goal of answering "Where are the scroll hooks?"
The HRCG obviously has some sort of scroll in it, since it moves characters up
the screen. The scroll on the version I received is abrupt and chunky, so it can
obviously be improved.

Or can it?
Maybe it's not so obvious. Why would such a good program have such an

ugly scroll? These are name-brand people working on this and chances are they
fumed and fretted over things quite a bit. Better stick with our original goal of
finding the scroll hooks.

When you set your limited goal, don't become obsessed with it. The tearing
method works by separating the known from the unknown as you go through
the code. The method we will use demands a lot of apparently useless side trips.

Concentrate only on your goal and you may never get there.

FIND WHERE THE PROGRAM SITS I
Before we can go on with our tearing attack method, we have to take time

out for a rather long, but most essential side trip. Ready? Here we go ...
Where is the machine-language program likely to sit? A glib answer is some-

where between $0000 and $FFFF, unless they are using memory mapping to
go beyond 64K or are swapping things back and forth to the disk, or are using
auxiliary memory on the Apple lie. This assumes, of course, that the program is
not self-modifying so that it changes itself through time.

Figs. 3-2 through 3-6 show us some places we can put a program. We can
divide these into low RAM, high RAM, and wherever. Let's check these in more
detail.

low RAM

Low RAM is heavily used. As Fig. 3-2 shows us, low RAM goes from hex
$0000 through $07FF, or memory pages Zero through Seven. Most of this space
is reserved by the Apple for "system" uses. Let's check this out on a page-by-
page basis

Page Zero is extremely valuable real estate for two reasons. The first is that
the 6502 has a page Zero addressing mode that is shorter and faster than most

36 Enhancement J

$07FF
(2047)

$0400
(1048)

$0300
(768)

$0200
(512)

$0100
(256)

$0000
(0)

�

TEXT

AND

LORES

(PAGE ONE)

SYSTEM

VECTORS

KEY-IN

BUFFER

STACK

POINTERS

AND

VECTORS

PAGESFOUR THROUGHSEVENARE
THE TEXT AND LORES PAGE ONE.
THERE ARE ALSO 64 RAM

/

LOCATIONS IN 8 GROUPS OF 8
EACH INTENDED FOR 110 USE.

PAGE THREE HOLDS THE DOS
POINTERS AND MONITOR VECTORS
AT ITS HIGH END. THE BOTTOM
OF THIS PAGE IS A POPULAR
PLACE TO PUT PROTECTED
MACHINE LANGUAGE CODE.

PAGE TWO IS THE KEYBOARD

INPUT BUFFER AND WORKS FROM
THE BOTTOM UP. SHORT
PROGRAMS CAN BE PUT AT THE
TOP OF THIS PAGE, BUT A 1/ DANGER EXISTS OF A LONG
KEYBOARD ENTRY PLOWING THE
PROGRAM.

PAGE ONE IS THE STACK AND
WORKS FROM THE TOP DOWN.
SHORT PROGRAMS CAN BE PUT AT

/
THE BOTTOM OF THIS PAGE, BUT
A DUAL DANGER EXISTS OF THE
PROGRAM PLOWING THE STACK,
AND VICE VERSA.

PAGE ZERO HOLDS CALCULATED
ADDRESSES. ALL VALUES PASSED

---------- BETWEEN PROGRAMS, AND MOST
SYSTEM VARI A BLES. THERE IS
USUALLY NO ROOM FOR ACTUAL
PROGRAM CODE HERE, ALTHOUGH
MOST PROGRAMS WILL USE THESE
LOCATIONS FOR STORAGE.

Fig. 3-2. Low RAM memory map.

other addressing modes. The second is that the two most powerful 6502 ad
dressing modes - indirect indexed and indexed indirect - demand pairs of
address locations on page Zero.

The Apple book shows how practically all of page Zero is used up one way
or another by the monitor, the DOS, or either BASIC. For instance, the locations
for the keyboard entry hooks and the print output hooks are stored as addresses
on page Zero, as are.the screen formatting controls that set the height and width
of the display. Other important page Zero locations convert line numbers into
the base addresses needed to hit a certain line of video.

We will see a list of these important page Zero locations shortly. The point
here is ...

Practically all programs need a few

locations on page Zero.
Some of these are used to pass
values into the monitor, to BASIC,
or to another part of itself.

Other page Zero locations are

used to hold calculated addresses
for the indirect addressing modes.

Thus, page Zero real estate is far too costly for program code. Instead, the
available locations are used to pass values back and forth between the system
and the target program, and to hold calculated address values.

Sometimes a target program will reassign page Zero locations for its own use.
For instance, if the target program is fully in machine language, it can borrow

Tearing Into Machine-Language Code 37

many of the locations "reserved" for Applesoft or Integer BASIC, since these
locations will never be used. Monitor locations that serve oddball purposes can
also be "redefined" provided that the monitor feature is never used, even by
accident.

Occasionally a very short machine-language sequence can be crammed into
low values on page Zero, as was done with the original tone subroutine in the
old red book. Even this got you in trouble when you switched to Applesoft. So,
putting programs on page Zero is both dangerous and dumb, but it can be done.

Another dangerous place to put programs is on page One. Page One is
intended to be used for the stack. The 6502 uses a single stack that starts at
location $01 FF and builds down. This stack is shared by the monitor, the
operating system, and the program itself. I mportant uses of the stack are to store
the return address of a subroutine call and both return address and processor
status on an interrupt. Advanced programmers might also use the stack as a
temporary stash of a value or two, or might even manipulate the stack to alter
the program flow.

The stack rarely gets below $0180 in normal use. It is usually possible to put
a very short machine-language program in locations $0100 through $017F. This
is dangerous, since the program can plow the stack and vice versa, if either gets
too long.

Page Two is normally used as a keyboard buffer. Key entries start at $0200
and build their way up. The average number of keystrokes stored is fairly low,
and you can sometimes cram a small machine-language program on the top of
this page. Once again, you are asking for trouble since too long a keyboard entry
will plow your program.

One sneaky and ugly trick that a programmer can pull is to put some reloca-
tion or protection code starting at $0200. This code must be used before any
keys are hit, and is thus very difficult to read. The code will, of course, get
destroyed as soon as any keys are entered.

Most of page Three is available to the machine-language programmer. There
are some DOS jumps and system vectors on the high end of this page. The
vectors control the reset, interrupt, autostart return, breakpoints, Applesoft "&",
and nonmaskable interrupt jumps.

Thus, you are free to use the first 150 or so locations on page Three for your
machine-language program. This turns out to be a favorite stash for short pro-
grams, since this area is automatically protected from either BASIC.

Unfortunately, everybody and his brother crams just about everything they
can think of in here, and you can often have two parts of a program, each of
which needs a different machine-language code, both trying to use this space.
For instance, a printer driver may be placed here by one program and a screen
dump by another. Try to combine the programs, and you have a turf fight.

If you have a longer machine-language sequence, you can sometimes com-
bine the top half of page Two continuously with the bottom half of page Three.
Again, you have to be careful not to get bumped by a long keyboard entry and
to be sure you don't, in turn, bump into a DOS hook or other pointer.

Memory pages Four through Seven are the page One text screen and page
One LORES screen. The only difference between traditional text and LORES is
that, in text, the stored code goes through a hardware character generator while,
in LORES, the same code is directly bit-by-bit converted into a stacked pair of
colored blocks.

It seems kinda dumb to try and put machine-language code onto the display
pages. First, you will probably see it and it will look ugly. Secondly, any scrolling
or screen clearing will destroy the code. Nonetheless, in a program that does
all its work in HIRES, this space is theoretically available.

38 Enhancement 3

There are some sneaky RAM locations stashed here and there on pages Four
through Seven that are not displayed and are not erased by a properly done
scroll or clear. There are 64 of these locations. These are normally intended for
use by the I/O slots and have intended assignments.

If you really want to be tricky, you can use these spaces any way you want
to, provided there is no I/O access to the same location. This is one of the bet-
ter hiding places for disk verification codes and other sneaky stuff.

Summing our low RAM up, you have a few locations on page Zero available
to you that are usable to pass values to the monitor or to save calculated
addresses. The low end of the page One stack and the high end of the page Two
keyboard buffer can be used for short programs or subroutines, but use of these
areas can be dangerous. Most of the bottom of page Three can be used for a
machine-language program. This space is very popular but it can cause conflicts
between programs. Finally, pages Four through Seven are the page One text and
LORES display and are not normally available for program storage, except for
some 64 hidden locations that are normally reserved for input and output.

High RAM

As Fig. 3-3 shows us, the high RAM runs from $0800 up through the top of
installed RAM. In a 48K machine, high RAM goes from $0800 through $BFFF.
This area holds the usual locations where longer machine-language programs are
placed.

How much of high RAM is available for your use? It all depends on what other
features you are going to run along with your program, and what minimum size
Apple you want the program to run on.

We will assume that the target program needs a full 48K. Extra RAM is now
so cheap that practically all Apples either arrive with full RAM or are soon filled.
With those new 64K RAM cards, most Apples will soon have bunches of extra
memory on top of what used to be "fulL" A machine with a mere 48K of RAM
will soon be at poverty level.

At any rate, if you decide to use text page Two or LORES page Two, locations
$0800 through $OBFF have to be set aside and protected. Use of this text page
is relatively rare.

If you want to use HIRES page One for graphics, sprite animation, or multifont
text displays, then locations $2000 through $3FFF have to be reserved. Use
HIRES page Two and you will also have to reserve locations $4000 through
$5FFF. These locations hold an image of what goes on the screen and, thus, are
not available for both display and program use at the same time. You will
sometimes use both pages at once for effective and fast animation or to double
graphics resolution.

While there are a few unused RAM locations on these HIRES pages, these
locations get plowed every screen reset or color change. Thus, they are not
safely usable except as a very temporary stash.

We will note in passing that if the HIRES pages are not used, and you put code
in this area, you can actually watch the code executing by switching to HIRES
while the program is in action. This can be a very powerful snooping tool.
Watching a program run its own code gives you a new window into what is
happening. You can also watch code working on LORES page Two, but this is
a much smaller area and not nearly as useful.

If you are using standard DOS, the space from $9600 through $BFFF is
normally saved for the DOS system. You can sometimes "borrow" a DOS file
or two and stuff a short machine-language sequence into a small portion of this
protected space.

$BFFF
(49151) ｾ Ｍ Ｍ Ｍ Ｍ Ｍ Ｎ Ｌ ,

DOS
3.3

Tearing Into Machine-Language Code 39

SMALL WORKING PROGRAMS CAN
ｾ ~

THE DOS 3.3 OPERATING SYSTEM
SITS AT THE TOP OF HIGH RAM.

$9600 ｩ Ｍ Ｍ ｯ Ｍ ｯ Ｍ Ｍ ｾ Ｎ Ｍ Ｎ Ｌ Ｎ ｊ J BE STORED HERE IN UNUSED DOS
(38400) FILE AREAS. THIS SPACE MAY

$6000
(24576)

$4000
(16384)

$2000
(8192)

HIRES
(PAGE TWO)

HIRES
(PAGE ONE)

BE FREED UP BY GOING TO A
SMALL CUSTOM DOS OR BY
MOVING DOS ONTO A RAM CARD.

----- AVAILABLE PROGRAM SPACE.

HIRES PAGE TWO IS USED FOR
ANIMATION AND GAMES WHERE

___ ONE PAGE IS DISPLAYED WHILE
ｾ ~ THE OTHER IS MODIFIED. MUST BE

PROTECTED WHEN USED.

HIRES PAGE ONE RESIDES HERE
AND IS USED FOR BOTH COLOR

__ ｾ ｟ Ｍ Ｍ GRAPHICS AND MULTIFONT TEXT
DISPLAYS. MUST BE PROTECTED
WHEN USED.

.--AVAILABLE PROGRAM SPACE.

$OCOO
(3072)

$0800
(2048)

LORES (PG 2) ｾ Ｎ .___ LORES AND TEXT PAGE TWO.
VERY RARELY USED.

Fig. 3-3. High RAM memory map.

A lot of programs provide their own smaller and simplified versions of DOS.
This gives a measure of copy protection and makes more room for the rest of
the program.

Thus, a machine-language program could go from $0800 to $BFFF. Subtract
the range $9600 through $BFFF for DOS at the top, the range $4000-$SFFF for
HIRES page Two, the range $2000-$3FFF for HIRES page One, and, if used, the
range $0800 through $OBFF at the bottom for text and LORES page Two.

Many machine-language programs start at $0800 and work their way
upwards as needed. If they are about to crash into the HIRES pages, they skip
above HIRES and continue as far as they have to.

Combining programs

Things get much more complicated if machine-language subroutines have to
interact with Integer or Applesoft BASIC programs. Each BASIC language works
differently and needs a different way to "protect" an area for its machine-
language routines. The protection is needed to keep the BASIC from overwriting
the machine code and vice versa. Fig. 3-4 shows us more detail.

In Integer BASIC, HIMEM is a high-memory pointer that points to the end of
the Integer program. The program starts at HIMEM and builds its way down-
ward. Every new program line gets put in its place, automatically moving every-
thing else down and leaving you with the end of the program listing at HIMEM.
String variables start at the low-memory pointer LOMEM and build their way
upwards.

The usual way to tie a machine-language program into Integer BASIC is to start
the machine-language sequence at $0800 and set LOMEM to at least one space
above the end of the machine-language code. This LOMEM can be set as the

40 Enhancement 3

first instruction of an Integer BASIC program. It takes an "illegal" command, but
it is easily done with a single POKE command. Should you also be using the
HIRES pages, you still would start your machine-language program at $0800, but

$9600

?

$0800

INTEGER
BASIC

PROGRAM

LOMEM SET

...------1-TO TOP OF
MACHINE

MACHINE CODE + 1
CODE

(A) Integer BASIC no HIRES.

$9600

?

?

$0800

-
DOS

MACHINE
CODE

APPLESOFT
STRINGS AND

VARIABLES

APPLESOFT
PROGRAM

LINES

TEXT 1 -

HIMEM SET
__ TO BOTTOM

OF MACHINE
CODE --1

-LOMEM

START OF
PROGRAM

-- POINTER
SET TO 2048
(TXTAB)

(C) App/esolt BASIC no HIRES

$9600

$4000

$2000

$0800

INTEGER
BASIC

PROGRAM

I-------f- LOMEM SET
TO 16385

HIRES
PAGE 1

MACHINE
CODE

TEXT. 1

IB) Integer BASIC uSIng HIRES 1.

$9600

?

$4000

$2000
?

$0800

r-
DOS

MACHINE
CODE

APPLESOFT
STRINGS AND

VARIABLES

HIRES
PAGE 1

APPLESOFT
PROGRAM

LINES

TEXT 1
.... - - -

HIM EM SET
__ TO BOTTOM

OF MACHINE
CODE -1

_ LOMEM SET
TO 16385

START OF
PROGRAM

-- POINTER
SET TO 2048
(TXTAB)

(0) App/eso/t BASIC using HIRES 1.

Fig. 3-4. Usual ways of combining BASIC and machine-language programs. Note that
machine code goes above Applesoft or below Integer.

Tearing Into Machine-Language Code 47

you would most likely reset your LOMEM pointer to one location above the
highest HIRES screen location needed. This is shown in Fig. 3-4B.

Applesoft does things quite differently than Integer Basic. Applesoft programs
start at a start-of-program pointer TXTAB and build their way up, while the string
variables start at HIMEM and work down.

It is not normally possible to change the start-of-program pointer during a
program since the program is already located in memory and is not movable.
Thus, while you can, in theory, put a machine-language program below this
pointer, the only way to do it is to change the start-of-program pointer before
you load your final Applesoft program.

Note that this start-of-program pointer is not LOMEM! It is called TXTAB and
sits at $0067 (low) and $0068 (high), LOMEM in Applesoft is actually in the
middle. LOMEM points to the beginning of the variable space and often marks
the end of the program lines.

You will usually put your machine-language program above Applesoft by
setting HIMEM before you run your Applesoft program. HIMEM may also be
set early in the program. Details on this are shown in Fig. 3-4C.

For more program room, you also have the option of setting HIMEM to one
less than the start of your machine-language program, and LOMEM to one more
than the highest HIRES location in use. The start-of-program pointer remains at
$0800. This lets you put program lines from $0800 up through the start of the
HI RES page, and place the strings and variables from the top of the H I RES space
to the bottom of your machine-language code. This is shown in Fig. 3-40.

So, we see that machine-language programs running with Applesoft normally
go above HIM EM, while machine-language programs running with Integer
BASIC normally go below LOMEM.

You can also play all sorts of pointer games to tow a short machine-language
sequence along insidean Integer BASIC or Applesoft program. One way you can
do this is to put the machine-language stuff between two BASIC statements. The
parsed code on the first BASIC statement is then altered so it jumps over the
machine-language part to get to the next expected instruction. These pointer
schemes are tricky and really get hairy if you make any changes, but some
authors use them to "protect" their programs or "hide" their fast machine code.
The advantage of this is that you can use one cassette loading to enter both
machine and BASIC codings. With a disk it is much simpler and saner to let one
program load the other one by using a second disk command.

Mainframe RAM usually only goes up to 48K. What is in the other 16K of our
64K Apple? Figs. 3-5 and 3-6 complete the picture for us.

There are sixteen pages located from $COOO through $CFFF that are reserved
for I/O. As Fig. 3-5 shows, the bottom half page ($COOO to $C07F) is used for
all the screen switches, the push buttons, the paddles, speaker, cassette, key-
board entry, and the keyboard strobe. The next half page ($C080-COFF) is used
to pass address locations to each slot. There are sixteen locations reserved for
each slot one through seven.

Above that, we see seven location blocks that are one page of 256 words
each. These usually will hold the "control" PROM or ROM for a given card and
are addressed as shown. A final2K space is reserved from $C800 through $CFFF
that can be used by any I/O slot that wants it, as long as all the slots take turns,
and only one slot is active at a time.

There is usually very little RAM in the I/O space. These locations are impor-
tant, though, for they are how we control the on-board things like the screen
modes, speaker, paddles, keyboard, and so on. They are also the way we
interact with any working card. If a plug-in card is involved with the code you
want to tear into, you will have to pin down exactly what codes goes where.

42 Enhancement 3

If we now turn to the uppermost 12K of address space on the Apple, we see
that there are six ROM sockets on the Apple mainframe. Each socket can hold
a 2KX8 bytewide ROM or RAM. Fig. 3-6 shows us the usual setup for Integer
BASIC or Applesoft machines. A 2K monitor ROM needs the top or $F8 socket.
There are two possible monitors, the old or absolute reset one, and the newer
autostart one.

$CFFF

$C800

$C700

$C600

$C500

$C400

$C300

$C200

$C100

$C080

$COOO

2K ROM
OR RAM

USABLE BY
ANY SLOT.
PROVIDED
THEY TAKE

TURNS

SLOT 7
ROM

SLOT 6
ROM

SLOT 5
ROM

SLOT 4
ROM

SLOT 3
ROM

SLOT 2
ROM

SLOT 1
ROM

CARD 1/0

BUILT·IN 1/0

53247
(- 122891

51200
(- 143661

50944
(- 145921

50688
1 -148481

50432
(-15104)

50176
(- 15360)

49920
(- 15616)

49664
(- 15872)

49408
(-16128)

49280
(-16256)

49152
(- 16384)

Fig. 3-5. 1/0 map.

Continuing down our ROM sockets, Applesoft uses the bottom five, while
Integer BASIC uses the middle three, along with an optional programmer's aide
that fits in the bottommost or "DO" socket. The uppermost Integer ROM at
"Fa" also holds the extremely useful mini-assembler code, along with the old
floating-point package, and the "Sweet 16" 16-bit machine pseudocode. None
of these machine-language test and debug features are available in the
Applesoft ROMs.

This area is all ROM and cannot normally be written to. But the locations in
this area are useful to interact with the monitor or either BASIC language.

The entire top of the machine can be bypassed by any plug-in card through
the INH line. This can let a plug-in ROM card give you the switched choice of
either BASIC, or it can let a RAM card do darn near anything it wants to, in-
cluding running other languages, holding DOS, or giving you extra RAM space.

$FFFF

$F800

$F400

$EOOO

$0800

$0000

MONITOR

ASSEMBLER

INTEGER
BASIC

INTERPRETER

UNUSED

PROGRAM'
MER'S AIDE

(AJ Integer BASIC

65535
(-1)

63488
(- 2048)

62464
(- 3072)

57344
(-8192)

55296
(- 10240)

53428
(- 12288)

Tearing Into Machine-Language Code 4 J

$FFFF 65535
(- 1)

MONITOR
63488

$F800 (- 2048)

APPLESOFT
BASIC

INTERPRETER

53428
$0000 (- 12288)

(B) Applt'so(t.

Fig. 3-6. High ROM maps. A plug-in ROM or RAM card can deactivate these and
substitute its own code.

Note that many software programs placed on RAM cards may deny you ever
gaining access to the monitor ROM in mainframe socket $F8. This can make
intercepting a running program rather tricky.

Many machine-language programs will start at $0800 and work their way
upwards, but you can expect any program to go just about anywhere, depending
on what other resources of the Apple are being tapped.

One ultrasneaky trick is to start your machine code at the bottom of the
keyboard buffer at $0200, with a jump, and then run up through everything in
between there and the end of your machine-language program. This neatly hides
the "real" starting address of your program and also gives you an attractive page
One text or LORES display while the rest of the program is loading.

You must, of course, find out where the program is before you can attack it.
Let's start with a very obvious fact

OBVIOUSLY
You cannot tear a program apart
that is not already in the machine
and capable of running.

What this says is that any program that uses a disk may not have that part of
the program in which you are interested sitting in the machine at any given time.
This rule also says that any program must be placed in the machine exactly
where it normally will run, and it must be started off on exactly the first instruc-
tion location.

So, be sure you have that part of the program that you want to analyze in the
machine when you attack it.

The other side of the coin has the good news ...

BUT,
THEN
AGAIN

At any given time, any working
program MUST have everything it
needs in the machine so it can
continue.

So, if there is no disk whirring between where you are and what you want
to analyze, it all has to be there in the Apple somewhere, somehow.

But, where is where?

44 Enhancement J

You must pin down all of the exact locations a target program uses before you
can tear into it. There are at least four good ways to do this

FINDING PROGRAM
LOCATIONS

() Read the instructions.

() Ask DOS to tell you.

() Infer from use.

() Empty, then fill the machine.

The first and most obvious way is to see if the author didn't tell you some-
where just exactly where the program sits. For instance, the loading instructions
for the Adam's Adventures 0-12 tell you these go from $OBOO through $57FF
and that the starting point is $OBOO. Being told ahead of time where the program
starts and resides is the easiest and best method, so always look around carefully
for loading information.

The second way to find where a machine-language program goes is to let
DOS tell you. On a 4BK machine BLOADed under standard DOS 3.3, the start-
ing address ends up in $AA72 (low) and $AA73 (high). The program length is
stashed in $AA60 (low) and $AA61 (high). After loading, you reset, do a call
-151 to get into the monitor, and, then, inspect these locations. The old moni-
tor ROM might be needed to force reset back into the monitor.

DOS can also give you some hints. If you can read the catalog, the type of
file and its length should be obvious. Even listening to the number of track
clicks during a load should tell you something about how long the program is
and which disk tracks it lies on. Take off the disk drive cover, and you can
actually watch the drive move from track to track. With some practice, you
will be surprised how much this can tell you. This process, when formalized, is
called boot tracing.
where the program sits from what it has to do and what it has to interact with.
Our HRCG gives us a good example here. We can't directly find where HRCG
sits since it is an "R", or relocatable, rather than a "B", or binary file.

But, the Applesoft Toolkit book tells us HRCG fits under DOS and moves
HIMEM down to protect itself and its alternate character fonts from Applesoft
incursion. There's a simple and easy-to-use BASIC program called LOADHRCG
that comes with the HRCG program. In it is a variable called ADRS which equals
HIMEM. Run this one with no alternate character sets, and we see that ADRS
ends up as $BDFE. Run it with one alternate character set, and HIMEM moves
three pages lower to $BAFE. Two alternate sets and HIMEM drops three more
pages lower to $B7FE, and so on. This special example is shown in Fig. 3-7.

So, by inference, HRCG sits from $BDFF through $95FF. This will include the
HRCG action and the bulk file used for character set Zero, the default ASCII set.
Other character sets build downward three pages at a time, with the lowest-
numbered set on the bottom and the highest set always at the top, again as
shown in Fig. 3-7.

You can find this out on your own by carefully studying a printout of the
LOADHRCG Applesoft program and then doing loadings and finding the value
of ADDR, otherwise known as HIMEM. The same study should show you how
the alternate character sets are filled in.

Tearing Into Machine-Language Code 45

The final method of pinning down a large program works even if all other
methods fail, and should be used as a check even if you are absolutely sure
where the target program sits. This final method is a sledgehammer. You empty
the machine completely, and then refill it only with your target program. Then,
you casually flip through memory, a page at a time, till you find the program.
The next tearing step gives us full details on this.

$9600

$8DFF

$8AFF

$87FF

$84FF

HRCG

ALT SET 3

ALT SET 2

ALT SET 1

CHARACTER SETS BUILD DOWN
FROM HRCG. THE HIGHEST SET J ALWAYS GOES JUST BELOW HRCG.
HIMEM MOVES DOWN AS FAR AS

1
NEEDED TO MAKE ROOM FOR
MORE SETS.

APPLESOFT HIMEM
- POINTER $84FE

(FOR 3 AL T SETS)

Fig. 3-7. Location of HRCG program and alternate character sets in a 48K Apple II.

We have now seen how an Apple's memory is arranged and the methods we
need to use to find where a program sits. Let's now return to the mainstream
of our tearing attack.

You can use any method you like to pinpoint exactly where the target program
lies. Try reading instructions, and then try letting DOS tell you. Then, try infer-
ence from what the program does and how it interacts with the Apple. If none
of that works . .

EMPTY THE MACHINE)
There is nothing more infuriating than to find out you are really analyzing

interpreted BASIC code left over from last Tuesday's 4 AM breakout game,
instead of your target program.

To prevent this from happening, you will want to completely and absolutely
empty your machine of everything old and unneeded before you begin. There
are two very good reasons for this. One is that you won't be wasting your time
analyzing something that is not part of your target program. The second is that
an empty machine that has just been filled is one sure way to find or verify the
location of your target program.

You should always clear your Apple of old stuff before attacking a target
program. But, how do you empty a machine?

Even a just repowered Apple will come up with random garbage in most all
of the RAM locations. The trick is to load each and every memory location with
an obvious value that is very easy to spot, particularly when it is scrolling by.
The value $00 is dangerous since it is also a Break command, and it is hard to
read on the fly. I use the value $11 instead. On a listing, you get an unmistakable
string of continuous lines on anything that is still empty. This pattern is readable
even during an abrupt scroll.

The following steps show us how to empty your Apple. It's very easy to do
from the monitor. You put a $11 somewhere and, then, move it as far up in
memory as you want, recopying it over and over again. If you are using DOS
3.3, you should empty locations $0220 through $03CE, and $0800 through

46 Enhancement 3

$95FE. Be sure to empty your machine after booting DOS. Do things the other
way around and the DOS boot code will return to haunt you.

If you are not using DOS, then you can go ahead and empty $9600 through
$BFFF as well. You might also like to empty page One from $0100 to $0180.
But, don't try to empty page Zero, the top half of page One, the first few loca-
tions of page Two, the top of page Three, or anything above $COOO. Erasing
any of these locations will bomb the machine or cause other problems.

To empty your Apple, put an "empty" symbol in some location. Then, use
the monitor to move a block of memory-starting at that location and moving
up by one.

A good empty symbol is "$11".
A. To empty user RAM except for DOS:

'0800: 11 < cr >
'0801 < 0800.95FEM < cr >

B. To empty all user RAM:

'0800: 11 < cr >
'0801 < 0800.8FFEM < cr >

C. To empty most of pages $02 and $03:

'0220: 11 < cr >
'0221 < 0220.03CEM < cr >

To get into the monitor from either BASIC language, do a CALL -151. Once
again, do not try to empty page Zero, the top half of page One, the first few
locations on page Two, page Three above $03CF, or anything above $COOO.

Some target programs will try to prevent you from ever going into the moni-
tor. Switch to the old (nonautostart) monitor ROM if this happens.

When your machine is empty, snoop around everywhere to see what it
looks like. From the monitor, do a 0800.BFFF < cr > and watch the "elev-
ens" go streaming by.

You'll next want to load and verify the locations of the HRCG program from
$8DFF through $95FF. Try adding alternate character sets, one at a time, and
see what happens.

Always start with an empty machine and always return to one anytime you
get confused as to what is happening.

LIST THE PROGRAM I
After you have emptied the machine and loaded your target program, go

ahead and list it. Make two copies on the heaviest white tractor paper you can
find. You list a program from the monitor by typing the starting address and,
then, the character "L" eighty times and, then, a < cr > . Each L command gets
you twenty lines of disassembled code. Use too few L's and you will have to
retype them in the middle of your listing. Too many and you simply hit RESET
when you get to the end of the target program.

Tearing Into Machine-Language Code 47

Keep three clean white pages before and after the listing. Do NOT take the
listing sheets apart. Instead, carefully reinforce every tear line, tractor holes and
all, with transparent tape. Actually, you would be best off having a welder
transcribe a copy of the listing by burning it into quarter-inch steel plate for you.

No matter how rugged you make it, it won't be enough. The object here is
to keep the listing in one piece and legible after handling and rehandling over
and over again. So, don't spare the tape.

Label the top sheet with the name of the target program and the date you
started attacking it. Don't forget the year and version number. The second copy
is a backup to be used when the first one falls apart or gets totally illegible.

You will also want to make two copies of a hex dump of the target program.
For HRCG, you get in the monitor, type BDFF.9SFF, reach over and move the
printer paper up a space or two, and, then, hit < cr> . Incidentally, on both the
listings and the hex dump, use the printer's skip-aver-margin feature if you have
it available.

Most of our tearing apart will be done on the listing sheets. The hex dump
sheets will sometimes show us a pattern in a file or will give us some other
pictorial information or other visual clues that can be of enormous help.

Yes, you might have to list and hex dump the entire machine for really fancy
programs, and this will take bunches of paper and, maybe a ribbon or two. But
this isn't nearly as bad as it seems, and it must be done if you are to crack the
program.

Well, we finally have completed our preliminaries. It sure took a long time to
get here. Now the fun starts. Ready?

SEPARATE THE ACTION FROM BULK FILES I
Carefully look at your listing. Not for detail, but for overall vibes. Anytime you

think something may be helpful, jot it down on one or another of the pads.
But, once again, do not jump to conclusions and do not attempt to analyze

any part of the code in detail. At this stage in the game, we are interested only
in the flow and pattern of the big picture.

The first thing we want to do is isolate the action so that we can work with
it separately. As you go along, you will gain a feel for what I call "rational" code.
Rational code has a flow to it, with reasonable commands used in reasonable
ways. At this point, we don't want to pass judgement nor force conclusions as
to what is which. But see if you can't separate obviously "rational" code from
everything else.

Now, we told our lister to list-assuming that it would be handling working
machine-language code. The lister will also try to list a file, or random garbage,
as if it was rational code. So, we can expect lots of visual clues as to whether
we are working on real code or file values. Here are some sure signs ...

FILE CLUES DURING A LIST

() Lots of question marks.

() Break commands ($00).

() Dumb repetition.

() Rare commands in odd mixes.

48 Enhancement 3

The question mark means that the lister thought it had found an illegal op
code, something that the 6502 microprocessor does not know how to use as
an instruction. Now, there are times and places where you will get an occasional
question mark in the middle of working and valid code. This has to do with the
"lister" getting out of whack on the first instruction, or it may (rarely) be a value
or two a programmer has put between working code segments. But, lots of
question marks are a good sign of a file.

The break or $00 command is a very enigmatic one. BRK is a very heavy
debugging tool and one of the most powerful commands that the 6502 micro-
processor has available. But, a break command is only rarely allowed to appear
in working code as a valid instruction! Why? Because the break command
immediately forces a debugging interrupt, or else, it might very rarely be used
for an error trap or a program restart.

Dumb repetition is another clue. Say you push the processor status on the
stack with a PHP command. That's fine. But, why on earth do it fifteen times
in a row? Now, that is irrational. As you go along, you will get a feel for what
is rational code and what is not.

Do it. Start through your HRCG listing. There's a few question marks at the
beginning and a few breaks, but mostly it is rational code. Chances are these are
stashes that go with the code modules. As you go along, you get lots of rational
code. Continue some more. Page after page of rational code.

Then, suddenly, around $92DF, things get weird and stay that way, all the way
to the end of the program. Lots of question marks, breaks, and really dumb code.
Let's take a guess and say that our bulk file goes from $92FF to $95FF.

Now, it looks like there's some garbage, maybe a stash below $92FF, but we
definitely have at least three pages of bulk file at the top.

Let's speculate. Three pages should ring a bell. Check into the HRCG Man-
ual and you'll find it takes three pages for an alternate character set. Appar-
ently, we have the default ASCII character set here. We absolutely should NOT
jump to conclusions this early in the game, nor should we try a detailed analy-
sis of the bulk files, but maybe just a little peek won't hurt

Check the hex dump for these pages. See the pattern? Hold it up to the light.
Every eighth row almost, but not always, is all zeros. Except for the lower case
g, p, and a few other exceptions, most characters would leave one dot row out
of eight blank.

Strong evidence.
But, not strong enough. Later, we will tear into this bulk file and verify exactly

what it does. We will also find out exactly where it starts. For now, let's draw
a bright red line across the listing page between $92FD and $92FF. Label the
area below this line "BULK FILE." On your serendipity pad, sketch something
like Fig. 3-8, that is used to show us with an HRCG action from $8DFF through
$92FE and a bulk file from $92FF through $95FF.

$95FF------,

$92FF

BULK
FILE

HOLDS DOT PATTERNS
-- FOR DEFAULT

CHARACTER SET

HOLDS CODE MODULES
ACTION .- AND STASHES USED

BY HRCG

$BDFF Ｇ Ｍ Ｍ Ｍ Ｍ ｾ ~

Fig. 3-8. Separating the action from the bulk files.

Don't worry, just yet, about the extra question marks we have above the bulk
file. Somehow, these look "different" from the code in the bulk file. As you gain
practice, these slight differences will leap out at you. But, our goal, here and

HELPFUL HINT

Use your page highliters to
color the grey stripes shown
on the next few pages.

Use the colors called for.

I
0 1

I
I

0 1 8E1E-
I
I

0 1
I
I

Tearing Into Machine-Language Code 49

now, is only to separate the action from the bulk files, nothing more. In HRCG,
this roughly cuts our task in half. In other programs, the bulk files may be the
lion's share of the code.

PAINT ALL SUBROUTINE RETURNS GREEN I
No matter what code you write or how secretive you are, there is an Achille's

heel you have to contend with. This is the 60 RTS or Return From Subroutine
command. RTS is our first and foremost attack point into unknown code. It is
the chink in the armor, the pry point, the skeleton key. Let's split off the subrou-
tines and watch how fast the code breaks up.

Go through your code and at every "rational" place that you find a 60 RTS,
use a high liter to put a green bar through all of the code except the address.

Something like this ...

10
I

:0
1

:0

Do this for every 60 RTS you see in the action. If you aren't sure whether the
60 is rational or not, then color only the RTS green, rather than the entire line.
Generally, question marks below a 60 RTS are allowed; those close above are
suspect.

If you do this on HRCG, you should end up with 35 "definites" that are
greenlined all the way across, and one "maybe" located at $8F85 that is only
boxed.

Do not try to analyze any of this code yet. We will let the code analyze itself
later on.

We have just identified the end of every subroutine in the program. Since
properly written machine-language programs will be mostly subroutines, we
already have nearly all our code modules isolated! All that with several strokes of
a fuzzy green page highliter!

Now, things start to get interesting

PAINT ALL SUBROUTINE CALLS ORANGE I
Next, get yourself an orange page highliter and go through the action. Identify

every rational jSR and its address in orange.
Do this two ways. If the jSR goes to a local address inside the action, paint

only the jSR and the address. If the jSR goes out-of-range to some other part of
the memory, paint the jSR, the address, and one inch more, and "half" an
arrowhead.

50 Enhancement J

Like so for a local JSR ...

I

0 1
I
I

0 1
1

1

01
I

$BEOE- 20 IF BE

RANGE

This subroutine call is in range, so we color only the JSR and the $8El F.
For an out-of-range or "long distance" call, do it like this ...

1

0 1
1
I

0 1
1

1
0, ,

$BEI6- 20 ED FD

You use the arrowhead to identify an out-of-range call. Should you have a
questionable or possibly irrational subroutine call, color only the JSR mnemonic
for now. (The reason for only half an arrow is that you might get two arrows
side-by-side. If this happens, make one point "up" and the other "down.")

Orange is a nice color, so let's use it some more. For each and every local
JSR call, find out where the JSR goes to, and color the very start of that line
orange. Go only through the address, starting a quarter of an inch to the left.

For instance, at $8EOE, you have a local call of JSR $8El F. Go to the start of
line 8El F and do this ...

0: ,
01 LDA #$74

1

0: E

I

This tells us that we are starting on some "live" and rational code, and that
what follows will be a useful and worthwhile subroutine. Once again, we do not
want to analyze any code just yet.

I

10
I
I
10
I
I

'0
1

1

10
1

1

10
I
1
,0
I

,
10
1

10
I

10
I

,
0 1

I
I

0'
I ,

0 1
I

$8E16-

Tearing Into Machine-Language Code 57

Two fine points. If there is already an orange stripe here, or one of another
color, just put an orange "ear" or small black dot on the existing stripe. Each
new time this happens, add a new black dot.

This will give you a "popularity poll" of your subroutines. We probably won't
use this voting result for our HRCG analysis, but in a large program, the populari-
ty of a subroutine can tell you how important that sub is and how much effort
you should spend in understanding it.

A second possibility is that your jSR seems to go to the middle of an op code,
instead of just the start. The most likely reason for this is that the lister got off
on the wrong foot. See the "WILL THE REAL LISTING PLEASE JUMP OUT"
sidebar at the end of this enhancement for details on this. What happens is that
the lister starts off with a value or two in a file and assumes it is a valid part of a
program that can be disassembled. Op codes normally take one, two, or three
bytes. If the first byte is wrong, the listing will also be wrong.

If you get a "jSR to the middle of ... ", try relisting from the jSR address to
see if you get rational code. This will help clarify the boundaries between stashes
and code modules. We will see an example of this later.

Should your jSR want to go to your bulk file, you guessed wrong! Either the
bulk file has a code module in it, or else your jSR really is a random "20" in
a stash somewhere. Pay careful attention to loose ends like this, for pinning
down exact code and file beginning addresses can save you hours of frustration.

After all of your local subroutines are taken care of, try to identify the out-of-
range ones. They must go somewhere. Somewhere is most often a monitor sub-
routine, or some DOS subroutine or subs in either BASIC.

Table 3-1 shows us the most popular locations needed by the monitor, DOS,
and I/O. Try to get a match between Table 3-1 and each out-of-range subroutine
call. Label this match with a brown felt-tip pen. We have purposely kept this list
down to the more popular locations. We may look at Applesoft, Integer BASIC,
and DOS internals in a future enhancement. Most user libraries have very
extensive memory listings if you get into something out of the ordinary.

For instance, in $8E16, we have a jSR $FDED. A check of Table 3-1 shows
us that it is one of the most often used monitor routines called COUTo This
routine takes what is in the accumulator and outputs it as a character. This output
goes to whatever is connected to the character output hooks. The code should
now look like this ...

20 ED FD COUT

BROWN F TIP

I

'0
1
I

:0
1
I
,0

Notice that this immediately tells us that the code module is used to output
characters. This very much pins down how the module is used and its place in
the big picture. And we still haven't analyzed any code.

Sometimes a jSR call will point to a different part of user RAM. This usually
means that the target program is in more than one piece. Each piece, of course,
will eventually have to be dealt with. The Wizard and the Princess is a good
example of a program that has code modules all over the lot.

52 Enhancement 3

Table 3-1. Important Monitor, DOS, and I/O Locations

PAGE $00

Hex Decimal Mnemonic Use

$20 12 WNDLFT Left side of scroll window
$21 l3 WNDWTH Width of scroll window
$22 34 WNDTOP Top of scroll window
$23 15 WNDBTM Bottom of scroll window

$24 16 CH Cursor horizontal position
$25 17 CV Cursor vertical position
$21> 38 GBASL LORES graphics base low
$27 39 CBASH LORES graphics base high

$28 40 BASL TEXT base address low
$29 41 BASH TEXT base address high
$2A 42 B/\S2L Scroll temporary base low
$2B 43 BAS2H Scroll temporary base high

$30 48 COLOR Holds the LORES color value
$32 50 INVFLG Normal/Inverse/Flash mask
$33 51 PROMPT Holds prompt symbol
$34 52 YSAV Temporary Y register hold

$36 54 CSWL Output character hook low
$37 55 CSWH Output character hook high
$38 56 KSWL Input character hook low
$39 57 KSWH Input character hook high

$45 69 ACC Accumulator save
$46 70 XREC X register save
$47 71 YREG Y register save
$4[3 72 STATUS Flag register save

$49 73 SPNT Stack pointer save
$4E 78 RNDL Veybounce random number low
$4F 79 RNDH Keybounce random number high

PAGE $03

Hex Decimal Mnemonic Use

$03DO 976 Re-enter DOS
$03EA 1002 Reconnect DOS I/O hooks
$03FO 1008 BRKV Break vector low address
$03F1 1009 Break vector high address

$03F2 1010 SOFTEV Warm start vector low address
$03F3 1011 Warm start vector high address
$03F4 1012 PWRDUP Warm start EOR AS checksum
$03FS 1013 AMPERV Applesoft" &" Jump Code

$03F8 1016 USRADR Control Y vector Jump Code
$03FB 1019 NMI NMI vector Jump Code
$03FE 1022 IRQLOC Interrupt vector low address
$03FF 1023 I nterru pt vector high add ress

Tearing Into Machine-Language Code 53

Table 3-1 Cont. Important Monitor, DOS, and 1/0 locations

PAGE $CO

Hex Decimal Mnemonic Use

$COOO -16384 10ADR Keyboard input location
$COlO -16368 KBDSTRB Keyboard strobe reset
$C020 -16352 TAPEOUT Cassette data output
$C030 -16336 SPKR Speaker click output

$C040 -16320 STROBE Game I/O connector strobe
$C050 -16304 TXTCLR Graphics ON soft switch
$C051 -16303 TXTSET Text ON soft switch
$C052 -16302 MIXCLR Full screen ON soft switch

$C053 -16301 MIXSET Split screen ON soft switch
$C054 -16300 LOWSCR Page ONE display soft switch
$C055 -16299 HISCR Page TWO display soft switch
$C056 -16298 LORES LORES ON soft switch

$C057 -16297 HIRES HIRES ON 50ft switch
$C058 -16296 Annunciator 0 OFF soft switch
$C059 -16295 Annunciator 0 ON soft switch
$C05A -16294 Annunciator 1 OFF soft switch

$C05B -16293 Annunciator 1 ON soft switch
$C05C -16292 Annunciator 2 OFF soft switch
$C05D -16291 Annunciator 2 ON soft switch

$C05E -16290 Annunciator 3 OFF soft switch
$C05F -16289 Annunciator 3 ON soft switch
$C060 -16288 TAPEIN Cassette tape read input
$C061 -16287 PBO Push button 0 input

$C062 -16286 PB1 Push button 1 input
$C063 -16285 PB2 Push button 2 input
$C064 -16284 PDLO Game Paddle 0 analog input
$C065 -16283 PDL1 Game Paddle 1 analog input

$C066 -16282 PDL2 Game Paddle 2 analog input
$C067 -16281 PDL3 Game Paddle 3 analog input
$C070 -16272 PTRIG Reset analog paddle inputs

54 Enhancement 3

Table 3-1 Cont. Important Monitor, DOS, and I/O Locations

MORE PAGE $(0

Hex Decimal Mnemonic Use

$C080 -16256 Disk stepper phase 0 OFF
$C081 - 16255 Disk stepper phase 0 ON
$C082 -16254 Disk stepper phase 1 OFF
$C()Sl - 16253 Disk stepper phase 1 ON

$UJ84 -16252 Disk stepper phase 2 OFF
$C085 -16251 Disk stepper phase 2 ON
$C086 - 16250 Disk stepper phase 3 OFF
$C087 -16249 Disk stepper phase 3 ON

$C088 -- 16248 Disk main motor OFF
$C089 -16247 Disk main motor ON
$C08C -16244 Disk Q6 CLEAR
$(08D - 16243 DiskQ6SET

$C08E -16242 Disk Q7 CLEAR
$C08F -16241 DiskQ7 SET

Q7 Q6 ACTION

clear clear READ
clear set SENSE
set clear WRITE
set set LOAD

PAGES $FB - $FB

Hex Decimal Mnemonic Use

$F800 -2048 PLOT Plot a block on LORES screen
$F819 -2023 HLiNE Drawa horizontal LORES line
$F828 -2008 VLlNE Draw a vertical LORES line
$F832 -1998 CLRSCR Clearfull LORES screen

$F836 -1994 CLRTOP Clear top of LORES screen
$F847 -1977 GBASCALC Calculate LORES base address
$F85F -1953 NEXTCOL Increase LORES color by three
$F864 -1948 SETCOL Set color for LORES plotting

$F871 - 1935 SCRN Read color of LORES screen
$F941 -1727 PRNTAX Output A then X as hex
$F948 -1720 PRBLNK Output three spaces via hooks
$F94A -1718 PRBL2 Output X spaces via hooks

$FA43 -1469 STEP Single step (old ROM only!)
$FAD7 -1321 REGDSP Display working registers
$FB1E -1250 PREAD Read a game paddle
$FB2F -1233 INIT Initial i ze text screen

$FB39 -1223 SETTXT Set up text screen
$FB40 -1216 SETGR Set up LORES screen
$FB4B -1205 SETWND Set text window to normal
$FBCl -1087 BASCALC Calculate text base address

$FBD9 -1063 BELL 1 Beep speaker if ctrl G
$FBE4 -1052 BELL2 Beep speaker once
$FBF4 -1036 ADVANCE Move text cursor right by one
$FBFD -1027 VIDOUT Output ASCII to screen only

Tearing Into Machine-Language Code 55

Table 3-1 Cont. Important Monitor, DOS, and 1/0 locations

PAGES $FC - $FD

Hex Decimal Mnemonic Use

$FClO -1008 BS Backspace screen
$FC1A -998 UP Move screen cursor up one
$FC22 -990 VTAB Vertical screen tab using CV
$FC24 -988 VTABZ Vertical screen tab using A

$FC2C -980 ESCl Process escape movements A-G
$FC42 -958 CLREOP Clear text to end of screen
$FC58 -936 HOME Clear screen and home cursor
$FC62 -926 CR Carriage return to screen

$FC66 -922 LF Li ne feed to screen on Iy
$FC70 -912 SCROLL Scroll text screen up one

$FC9C -868 CLEOL Clear text to end of line
$FCA8 -856 WAIT Time delay set by accumulator

$FDOC -756 RDKEY Get input character via hooks
$FD1B -741 KEYIN Read the Apple keyboard
$FD35 -715 RDCHAR Get key and process ESC A-F
$FD62 -670 CANCEL Cancel keyboard line entry

$FD67 -665 GETLNZ CR, then get kbrl input line
$FD6A -662 GETLN Get input line from keyboard
$FD6F -657 GETLNl Get kbd input, no prompt
$FD8B -629 CROUTl Clear EOL then CR via hooks

$FD8E -626 CROUT Output return via hooks
$FDDA -550 PRBYTE Output full A in hpxto hooks
$FDE3 -541 PRHEX Output low A in hex to hooks

$FDED -531 COUT Output character via hooks

$FDFO -528 COUTl Output character to screen

PAGES $FE - $FF

Hex Decimal Mnemonic Use

$FE2C -468 MOVE Move block of memory
$FE36 -458 VERIFY Verify block of memory
$FE5E -418 LIST Disassemble 20 instructions
$FE63 -413 L1ST2 Disassemble A instructions

$FE80 -384 SETINV Print inverse text on screen
$FE84 -380 SETNORM Print normal text on screen
$FE93 -365 SETVID Grab output hooks for screen
$FEBO -336 XBASIC Goto BASIc:, destroying old

$FEB3 -333 BASCON Goto BASIC continuing old
$FEC2 -318 TRACE Start tracing (old ROM only!)
$FECD -307 WRITE Save to cassette ta pe
$FEFD - 259 READ Read from cassette ta pe

$FF2D -211 PRERR Print "ERR" to output hook
$FF3A -198 BELL Output bell via hooks
$FF3F -193 IORESR Restore all working registers
$FF4A -182 IOSAVE Save all working registers

$FF59 -167 OLDRST Old reset entry, no autostart
$FF65 -155 MON Enter monitor and beep spkr
$FF69 -151 MONZ Enter monitor quietly

56 Enhancement 3

As you tear into your target program, go through each and every subroutine
call and find out what it points to. If there are a few locations that are unexplain-
able, wait till later on these. Just be sure that you pin down as many subs as you
can.

Now is a good time to start a separate list of which addresses go where. Label
this list "Cross References" and show the sources of all subroutine calls. As you
go along, any time that one part of the code refers to another part, add it to this
list. Once again, do this by hand, even if you have an automatic cross-
reference and disassembly program available. Eventually, you will want this list
in numeric order, but for now, just list addresses as you run across them.

PAINT ALL ABSOLUTE JUMPS PINK I
Ready fora new color? Getthe pink highliterand add a pink line for any abso-

lute JMP code ($40 or relative JMP code ($6C). Draw the pink line all the way
across the sheet for in-action jumps starting just beyond the address. Draw the
pink line from the machine code to only about an inch past the operand for
absolute jumps that go out of the action. End these lines with half an arrow-
head like you did with the subroutine calls.

If the jumps are inside the action, then also put a pink line showing where the
jump hopped to, just like you did with the subroutines. The jumper and jumpee
may be connected vertically along the left-hand edge, but do this only if the two
are less than twenty lines apart. Also "vote" on the most popular jumps, with
dots if you see more than one jump going to a single location. Add all jumps
to your cross-reference sheet.

If the jump is outside the action, use Table 3-1 to try and find out where the
jump is going to. Then, label the jump using a brown felt-tip pen.

Here are the two steps that are involved in pinning down an inside-the-action
Jump ...

1

0:
I

0 1
I
I

0 1
I

and ...

1

0 1

I
I

0 1

1

I

01
1

$8DFF-

20 IF 8E JSR $FDED

I

:0
1

:0
I

10
I

1

10
1
I
10
I
I
10
I

1

0 1
I
I

0:
I

0:

0

0

0

0

0

$9020-

9208-
920A-
920C-
920F-
9211-
9213-
9216-
9219-
921B-

. Ｇ ｧ Ｚ ｾ ｮ ｄ D
9220-

C5 23
90 11
2C 65
70 08
C6 25
20 21
4C 70
A5 22
85 25
20 24
60

Tearing Into Machine-Language Code 57

An outside-the-action jump looks like this ...

(monitor cleor EOP)

BROWN FELT TIP ,.,,;f

I

:0
I

:0
I
I
10
I
I

Notice what is happening? The flow and structure of our program is rapidly
becoming obvious. We already have all sorts of hints as to which part of the
action does what. But, we are still nowhere near ready enough to tear into the
code.

On an indirect jump using the ($6C) code, go to the address shown in
parentheses and identify this as an indirect address, and show the location that
is using it for the indirect jump.

Let's hack away at our structure some more.

SHOW THE BRANCHES IN BLUE I
Get out the blue page highliter and paint each branch (BCC, BCS, BMI, BEQ,

BNE, BPL, BVC, BVS, but not BIT or BRK) and its address blue. Then, go to that
address and enter a blue line on the left. Finally, if the branch is less than
twenty lines up or down, show the branch action with a light blue felt-tip pen.
Show the direction of each branch, and keep any branch lines from crossing.

Here is an example ...

0
CMP $23

<BCe <$9.2'10.
8E BIT $8E;65 0

avs "$c921:g .. '
DEC $25

92 JSR $9221 0
FC JMP $FC70

LDA $22
0 STA $25

FC JSR $FC24 (monitor VTAB Z)
RTS

0

If you find branch lines that try to cross each other, draw the problem line
up the right-hand side of the address column or elsewhere as needed. It is very
important to be able to glance at the listing and tell immediately which branch
goes where.

58 Enhancement 3

We are really into our structure now. Here, the arrows jump forward, condi-
tionally skipping part of the code. Often, the arrows will go backwards, outlining
a block of code called a loop. The loops visually leap out at you. Check the big
one at $9298. Note that there can be more than one tail connected to any given
arrow.

Three refinements. The first thing is to watch out for possibly irrational code.
If you are in doubt, paint only the mnemonic blue. The second is to label
branches directly to RTS as an RTS, rather than showing the arrows. Finally, very
long branches should show each end separately, to keep from getting too many
lines on the sheets.

SEPARATE THE CODE MODULES
FROM THE STASHES

Now, carefully, look over the action and identify each "holistic" and "ration-
al" code module. A code module should have at least one obvious entry point
and at least one obvious exit point. Any question marks or lister mixups at the
beginning of each module should be resolved so that we can exactly identify the
boundary of each code module.

Then, label carefully in red all the external entry points that you know about,
and any locations that the instructions refer to. Our "cold" entry point is appar-
ently "0R" which translates to the first code byte at $8DFF. The "warm" entry
point is apparently "3R", or $8E02. The version number is at "6R", or $8E05.
We see an "0A" here, which apparently stands for version 1 .0.

The "R" mentioned above may be new to you. The "R" means "relative" and
is used with relocatable programs. "0R" is the first byte in the program, regard-
less of where it sits; "3R" is the third byte, and so on.

By the way, if some of our example codes don't exactly fit your listing,
compare the version numbers. Usually, a different version will move parts of the
code up or down a few slots from where they first were.

Here's what this new stuff looks like ...

1

0 1 RED FELT TIP ::»
1 $BDFF- 4C OE BE JMP $BEOE COLD ENTRY
1 $BE02- 4C IF BE JMP $BE1F WARM ENTRY 01 $BE05- OA ASL (Version to)
1 $BE06- FF ???

1 $BE07- 92 ｂ Ｇ ｾ ｾ ｗ ｎ N FELT TIP i 0 1
I

Note that the ASL mnemonic is meaningless since we have a very short stash
here holding the version number. A mnemonic is only meaningful when applied
at exactly the right place in working code.

While you are labeling outside entry points, be sure to check the top of page
Three for warm start, breakpoint, IRQ, NMI, and RESET vectors. These may
point to important starting or recovery portions of your code. Many newer
programs will RESET to themselves, rather than to the monitor. The RESET and
soft start pointers can be a great help in showing you where the "high level"
code sits.

I

:0 ,
10
I

:0
I

Tearing Into Machine-Language Code 59

Since HRCG is a utility or a service type of support program, it doesn't mess
with the page Three hooks. But this is an exception, so always check.

OK. Separate your modules and identify all the external access hooks. Identify
everything else that you know for certain from the program instructions.

What is left in the action consists of code modules as yet undiscovered-dead
code, garbage, stashes, or oversights.

Dead code is code that is never used. Don't throw any away just yet, because
it will most likely come to life later. This can happen because you have yet to
discover some address entry points or else have missed coloring something
along the way.

A lot of programmers will leave dead code in their programs so that the next
code module or file can start off nice and neat on an even page boundary. Dead
code may also be some location that will be written to later by DOS. Dead code
will usually be completely rational, but it won't seem to tie in with the rest of
the program.

Do not prejudge garbage. It may become most meaningful later on. Most
programmers try to shorten their code as much as possible, so if it looks like lots
of garbage is left, chances are you haven't gotten as far as you think.

Stashes are short code files that have meaning. We will attempt to identify
many of them in the next section.

And oversights, of course, are your own doing.
We now should have identified all of the working code modules, and should

be able to find most of their access and entry points, their interaction, and their
exits. Now, we could actually start to think about tearing into the code.

But no, not yet. Lots of details still remain. Remember that the longer you hold
off on finding out exactly what the code does, the easier the job will get, and
the less of it you will have to do.

Let's see what the stashes and files have to say

IDENTIFY FILES AND STASHES I
We have a sort of a chicken-and-egg problem. We can't tell yet what the files

are up to since we don't know yet how the program works. And, since we don't
know how the program works, the program can't tell us yet what the files are
up to.

Fortunately, there are several file filters you can apply that can isolate most
of the stashes and bulk files and tell you their meaning and intended use. Crack
your files and you have made a tremendous progress.

Even if you can only crack a few files now, doing so is definite progress, and
allows moving bytes from the unknown to the known. This is very much like a
big jigsaw puzzle. Not only does each piece fit somewhere, but it also gets
removed from the pile of unknown remaining pieces. This makes identifying
and using the rest of the pieces easier since there are now less of them.

Let's isolate all the rational code modules and assume that everything left is
a stash. Things may not be nearly this simple, but let's try it anyway. Fig. 3-9
shows us the remaining stash locations.

When you think you have a stash identified, put a narrow yellow stripe up
the extreme right-hand margin, going over the tractor holes. Eventually, you
want to end up with a continuous wide line up and down the right-hand side,
wide yellow for fully known and understood stashes, and wide green for fully
known and understood code modules. When the last of the white right margin
disappears, you have conquered your target program.

60 Enhancement J

$92FE

$92EB

$92DF

$8F7D

$8F48

GARBAGE

HIRES
BASE FILE

Fig. 3-9. Separating HRCG stashes from
code modules.

We see a two-slot stash at $8EOS, and then another obvious one starting at
$8E42 on your listing. But wait. The "vibes" of our stash change dramatically
at $8E5 F. Let's assume we have a second stash starting there. Put a brown dotted
line all the way across between $8E5C and $8E5F to remind us we think we have
two separate files. The second stash apparently ends with $8E73, since $8E74
holds what looks like rational code, even though this code doesn't seem to be
isolated yet.

We have a long stash starting at $8F48, obviously consisting of lots of question
marks and the patently excessive use of BCC branches to dumb places. Where
does this stash end? It's not obvious at first, but let's guess that it ends with
$8F81. The code starting at $8F82 (that we aren't supposed to be reading yet)
says to put something in $8E60 and then return. This is rational thinking, particu-
larly since $8E60 is a slot in another stash and it might end up as a flag in a flag
file.

Another stash starts at $92DF, identified by lots of zeros. Again, notice a
change of vibes at $92EB. The first twelve locations are in three groups of four
each and all end in zero. The remainder of the stash is strange. Let's call it two
separate stashes and, once again, add a dotted brown separation line.

Now comes the tricky part. First, we want to guess what each location in each
stash is used for, and, then, we want to nail each location down for sure.

To do this, make yourself up some file and stash filters. A stash filter is some
test for some pattern that makes sense to you and to the particular target pro-
gram you are attacking. The filter is valid if its answer leaps out at you and is
then clinched by some independent test.

Tearing Into Machine-Language Code 67

Normally, you will have to design these filters yourself. Do so very carefully.
Your choice of filters will vary with the target program and how long it is. Here
are some obvious filters to try first

STASH AND BULK FILE
FIL TERS

() Is it something obvious?

() Is it an ASCII string?

() Is it a table of addresses?

() Is it a group of flags?

() Is it a conversion table?

() Is it DOS related?

() Does it fill a program need?

These are the usual filters I try first and the order in which I try them. The HRCG
is very accommodating in its stash uses. The early tests will tell you a lot about
each stash. Other programs may not be so easy.

We attack the chicken-and-egg problem this way. First, we filter the stashes
and bulk files as best as we can to find out as much about them as we are able.
Then, we take this information back to the code modules and see what new thing
this tells us about the modules. Then, we look into the modules and see what
they tell us about the remaining unknown files.

Three or so trips round and around and we should have things pinned down
fairly well. Now, if you are into an Adventure or something else really heavy
with stashes and bulk files, it won't be this simple, but file filtering always
makes a very good starting point toward further understanding.

Let's try these filters one by one and see what they tell us.
One example of an obvious file is any code on a display page. This might be

$0400-$07FF for text or LORES page One, $0800-0BFF for the less common
text or LORES page Two, $2000-3FFF for HIRES page One, or $4000-$5FFF
for HIRES page Two. If any of these pages are in use, the bytes stored here have
to correspond to the image on the screen.

Note that the screen images will change as the program is used. What you
see is the code for the display pages at the exact point in the program where
you did your listing. Chances are that text page One got messed up by the listing
process itself.

Besides their obvious location, the H I RES color bytes tend to be mostly $00,
$2A, $55, $7F, $80, $AA, $D5, and $FF bytes. In HRCG, we can often ignore
these for a while, since they are the result of the program and not a part of it.

Another example of obvious code happens when you are reading inter-
preted BASIC statements. We'll save details on this for another time. But note
that the byte patterns in BASIC are distinctive, starting with a line number,
the location of the next program line, and, then, followed by a parsed code
using token keywords and ASCII symbols, and, finally, ending up with an
end-of-statement symbol. You can check into the LOADHRCG Applesoft
program for a quick example. Do this by hex dumping machine code starting
at $0800.

Usually, the BASIC code tells you that you are looking in the wrong place. But,

62 Enhancement 3

machine language is sometimes stuffed inside BASIC programs and, at other
times, it will interact directly with the BASIC statements. This happens in the case
of fast sort routines, variable locators, cross-reference programs, and so on.

As a much simpler and shorter example of an obvious file, look at $8E06. It
is two bytes long. Is it an address? The address is $92FF. Is there anything special
about $92FF? There sure is.

This is the location of the start of the bulk file that we think is an alternate
character set. Since we obviously need a pointer like this and since a pointer
would be early in the program, let's assume this stash is the pointer to the
character set start.

Make sure any "obvious" evidence is very strong. Don't make wild guesses,
and don't make too many guesses at once. Above all, don't force things to fit
your pet theories about what a stash "has" to be. In this case, guessing an
address and having that address reinforce our guess is reasonable.

Next, try some ASCII filters. The ASCII code is the standard way of stashing
letters, numbers, and punctuation in your Apple. Table 3-2 shows us the ASCII
code. An ASCII-coded stash will be mostly code starting with $CX or $DX, will
have a few $AO spaces thrown in, and will often end with a $80 carriage return.
This assumes, as most Apple programmers do, that the ASCII most-significant
bit is set to a 1. If the MSB is not set, then an ASCII file will be mostly values
in the forties and fifties, with a $20 for each space, and with a $00 carriage
return ending. If the file is mostly lower case, then the code will be mostly "EX"
and "FX" values for a set MSB and "sixties" and "seventies" for a cleared MSB.

The actual display code used by the Apple on its upper-case-only old text
screen differs slightly from ASCII. This code is shown in the Apple manual. The
code provides for no control characters and offers normal, inverse, and flashing
upper-case-only characters.

Programmers rarely use this VIdeo display code inside their programs. In-
stead, they usually will use ASCII, and set and clear the flashing and inverse flag
(location $0032) as needed. The video display code can only be written directly
to the screen and must not be output to any other device via the output hooks.
The code would get used in a program only if the text display needs a wildly
changing mix of flashing, inverse, and normal characters, and, then, only if the
upper-ease-only text screen is the only intended output.

Note that ASCII text is automatically converted to video display code by the
usual monitor routines as it goes onto the screen.

Now, any file will give you some message back if you filter it for ASCII. The
key test is whether the message says anything meaningful. You can ASCII filter
all your stashes and bulk code, but it pays to pick only the most promising ones
fi rst.

In the case of the HRCG, we see that the stash beginning at $8E42 looks the
most promising. ASCII filter this code and you get ...

<die> HI-RES CHAR GEN VERSION 1.0 <cr>

This is obviously the prompt message that first appears under HRCG. The odds
of it being anything else are insanely small.

Note as you "crack" a stash, that it no longer belongs to the unknown.
Further, a cracked stash will greatly simplify tearing apart the actual code, for
we can now assume the code module directly above it on the listing will be
involved in printing out this message.

As you get practice, you'll be able to immediately spot stashes and bulk files
that will yield useful messages under ASCII code. Be sure to do this by hand a
few times until you get the feel of this powerful filter.

0 1 2

u 0 or 8 NUL SOH STX
P
P 1 or 9 DLE DCl DC2
e
r 2 or A space ! u

h 3 or B 0 1 2
e
x 4 or C @ A B

d 5 or D P Q R
i
g 6 or E , a b
i
t 7 or F p q r

Tearing Into Machine-Language Code 63

Table 3-2. ASCII Code

lower hex digit

3 4 5 6 7 8 9 A B C D E F

ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO 51

DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

$ % & I () * + - / ,

3 4 5 6 7 8 9 : ; (=) ?

C D E F G H I J K L M N 0

5 T U V W X Y Z l \ 1 A
ｾ ~

c d e f g h i j k I m n 0

s t u v w x y
I

z { I } - DEL

We may look at some short and powerful ASCII "snoop" programs in a
future enhancement. Commercial programs that list ASCII strings can also be
used. But, watch out that loading the snoop program doesn't bomb part or all
of your target code. For now, do your ASCII snooping by hand till you are able
to spot an ASCII file at a casual glance.

The acid test of an ASCII filter is whether you get a message back or not. Once
again, don't force things. If the filter doesn't hit you over the head with the
answer, try something else.

If the message seems fragmented or disjointed, possibly you are looking at an
area that gets written repeatedly by DOS-putting message upon message on
top of each other. A copy of the keybuffer from $0200-$02FF may also look
the same way. In either case, you are far more interested in the use of this file,
rather than its contents.

Our next trial stash filter should answer the question, "Do we have a list of
addresses?" Look at the stash starting at $8E5F. A bunch of zeros, with a $92FF
in it. Recall that 92FF points to the start of the default character generator. Do
we have a file of alternate character sets here?

It doesn't look like it, but those zeros suggest a test. Let's run the HRCG and,
then, let's load nine alternate character sets. Then, we will see how and if this
stash changes.

Try it and there's no change! This should teach us several things. First, always
be sure you have what you think you have in the machine. Second, be sure and
try any trick you can think of, even if it doesn't work.

Third, and most importantly, NEVER force anything to fit your pet theories.
The address filter clearly fails on this file. We'll discuss this stash in more detail
later.

Let's try an address filter on the next stash starting at $8F48. Every second
entry is either a $8F or a $90. Look at it on the hex dump and the addresses
leap out at you. Color every second address pair yellow on your hex dump. Note
that the addresses sit backwards on the dump, with the high byte second and
the low byte first. This low-byte-first style is typical of most 6502 machine-
language addresses.

64 Enhancement 3

It looks like we definitely have a table of addresses. For the clincher, check
to see if the addresses all go somewhere rational. And, we have another surprise!
Each and every address goes right in the middle of the code all right, but each
one seems to point to an extremely dumb place!

Let's break our rule on tearing into code for a moment and see what code we
find immediately above this address table. In this code module, we take a value,
multiply it by two and, then, use it as an X index to get the high address in $8F3C.
This high address gets shoved onto the stack. Then, we get the low address at
$8F40 and shove it onto the stack also. Then, we return from the subroutine.
What we have really done is we have faked an indirect jump to the selected
module.

Now, what does a subroutine return do? It pops the stack twice and goes to
the address it thought it came from. Only we just changed that with the address-
low and address-high stack pushes. Note that two pushes and two pops left the
stack exactly where we started. Our new code module is, therefore, at the same
level that we were before, so we have done an indirect jump, rather than a JSR.

Ah! But, a subroutine return does not return to the address on the stack. It
returns to the address on the stack plus one! This quirk is from the 6502
Programming Manual. Now, let's try adding one to each address and see what
happens

etc ...

$9046 + 1
$8F7D + 1
$8FA9 + 1
$8FD1 + 1
$8FEC + 1
$901A + 1

= $9047, an immediate RTS.
$8F7E, a royal mess.

= $8FAA, the start of a subroutine!
= $8FD2, the start of a subroutine!

$8FED, the start of a subroutine!
= $901 B, the start of a subroutine!

Keep this detective work up, and we find that each address, except for the
first two, points to a subroutine. The first one, an immediate return, looks as if
it is a mistake.

What about the royal mess? Here is a classic example of our lister getting off
on the wrong foot. Right now, the lister says ...

I

0: $8F7D- 91 BO STA (BO) , Y
I $8F7F- 24 A9 BIT $A9

0 1 $8F81- 80 1?1 1 $8F82- 8D 60 8E STA $8E60
I $8F85- 60 RTS

0 1
I

We know the first part of this is wrong, since we have stashed addresses and
not working code here. We suspect the end of the listing may be right, since it
seems rational. Our problem address is trying to point to $8F7E, so let's let it
do so. Relist things starting with $8F7E, and you get ...

I
I
10
1
I
10
1
1
10
1

1
0 1

1
$8F7E-1 BO 24

0 1 $8F80- A9 80
$8F82- 8D 60 BE 1 $8F85- 60 1

01
1

Tearing Into Machine-Language Code 65

1
10

$8FA4
1

BCS 1
LDA #$80 10 STA $8E60
RTS 1

1
10
I
I

And this is a nice and rational little subroutine. Our problem mess was solved
by making sure our lister had something worth listing as its first entry.

Wow, what a bit of detective work. Our filter has found 27 addresses that lie
in the middle of our code, all of which point to valid and workable subroutines,
except for the first one that immediately returns.

Let's carry this further to see what an address stash will tell us about those
subroutines. Now, 27 is one more than 26, the number of letters in the alphabet.
Look at the ASCII code given back in Table 3-2, and we see a sequence of
@ABCDEF ... that jumps out at you. If the program was using a pointer that
started with @ for a 00 value, we would have 27 values, the last 26 of which
would be the alphabet in order. Naturally, @ wouldn't be used, so it would
immediately return.

Let's take a wild guess that @ = Address 0, A = Address 1, B = Address
2, and so on. Now, let's see if this heads to any place that is useful.

Back to the HRCG manual. We have two sets of A to Z commands. This
strongly suggests trying to fit the menu selections to the subroutines we already
have. Right now, this is sort of a wild guess. But, if it works, and if we can prove
it absolutely, we will have chopped mucho time off of our target-program attack.

Let's look further. Put a brown arrow at each subroutine's starting address that
we think does something from A to Z. We get strong reinforcement right off the
bat since all of them start off on a new code module.

We also notice something rather strange. Each and every module starts off
with either BCS or BCe.

Odd.
But, remember that there are two alphabets needed in H RCG, one for the

main menu selection and one for the option selection. Let's continue, since
everything has been reinforced so far. Apparently each subroutine is a subrou-
tine pair, one of which handles the "main" menu selection and one of which
handles the "option" menu selection. Further, the condition of the carry flag tells
us which way to go.

Which is which? To find out, we'll need more detective work.
Note that we have a function selection "E" but no option selection "E". Note

also that we have an option selection "R", but no function selection "R". Go
to the sixth address on the list (E is the sixth character starting with @), and we
see a BCS to RTS. Apparently a cleared carry is a function and a set carry is an
option.

Even more important, look at that monitor subroutine clear-to-end-of-screen
leaping out at you at $9028 on your program listing. This is a solid and complete-
ly independent check on what these addresses are used for.

As a final check, we look at entry "R" (the fourteenth address), and we see
a BCC to RTS, verifying that the carry flag decides which alphabet to use. The
code at "R" should "Reverse the overlay" for us. A quick look at this code

66 Enhancement 3

shows it setting two flags for us-another confirmation. This confirmation is
much weaker than the first one, but support is support.

So, go through all your code addresses and label their uses with a brown
felt-tip pen. Use fairly large letters. $8F7E should be labeled "(A) function
SELECT N". Check the BCS branch location and the code starting at $8FA4 gets
labeled "(A) option PAG E 1 PRI MARY".

Continue through the list. The modules that use the cleared carry are func-
tions, and the ones that use a set carry are options.

Note the power of the address filter. We now know the meaning and use of
well over half of the code modules, without tearing into the code at all. HRCG
is very friendly with its menu-driven selections. In other programs, you may not
be able to immediately tell one address-code module from another. But the very
fact that you can break up the modules into little chunks is extremely valuable
and a major time saver.

The usual clue to filtering address tables is that every second entry is the same
and the backwards entry pairs seem to be working through a range in a usually
increasing order.

The HRCG stash at $8F48 seems to be the only table of addresses we have,
so we will try some new filters.

Our next trial stash filter asks, "Do we have a group of flags?/! A flag is some
location that the program refers to so that it can decide what it is going to do
next. In the HRCG, we can expect flags for the display page, the primary page,
the working alternate character-set base address, the display mode, and so on.
In an "adventure" program, the group of flags can show what is in which room,
whether the giant armadillo is asleep or awake, whether the golden clockwork
canary can be wound, and similar conditional things.

A flag file will often be mostly zeros, with a few FF's thrown in here and there.
Other hex bytes in a flag file may have only a single bit set, such as $01, $02,
$04, $08, $10, $20, $40, and $80. Flag files may also hold an occasional
address or two.

One good way to verify a flag file is to find some stash that looks reasonable,
and then lightly scan nearby code modules to find if there are references to
these locations. In the HRCG, we see a likely file starting at $8ESF. A check
through some of the option code shows lots of them working with locations
$8ESF through $8E73.

There's usually a two-step process involved in understanding a flag file. First,
you prove the flag file is there and that it is used. Then, later, when you are
checking into the variables of the program in the next section, you attempt to
put specific meaning onto each and every flag.

Pinning down flag meanings can be quite a challenge. The original program-
mer started with his flag definitions and locations and, then, built his program
around them. You have to do the opposite, taking strange code and inferring
what the flags originally stood for.

Our "Is it a conversion table?" filter is one that takes some experience to use.
A conversion table relates addresses to data in some manner. Table lookup is
a very fast way to do things, compared to calculating values. The stash starting
at $92DF "looks" somewhat like a conversion table that somehow "seems" to
be involved with HIRES (high resolution) base addresses. We'll keep this one a
"maybe" for now.

Other examples of conversion tables are the shape tables and sprite maps
used in HIRES graphics. A shape table holds a bunch of drawing directions, as
needed, to directly write on the HIRES screen, using Apple's graphics routines.
A sprite map will hold an image of what is to be remapped onto a HIRES screen.
A character from an HRCG character-set file is an example of a sprite map.

Tearing Into Machine-Language Code 67

Let's continue down the file filter list. Many machine-language programs
create their own DOS, or else, use DOS variations for protection, access, and
so on. In these cases, there are some 005 filters you can apply to your stashes.
These DOS filters do not seem to help us here on the HRCG.

A file involving DOS may consist of bunches of code always ending in $XO
or $X8. These are used in the DOS nibble encoding. DOS code modules will
often use header constants of $D5, $AA, $96, markers of $DE, $AA, $EB, and
a trailer of $DE, $AA, and $EB. These values will jump out at you once you tune
yourself into them. DOS code will also repeatedly use LDA $C08C,X com-
mands, followed by a BN E back to itself. "X" here is the slot number. This looks
real dumb when you first see it, but it is a sure sign of DOS read activity.

Another way to filter a file is to ask, "Does it fill an obvious program need?"
You'll have to design suitable filters for each and every target program. Let's take
a closer look at our bulk file and see what we can find out about it from its
structure alone.

Visual clues can help bunches here, such as the frequency of repetition of
some marker. In Zork, the vocabulary file has a zero and, then six bytes, over
and over again. The "objects" file takes nine bytes and is in the form of seven
flags and an address. Look for these patterns. Break up a file into several smaller
files whenever you see any change in these patterns.

Even if you don't have the foggiest idea about what is in the file or how it is
used, deduce as much as you can about the file structure, for this will be a great
help later.

We suspect our bulk file is a default character set. All right. That means that
the bits should look like characters if you arrange them just right. We know the
characters are arranged in 7 X 8 squares from the ANIMATRIX program. So,
a reasonable "Does it fill a program need?" filter on this bulk file is making sure
to look at each and every bit and see if there is some visual pattern that looks
like character dots. Let's start at $9FOO ...

($00) -

($00) -

($00) -

($00) -

($00) -

($00) -

($00) -

($00) -

Now, that one is singularly uninformative. Yet, it is the first character and we
know that the first noncontrol character in ASCII is a space. Let's try another one
at $9307.

($08) Ｍ ｃ Ｌ Ｎ ｾ ｉ ｾ ＼ <

($08) - }'.::)C

($08) - xc.',
($08) -cr."
($08) - Ｎ Ｉ ｃ Ｎ ｾ Ｇ ｩ ｾ ~

($00) -

($08) Ｍ Ｚ ｘ Ｈ ｾ Ｎ Ｉ Ｚ Ｌ ,

($00) -

68 Enhancement 3

Now, that looks like an exclamation point, the second printing ASCII charac-
ter. But, things are still weak. Let's try to predict a quote for the next one, starting
at $930F. And, sure enough ...

Ｈ Ｄ Ｑ Ｔ Ｉ Ｍ ｾ ~

Ｈ Ｄ Ｑ Ｔ Ｉ Ｍ ｾ ~

Ｈ Ｄ Ｑ Ｔ Ｉ Ｍ Ｎ ｾ ~

($00) - Cx:xxxxxJ

Ｈ Ｄ ｏ ｏ Ｉ Ｍ ｾ ~

Ｈ Ｄ ｏ ｏ Ｉ Ｍ ｾ ~

Ｈ Ｄ ｏ ｏ Ｉ Ｍ ｾ ~

Ｈ Ｄ ｏ ｏ Ｉ Ｍ ｾ ~

Apparently the characters are in the character file in order, just like they go
on the screen. Only, we may be jumping to conclusions. Let's try several more
characters. There are 96 characters, each of which takes up 8 bytes, so we can
expect 768 bytes total, or exactly 3 pages. Thus, we would expect the numbers
and punctuation to start at $92FF, the upper-case alphabet at $93FF, and the
lower-case alphabet at $94FF.

To prove this, we would expect a capital" A" to be at $93FF + $08 = $9407.
Try it, and 10 and behold . . .

($ 08) - cx:::x::.:x::o
Ｈ Ｄ Ｑ Ｔ Ｉ Ｍ ｾ ~

($ 22) - ce:::xx::«)

($ 22) - ce:::xx::«)

($3E) - c ••••• ｾ ~
($ 22) - ce:::xx::«)

($ 22) - ce:::xx::«)

Ｈ Ｄ ｏ ｏ Ｉ Ｍ ｾ ~

So, obviously, we know everything that we should know about the bulk file
now, right?

Wrong!
One very important rule

No matter where you are in
cracking a file, there is AL WAYS
one surprise remaining between
where you think you are and
where you really are.

THE FINAL
SURPRISE IS
THAT THERE ARE
NO MORE SURPRISES!

Always, check things as independently and as completely as you can before
convincing yourself that something is so. In the case of our bulk file, the surprise
comes on the next character.

Tearing Into Machine-Language Code 69

Ｈ Ｄ ｬ ｅ Ｉ Ｍ ｾ ~

($ 22) - c:«:x:X«)

($ 22) - C«XX::.J

Ｈ Ｄ ｬ ｅ Ｉ Ｍ ｾ ~

($ 22) - c:«:x:X«)

($ 22) - c:«:x:X«)

Ｈ Ｄ ｬ ｅ Ｉ Ｍ ｾ ~

($00) - C!XXXXX)

Uh - whoops. That's a B all right, but why is it backwards? All the rest are
obviously frontwards, aren't they? Let's try the next character ...

($ 1 C) - c:x:::...:::o
($ 22) - c:«:x:X«)

($ 0 2) - cxxx::x:.;«)

($ 0 2) - cxxx::x:.;«)

($ 0 2) - cxxx::x:.;«)

($ 22) - c:«:x:X«)

($ 1 C) - c:x:::...:::o
($00) - C!XXXXX)

Hmmm ... , the "C" is also backwards. But why would some characters be
frontwards and some backwards?

They wouldn't.
The first three characters that we looked at just happen to look the same

frontwards or backwards. That's the prize we find in this particular box of
Crackerjacks.

Apparently all of the characters are "backwards" with the least-significant bit
going out to the display first and the most-significant bit going out to the display
last. Think about this for a while and you'll remember that a backwards entry
is also how all of the HIRES color routines work, so we should have expected
something like this.

Fig. 3-10 shows us the final arrangement of the default character set in the
bulk file. We can safely assume that all other character sets will behave the same
way, even though they are located elsewhere in memory.

Now, a visual bit-by-bit check of a long file may turn out to be totally worth-
less. But, it also may be a sure clue that will permit quickly cracking most of
the program code. It all depends on the program and how creative your crack-
ing approach is. What you have to do is make up a "Does it fill a program
need?" filter that might show you something. But, keep trying things that are
geared to the target program until something leaps out at you and hits you over
the head.

There is one ultimate file filter

THE ULTIMATE FILE FILTER

Fill the file with water and
see where it leaks.

70 Enhancement J

$95FE

LOWER·
CASE

LETTERS

$94FF

UPPER·
CASE

LETTERS

$93FF

NUMBERS
AND

SYMBOLS

$92FF

FORMULA TO FIND ANY CHARACTER

STARTING ADDRESS = $92FF + 8- (ASCII - $20)

ASCII = HEX ASCII VALUE OF CHARACTER) (WHERE

EACH CH ARACTER IS STORED AS EIGHT SEQUENTIAL BYTES.
T BYTE HOLDS THE DOTS FOR THE TOP ROW OF THE
ER. THE LSB OF EACH BYTE IS THE LEFTMOST
THE CHARACTER. TH E MSB IS USED FOR OPTIONAL
SHIFT OR COLORCHANGE AND IS NOT DISPLAYED.

THE FIRS
CHARACT
DOT ON
HALF·BIT
BOTTOM
CASE DE

BYTE IS USUALLY BLANK. EXCEPT FOR LOWER·
SCENDERS.

MS B LSB
t

$9396
!--

r
,......

-
....,...

$938F

THAT"S A "2"

Fig. 3-10. How the HRCG default <:haracter set is stored in the bulk file.

If all else fails, and you are making reasonable progress elsewhere in your
attack, try changing some or all of the contents of a file and see what changes
take place in the program.

Usually, the program will bomb on random file changes. But, by finding out
where and when it bombs and, then, zeroing into one or two locations in our
target file, we can sometimes find out lots of things in a hurry.

Suppose we didn't know our bulk file was an alternate character set. If you
made the first eight bytes all $FF's instead of $OO's, then all the spaces in any
message would be white boxes, but nothing else would change. Now, this would
immediately tell you that the file was a character set and that the first entry was
a space.

Another neat example of this is to go through the movable object file in an
Adam's Adventure and change all the room numbers to $FF. You are now
carrying everything!

The only unexplained file left in HRCG is the stash starting at $92EB. Now,
this code seems downright weird and has failed all the other tests. The code
could be garbage since it is at the very end and since the character generator
sets all have to start at the same base address.

Fill this file with $FF's and what happens?
Nothing.
There is no change in any part of HRCG that is immediately obvious. So call

it garbage.
At this point, you should have all your stashes and all your bulk files separated

and many of them fully identified.

I

0:
I

01
1

0 1
I

$8E1F- A9 74
$8E21- 85 38

Tearing Into Machine-Language Code 71

Back to the code modules

ATTACK VARIABLES AND CONSTANTS I
Start a fresh page on your quadrille pad and head it "LIST OF VARIABLES."
Now, go through the code modules line by line, and each time you find an

address used for loading, storing, BIT testing, logic operations, or whatever, paint
the variables pink and the constants green.

Note that the constants will always have a # symbol in front of them. Page
Zero addresses will be two hex digits but no #. Absolute addresses will be four
hex digits, again with no #.

As an example, an LOA $05 puts what is in page Zero memory location $0005
into the accumulator. This is a variable. It is a variable since the contents of
$0005 can have any of 256 values ranging from $00 through $FF. But, an LOA
#$05 puts the value hexadecimal $05 into the accumulator. This is a constant
equal to "five" of something.

Watch for that # symbol! It will get you every time if you ignore it.
Our first code module starts at $8El E. Your variable and constant lines should

look like this ...

I

:0
1
:0
1
I

B F P 10
I

As you identify variables and constants, you can start tearing into code. But,
if something isn't immediately obvious, go on elsewhere. Our first object here
is getting a list of all locations that get used for target-program variables. Howev-
er, if we can find the meanings at the same time, we are just that much further
ahead.

The code starting at $8El F is very easy to read. First, we set the input hook
to $8E74 and, then, we set the output hook to $8F18. Next, we reconnect DOS
to internalize these hooks. Then, we switch to the full graphics and pick the
HIRES mode. Continuing, we restore the default display parameters and, then,
we switch on the graphics mode. Finally, we exit.

How did we figure all that out? Look back at what we know about these
variables

$38 and $39 are the KSW switches in the monitor.

FROM TABLE 3·1
OR PREVIOUS

$36 and $37 are the CSW switches in the monitor.
$03EA is the DOS reconnect hook.
$C052 is the full screen switch.

RESULTS $C057 is the HIRES switch.
Sub $9158 is named "Restore Default Parameters."
Sub $9000 is named "Display Primary."
$C050 is the GRAPHICS switch.

72 Enhancement J

Usually, you won't be so lucky on your first try. We now understand that this
code module is the initialize portion of HRCG. We also now see what it does.
We add all the above variables to our variables list, and color everything that
we understand reasonably well pink for a variable or green for a constant.

Since this module is so obvious, we can also color the right tractor margin a
solid wide green.

We also found out something new. All keyboard inputs go to $8E14 and all
character outputs go to $8F18. So, label these locations in red. Do this and two
more large code modules now have labels. Call these KEYBOARD ENTRY and
CHARACTER OUTPUT.

Continue through the code modules and identify every variable. If you can
tell exactly what the variable is used for, so much the better. If not, just put the
variable on the list. The variable will most likely crop up later in another code
module that may clarify its use.

Don't go overboard on analyzing code. If something is obvious and simple,
go ahead and crack the code. If it is not, just record all the variables. Do not
color any variable or constant till you understand what it is used for. But, be sure
to get all of them on the list.

Pay particular attention to variables inside parentheses. A set of parentheses
means that you are doing a jump indirect or using one of the indexed indirect

ADDRESS

$0020
$0021
$0022
$0023

$0024
$0025
$0028
$0029

$002A
$002B
$0035
$0036

$0037
$0038
$0039
$004E

$004F
$OOEB
$OOEC
$OOED

$OOEE
$OOEF
$OOFF

$0104

$03EA

Table 3-3. List of Variables for HRCG

MNEMONIC

-page $00-

WNDLFT
WNDWDTH
WNDTOP
WNDBTM

CH
CV
BASL
BASH

BAS2L
BAS2H
YSAV1
CSWL

CSWH
KSWL
KSWH
RNDL

RNDH

-page$Ol-

-page $03-

USE

Left end of scroll ing wi ndow
Width of scroll ing window
Top of scrolling window
Bottom of scrolling window

Text screen cursor horizontal
Text screen cursor vertical
Text screen base address low
Text screen base address high

Dot row HIRES base address low
Dot row HIRES base address high
Temporary Y regi ster save
Character output hook low

Character output hook high
Keyboard input hook low
Keyboard input hook high
Keyboard delay low

Keyboard delay high
Temporary X register save
HIRES base address low
HIRES base address high

Character set base address low
Character set base address high
Temporary accumulator save

jSR stack source pointer (,X)

Hook to reconnect DOS

Tearing Into Machine-Language Code 73

Table 3-3 Cont. List of Variables for HRCG

ADDRESS MNEMONIC USE

-page $8E-

$8E06 Default character set base low
$8E07 Default character set base high
$8E08 jumpto user sub A
$8EOB Jump to user sub B

$8E42 Pointer to header message
$8E5F Escape key flag
$8E60 Alternate character set flag
$8E61 Primary page flag

$8E62 Inverse video flag
$8E63 Transparent video flag No.
$8E64 Transparent video flag No.2
$8E65 Scrolling flag

$8E66 Case flag
$8E67 Character set in use base low
$8E68 Character set in use base high
$8E69 Saveof$8E61 while block mode

$8E6A Save of $8E62 while block mode
$8E6B Save of $8E63 while block mode
$8E6C Save of $8E64 while block mode
$8E6D Save of $8E65 while block mode

$8E6E Saveof $8E66 while block mode
$8E6F Saveof $8E67 while block mode
$8E70 Save of $8E68 while block mode
$8E71 Block mode flag

$8E72 CH Horizontal cursor position
$8E73 CV Vertical cursor position
$8F48 Function address file base low
$8F49 Function address fi Ie base high

- page $92-

$92DF Start of HIRES pointerfile
$92FF Defau It character fi Ie start

-page$CO-

$COOO IOADR Keyboard ASCII input
$C010 KBDSTRB Keyboard strobe reset
$C052 MIXCLR Full graphics soft switch
$C054 LOWSCR Page 1 soft switch

$C055 HISCR Page 2 soft switch
$C057 HIRES H I RES soft switch
$C050 TXTCLR Graph ics soft switch

- page $FC-

$FC22 VTAB Vertical tab from CV sub
$FC24 VTABZ Vertical tab from accumulator
$FC42 CLEEOP Clear to end of page sub
$FC58 HOME Home text screen monitor sub
$FC70 SCROLL Scroll text monitor sub
$FC9C CLREOL Clear to end of line sub

74 Enhancement 3

modes. These are among the most powerful commands the 6502 microproces-
sor has available, so it pays to very carefully understand how these are used.
It really gets challenging when you get into the double or even triple indirect file
manipulations that are involved in the longer Adventure programs.

Don't worry too much about fuzziness and loose ends. Identify what you can
and crack what code you can, but keep moving! And, every time you get a new
piece of checkable information, go back and plug it in everywhere it seems to
fit. The ripple effect when you do this is often astounding.

Ourflag file bytes get identified as you go along. Note that $8FA4 puts a $20 in
8E61 to display the primary page and that $8FCC puts a $40 in $8E61 to display
the secondary page. We can then conclude that $8E61 is the page flag.
You can continue this reasoning for the other flags. The block mode ends up
using the bottom half of the flag file.

You should end up with a complete list of all variables, some of the code
completely cracked, and lots of new hints that will help you elsewhere in your
attack.

After your list is nearly complete, recopy it legibly in numeric order. Table 3-3
shows a list of the variables used in H RCG. Use this as an example.

PAINT THE HOUSEKEEPING YELLOW I
Next, go back through the code. Every code line that uses an impliedaddress-

ing mode should be painted yellow once you understand it. Implied mode
instructions use a single op code byte and are not qualified by a value or an
address. Examples are INX, DEY, TXA, CLD, SEC, TSX, and so on.

If you happen to have code that uses the stack to hold a value for you, this
will show up with a PHA, some operations, and, then, a restoring PLA. Show
these in yellow just like any other implied instruction. But if, and only if, the PHA
and PLA are irrevocably paired as a temporary store, connect them with a
yellow bracket.

Like this ...

0 8E87- Bl Ｒ ｬ Ｍ ｾ ~ LDA (S 2A) , Y
8E89- 48 PHA

0 8E8A- E6 4E INC $4E
8E8C- DO OEI BNE $8E99
8E8E- E6 4F INC $4F

0 8E90- CA DEX
8E91- DO 06 BNE $8E99
8E93- 49 7F EOR #$7F

0
8E95- 91 211, STA ($2A),Y
8E97- A2 50 LDX #$50
8E99- 2C 00 CO BIT $COOO

0 8E9C- 10 EC BPL $8E8A
8E9E- 68 PLA
8E9F- 91 2A STA ($2A),Y

01
8EA1- BA TSX

I

0

0

0

0
I

:0
I

:0
I

Tearing Into Machine-Language Code 75

Once you understand how a yellow line is used, add comments in brown to
explain it. Should you get paired PHP and PLP commands, these should also get
bracketed in yellow, but only if they always work together.

What you are after here is to have a color on each and every line, a comment
on each and every line, and, on the right margin of the page, a solid green area
for each module that is understood, and a solid yellow area for each stash that
is cracked.

WRITE A SCRIPT I
Where you are right now depends on your experience and how tough and

how long the program is. If you try this method on a target program that is only
a few hundred words long, you should be done by now. You should not only
have met your limited goal, but should have the rest of the entire program
completely cracked. On longer programs, the chances are there is lots of white
space remaining. These white spaces point to uncracked code and unbroken
stashes and bulk files.

The next step is to write a script. Explain in people-type words what each and
every known stash, bulk file, and code module does.

A complete script of HRCG appears in Table 3-4. Use this as an example. If
you have to leave blanks for now, do so.

CUSTOMIZE YOUR ATTACK I
Hopefully, you will know what to do next at this point. Go on your own vibes

in the most obvious direction.
Obviously, all machine-language programs are different. Some will involve

themselves a lot with DOS. Others will use only the HIRES screens for game
actions. Still others will interact with a host BASIC program, and so on.

What you now want to do is customize the attack to fit the program. How
you do this is up to you. Here are some things I sometimes try ...

CUSTOM ATTACK METHODS

() Look for built-in diagnostics.
() Use breakpoints.
() Try flowcharting.
() Attack indirect addressing.

() Add hooks.
() Gain partial control.
() Use the cassette.
() Single step and trace.

() Chip away at it.
() Attack the fundamental subs.
() Ask for help.
() Use partial boots.

() Detect changes.
() Alter files.
() Put program on an assembler.

() Attack a similar program.
() Decipher special codes.
() Try something easier.

76 Enhancement J

That's sure a long list. Not every idea will work on every program, though.
Let's look at a few of these in more detail, after a page or two.

Table 3-4. Complete Script of HRCG

ADDRESS COMMENTS

$8DFF Hard entry point. Clears screen and
prints header, connects HRCG hooks.

$8E02 Soft entry point. Connects HRCG but
does not clear screen.

$8E05 Version number x 10.

$8E06--8E07 Base address of default character-
generator set. Defaults to $92FF.

$8E08-8E09 User subroutine A starting address
called by option Y. Defaults to
subroutine return RTs.

$8EOB-8EOC User subroutine B starting address
called by option Z. Defaults to
subroutine return RTs.

$8E08-8E1 E Hard entry routine. Sets I/O hooks,
then reconnects DOS. Switches to
HIRES full screen. Restores DOS
and default parameters. Displays
primary. Switches to graphics.

$8E42-8E5C Stash holding ASCII-coded title
and version. Used during cold entry.

$8E42-8E73 Stash holding all working flags-

$8E5F - $80 if previous key ESC
$00 otherwise

$8E60 - $80 if alternate characters
$00 if defau It characters

$8E61 - $20 if page 1 primary
$40 if page 2 pri mary

$8E62 - $00 if normal video
$7F if inverse video
$80 if overstrike video
$CO if complement video

$8E63 - $80 if transparent mode
$00 otherwise

$8E64 - $60 if transparent mode
$00 otherwise

$8E65 - $00 if scrolling
$FF if wraparound

$8E66 - $00 if caps lock
- $80 if lower case
- $CO if single capital

$8E67 - Base add low of set in use
$8E68 - Base add high of set in use

$8E69 - Save of $8E61 while block
$8E6A - saveof$8E62 while block
$8E6B - saveof$8E63 while block
$8E6C - Save of $8E64 while block
$8E6D - Save of $8E65 whi Ie block
$8E6E - Save of $8E66 while block
$8E6F - Save of $8E67 whi Ie block
$8E70 - Save of $8E68 whi Ie block

Tearing Into Machine-Language Code 77

Table 3-4 Cont. Complete Script of HRCG

ADDRESS COMMENTS

$SE74-SEAC

$SEAD-SF17

$SF1S-SF27

$SF4S-SF7D

$SFS6-SFA3

$SFA4-SFA9

$SFAA-SFCB

$SFCC-SFD1

$SFD2-SFDE

$SFE2-SFEC

$SFED-900C

$900D-901A

$901B-9022

$SE71 - $00 if normal display
$FF if in block mode

$SE72 - CH horizontal position
$SF73 - CV vertical position

Enter HRCG via keyboard hook. Save
A, X, BASH, and BASL. Debounce keyboard
and flash cursor till key is pressed.
Reset keyboard strobe.

Check keyboard for ESC or CR. If
a CR, process via sub $92SD. If
an ESe, process I, L K, M for
cursor motions. Then, clear EOL if
E or clear EOS if F. Process A, B,
e, and D cursor motions.

Enter HRCG via output hook. Save
A, X, and Y. If a number and
preceded by ESC, change character-
set number via $SFS6. If a control
command, clear Carry if a function
and set Carry if an option. If a
letter from @ to Z, process by
getting address from stash $SF4S
and doing an indirect jump.

Stash of 27 addresses for menu
selections A-F. Selection @ does
an immediate RTS. Address picked
by $SF2S.

Function A. Alternate character set.
If a numberfrom 0-9, calculate new
base address and store in $SE67.

Option A. Put #$20 in flag $SE61 to
switch to primary page 1.

Function B. Begin block display if
notalreadythere. Put$#FF into
flag $SE71. Moveflags $SE61
through $SE67 to $SE69 through $SE70
as temporary save. MoveCV and CH
into flags $SE72 and $SE73.

Option B. Put #$40 in flag $SE61 to
switch to primary page 2.

Function C. Carriage return. If
not below bottom, do CR via $9204.

Option C. Complement display by making
flag $SE63 a #$CO and $SE64 a #$00.

Function D. Block display off. If
in block mode, move flags back to
$SE61-SE6S. Reset block flag and
CH flag to zero, CV flag to bottom.

Option D. Display primary. Switch
to page One. Check primary flag
and switch to primary flag page.

Function E. Clear HIRES page to EOL
using$92SD. Then, clear text page
using monitor CLEOL.

78 Enhancement 3

Table 3-4 Cont. Complete Script of HRCG

ADDRESS COMMENTS

$9023-902A

$902B-903F

$9040-9047

$9048-904F

$9050-9057

$9058-9072

$9073-907 A

$907B-9082

$9083-9080

$908E-9095

$9096-909E

$909F-90AD

$90AE-90BA

$90BB-90C2

$90C2-90C8

$90C9-9005

$9006-9103

$9104-9124

Function F. Cledr HIRES page to EOS
using $927 A. Then, clear text page
using monitor CLEOS.

Function H. Backspace. Go left
one character if entry at $902B. If
screen left, go up one line.

Function I. Set inverse video flag
by putting #$75 into $8E62.

Function K. Set caps lock flag by
putting #$00 into $8E66.

Function L. Set lower-case flag by
putting #$80 into $8E66.

Unsupported function M. Apparently
a scroll diagnostic, once reached by
CTRL-S, CTRL-C

Function N. Set normal video flag
byputting #$00 into8E62.

Function O. Set option flag by
putting #$40 into $8E60. Next key
wi II complete option command.

Option O. Pick overstrike mode by
#$00 into 8E63 and #$00 into 8E64.

Function P. Clear HIRES page via
$9270 and text page via monitor
HOME.I\lotethatan imageofthe
HIRES screen is puton text page 1.

Option F'. Pick print mode by
putting #$00 into $8E63 and $8E64.

Function Q. Home cursor inside
text window. Move upper-left values
toCH and CV. Then, resettext
screen via monitor VTAB.

Function R. Reverse overlay by putting
#$CO into $8E63 and #$60 into $8E64.

Function S. Shift next character by
putting #$CO into flag $8E66.

Option S. Pick scroll mode by
putting #$00 into flag $8E65.

Option T. Set transparent mode by putting
#$80 into $8E6 3 and #$60 into $8E64.

Function V. Text window, upper left,
by resetti ng WN OLFT and WN OTOP
after check for on-screen values.
Transfers vertical position to CV
flag if not in block mode.

FunctionW. Text window, lower right,
by resetting WN OWOTH and WN OBTM
after check for on-screen values.

Tearing Into Machine-Language Code 79

Table 3-4 Cont. Complete Script of HRCG

ADDRESS COMMENTS

$912S-912A

$912B-914E

$914F-9151

$9152-9177

$9178-917A

$917B-9196

$9197-91C4

$91C5-91F7

$91 FS-9220

$9219-9220

$9221-926F

Option W. Set wrap mode by putting
#$FF into $8F65.

Function Y. Open to fu II text
screen by putting #$00 into WNDLFT
and WNDTOP and #$28 into WNDWDTH
and $#18 into WNDBOTM. Saveas
CH and CVflags if not block mode.

Option Y. Call user subroutine A
by jumping to jump command stored
at $SE08. Defaults to RTS.

Function Z. Restore defaults.
Reset all flags to #00. Set full
text window. Pick default character
set. Display primary page. Reset
user subs to RTS.

Option Z. Call user subroutine B
by jumping to jump command stored
at $8EOB. Defaults to RTS.

Begin character entry. Exit RTS if
option flag set. Chec k case mode
and change to upper case or reset
shift flag if needed.

Continue character entry. Calculate
character location and save as $EE
and $EF. Calculate screen base
address location and save as $EC and
$ED. This is the top dot row for any
character position. The running dot
row address gets held in $2A and $2B.
Then, the character is saved on page
One text screen. Likeso.

$28-29 - text screen base address
$2A-2B - HIRES dot row address
$EC-ED - HIRES base address
$EE-EF - Character-set base address

Continue character entry. For eight
dot rows, get the character dots and
inverse if needed. Getthe dots
already on the screen; then, AND orOR
with character dots if needed. Then,
return resultto the screen. ,Next,
calculate the address of the next
lower dot row and repeat ti II a II of
the characters have been entered.

Move cursor. Go one to the right
unless atextreme right of thewindow.
If a CR is needed, godown one line
unless at extreme bottom of window.
If at bottom, check flag for scroll
or wraparound, and continue.

Wraparound mode. Set WNDTOP to top
of text window. Do a monitorVTABZ
to recalculate base addresses.

Scrolling mode. Dot line source is
$2A-$2B. Destination is address

80 Enhancement 3

Table 3-4 Cont. Complete Script of HRCG

ADDRESS COMMENTS

$9270-9279

$927A-928C

$928D-92CA

$92CB-92DF

$92DF-92EA

$92EB-92FE

$92FF-96FE

$EC-$ED. Destination is eight dots
above source. Starting atthe top
of the screen, scroll downward,
loading from ($2A) and storing at
($EC). Y register handles CH
position, stepping from WNDWDTH
downward. X register handles
position of eight rows per character.
Ont' entire dot row is entered, then
another until done. After a line is
remapped, the base address of tbe
next I ine is calculated, making the
old source the new destination, and
calculating a new source. This
continues until the entire screen is
mapped .. The bottom line is then
cleared via $8E63.

Clearscreen. SetCVtoWNDTOP
and CH to WNDLFT and continue via
$927E.

Cleartoendofscreen. From
prt'sent CH and CV, clearto EOL
via $9291 as often as needed to
emptyscreen.

Cleartoendofline. Foreight
dot rows. calculate address, then
remove character from screen.
Inverse background if needed. Y
rt'gister works from CH to WN DWDTH
doingonedotrowatatime. X
register handles dot rows, working
from top of character down.

Calculate HIRES base address.
DivideCVbytwo. Go intothe
table in $92 DF-92 EA and lookup base
address value. Process this value
and store in $2A and $2B.

A stash of table lookup values used
to calculate HIRES base addresses
needed by $92CB or $92CD.

Apparently unused garbage.

Bulk fi Ie of default character set.
Holds dot patterns of all ASCII
characters. The seven least
significant bits hold the horizontal
dot pattern IN REVERSE for one dot
line. Eight successive bytes hold
the dot pattern for one character,
arranged from top to bottom.
Locations $92FF-93FE hold numbers
and symbols. $93FF-94FE hold
upper-case alphabet, and $9SFF-96FE
hold lower-case alphabet. Bottom
dot row is blank except for
descenders. 96 characters total.

If you are attacking a very complicated target program, chances are the
original author may have had some of the very same problems you did. And,

Tearing Into Machine-Language Code 87

if he was smart enough, he just, possibly, may have built in some problem-
solving diagnostics.

For instance, the Adam adventures have a "Possible" and a "Did" tracing
debugger that you can access with two keystrokes. Zork includes a hook that
lets you stop the action after each code module, and print out whatever you like,
such as the files just accessed. Zork will also give you a complete list of rooms
with just a few keystrokes. A few minor changes to Wizard and the Princess
and you get a guided picture tour of all the rooms.

Be on the lookout for any diagnostic helps that may be built into the program.
Then, see just how you can tap them.

Breakpoints are another way to tackle a program. What you do is reach into
the target program at a place where you want it to stop, and insert a $00 or BRK
command. When the Apple reaches this point in the program, it will stop and
immediately do a software interrupt.

What happens next is decided by which monitor ROM you have in use. If you
have the old ROM, the break puts you in the monitor and displays all of the
working registers. If you have the autostart ROM, the BRK command does a
jump indirect to the address contained in locations $03FO (low) and $03Fl
(high). You can go from this address into the monitor, or else, directly to another
snoop program that spells out what each and every pointer and indirect address
is up to.

There is one clinker in the works when you use BRK. You might need the old
ROM to gain control of the program so that you can change $03FO and $03Fl,
and then switch to the autostart one. A "protected" program under autostart will
never let you get down into the monitor or change any locations. Use of either
ROM card with a hardware change-over switch often can get you out of this
bind.

A breakpoint can be used as anything from a scalpel to a cannon, depending
on what you want to do and how large a hole you want to blast in the target
program.

Drawing a flowchart may help you. I don't use that method too much since
it sounds like something the dino people would want you to do.

The addressing modes that give the 6502 microprocessor its extreme power
are the indirect ones. These include jump indirect, indirect indexed, and the
rarely used indexed indirect. All of these are identified by an address in paren-
theses following the mnemonic. A lot of setting up is needed to use these
locations. Most often, an address pair on page Zero has to be set up ahead of
time.

Understanding the real address used for an indirect instruction can be the key
to cracking tough codes. It pays to spend lots of time being sure you know
exactly where these addresses are going to and the reasons that they are doing
so.

Things really get interesting when you get involved in double and triple in-
direct addressing, as is common in adventure programs. The code may go to
some base address, pick an address pair out of a file there, and use that address
as an indirect pointer in another instruction. If the files happen to be longer than
256 bytes, then double indirect is needed, rather than a simple indexed instruc-
tion.

Patience and practice are essential to cracking indirect codes. If all else fails,
replace the indirect op code with a BRK command. On the break, get into the
monitor and check the locations used to hold the indirect address.

Hooks are attachments you make to the program to gain partial control. You
might write your own small "host" program and let it "borrow" subroutines off
the target program. This is one possible way to dump files off protected disk

82 Enhancement J

tracks. Once you are able to use and control key subroutines in the target
program, you are well on your way to solving everything else.

The tape cassette is often ignored. Yet the tape system is a very valuable tool.
One "protection" scheme used involves putting a program in the same space
where Apple DOS 3.3 would normally reside. A custom DOS is then put
somewhere else and there is no immediate way to save the program entered
under DOS 3.3, since booting the DOS 3.3 overwrites and, thus, destroys the
program.

But, the cassette doesn't care. It can save any code in any location at any time.
One thing you can do is move the target code down in memory below DOS,
save it to cassette, and then boot the DOS. Save this lower version on DOS and,
then, add a "move" command that puts it back where it wants to sit.

Cassettes are also useful in upgrading between various DOS versions. They
are slow, unreliable, and unwieldy, but they just might work if all else fails.

The single-step and trace features on the old monitor are very useful on some
parts of some programs, particularly if you dump them to a printer. But watch
out that you don't try to trace a delay loop, such as the one that waits for a disk
drive motor to come up to speed. The trace operation slows things down some
10,000 times from normal speed, so a two-second delay will take several days
and miles of paper to print. Sometimes you can break into the loop, reset the
counter locations, and continue. Other times, you'll have to combine single step
or trace with breakpoints. Run the code till you hit the breakpoint, and then
single step from there.

Tracing to a printer is one very good way to crack indirect addresses to find
the files that they work with.

Beware of tracing parts of programs that read the screen, since tracing and
displaying can interact. For instance, a clear-to-end-of-screen will hang during
a trace, since trace keeps resetting the screen locations. If you are printing, defeat
the screen echo during these times.

Another custom attack method is to chip away at the target. Your goal may
seem to be hopelessly buried in the middle of stuff that seems so complicated
that it will take you forever to understand. If all else fails, attack the easy stuff
on the outside. Do this even if the easy stuff seems to have nothing at all to do
with your goal. The parts of the code that outputs characters or inputs data are
usually easy to read. Continue carving away on anything that looks like it might
shake loose. What this indirect attack does is reduce the size of what is left to
a point where you can hack at it directly.

A big plus for the indirect attack is that it can show you the program author's
style and where his head is at. Does he use self-modifying code? How does he
handle multiple choice addresses? Does he use the indirect commands effective-
ly and gracefully? Is he using mostly branches, or mostly jumps? How elegantly
or how clumsily does he handle 16-bit addresses and long files? Does he exten-
sively use the existing monitor, DOS, and BASIC subs, or is he reinventing the
wheel? How clean is his organization? Is the program designed from the ground
up for an Apple, or was it obviously modified from a program originally designed
to run on some inferior machine? Answers to these questions can simplify very
much the cracking of the rest of the code, since most decent programmers tend
to be consistent in how they do things.

If the code seems ridiculously obscure, attack the fundamental subroutines.
These subroutines are the ones that won the popularity poll (the ones with all
the dots). The subs to hit first are those that will not call any other subroutines,
but will go ahead and do direct and obvious things. Common things that funda-
mental subroutines will do include searching a long file for a value, calculating
an address, or making a hex-to-decimal conversion.

Tearing Into Machine-Language Code 83

Once you understand these fundamental subroutines, you don't have to
go through them each time they crop up, since you know what they do.
Create meaningful names for these fundamental subroutines and they will help
you a lot in your attack. Then, "ripple" this new information back through the
listing.

Asking for help is an obvious thing to do. There is nothing more infuriating than
having an 8-year-old boy, just in from off the street, make some casual comment
that completely sums up what it just took you months to find out the hard way.
So discuss the target program and its attack. Don't only do it with "experts,"
but rap about it to anyone who will listen. Chances are their heads are in other
places and might put things in a new light for you.

The python force feeder takes some special hardware, but it can be very
effective. A force feeder is some hardware and software modifications that
include a super-powerful bus driver, say a 745245, or maybe three of them in
parallel. When you tell it to do so, it substitutes its own code for what the
computer is supposed to be working with.

For instance, even the old monitor ROM can't help plowing part of the display
page, the first few keybuffer locations, and part of page Zero when it is activated.
A sneaky programmer can hide things in plowable locations. But not so with a
force feeder. Besides being able to force a monitor reset any time you like, a
force feeder can substitute anything at any place in the program. It can also
move copies of plowable locations to unplowable ones for analysis.

As a much simpler example of force feeding, consider the "top display line"
copy protection hoax. What you do is switch to HIRES and, then, put a key jump
or some other "magic" code that you want "hidden" on the top line of text
display page One, starting at location $0400. This code is called early in the
program and the program bombs if the code is not there. Naturally, the code
gets erased immediately after use.

This, in theory, makes any messing with the program impossible. Any tamper-
ing at all will scroll up the display page and destroy the magic code. Sounds both
bulletproof and infuriating.

In reality, this is only a "seven-second" copy protection. What you do is force
feed the Apple by making it display only text page One, and this "hidden" code
actually leaps out at you, shouting to be heard, To force feed the page One dis-
play on older Apples, remove integrated circuit F14 and ground pin NO.6 of
the socket at F14. The hidden bytes will appear in Apple video-screen code,
rather than op code, but if you got this far, that just adds to the fun.

Similar force-feeding games can be played with most of the Apple soft switch-
es that are needed for analysis or debug.

Another handy debug trick is the partial boot. Instead of letting the target
program completely boot, you only let it go so far and, then, analyze what you
have. This catches code modules before they are moved to cover DOS, and so
on, For instance, the program, Pool 7.5, is generally considered to have excep-
tionally good, or "three-hour," copy protection, But, use a partial boot and the
"three-hour" protection drops down to a much more convenient "eighteen-
minute" protection. More elegant "boot tracing can also be done.

The trick here is to carefully watch the disk drive with the cover off and time
the different parts of the loading and protecting process.

By the way, there's one sure-fire way to read anydisk at any time. Just glomp
a logic analyzer, with a 6502 personality module in it, onto the CPU and you
are home free. Unfortunately, you can buy a dozen Apples for the price of one
better grade logic analyzer, so this ultimate weapon does not see much use.

Change detection is another interesting attack method. However, I haven't
fully explored this one. What you do is dump part of memory, run a portion of

84 Enhancement J

the target program, and then see what changed. By finding out how, when, and
why that change took place, you can often gain all sorts of insight into what is
going on.

Some day, I would like to build the ultimate change detector. This would take
a DMA modification to the Apple that would let a second Apple or some type
of dedicated hardware give you an instant and separate picture of memory
activity while the main program was running. One display would show what the
program was doing, while the second would show you each and every memory
location of interest. Ideally, such a program should present any location or any
block of locations that you want and would clearly identify them. With this
ultimate change detector, you could actually watch the program while it was
doing its thing.

A variable-speed feature would also be nice here, so you could slow down
or stop key activities without waiting forever for them to get through a delay loop
or whatever.

We've already seen how altering files can tell you lots of things in a hurry
about your program. Sometimes you are shooting in the dark since some file
locations may only rarely be used or might be used only in an obscure way. File
changing is certainly worth a try.

If you are going to change the target program or interact with it, it might pay
to put the program on your own assembler and create your own source code.
This lets you add your own hooks and make changes of your own choosing
inside the target program. The EDASM on the DOS Toolkit is ideal for this.
Assembling your own source code backwards from the object program is quite
a hassle, though, and you shouldn't try it unless you have pretty much cracked
everything else. Disassembler programs, such as RAK-WARE's DISASM, are
also available that will "capture" code for your favorite assembler.

Sitting on your program is often overlooked. Just walk away from the attack
for hours or days, and things that should have been obvious all along will leap
out at you. Let your subconscious work on the puzzles that are holding you up.

It works.
Another thing that can help is to try attacking a similar program, either by the

same author or by one that does the same thing in a simpler or easier-to-
understand way. The insights you get from one program will help you attack the
other program.

Deciphering special codes may be needed in longer adventures. These codes
are more often used to make code more compact than they are to purposely
"hide" the meanings of what they hold. The trouble is that most compaction
schemes used also do a most thorough job of masking everything that the file
holds.

For instance, in Zork, the ASCII strings are compacted so that two bytes hold
three characters. Some newer adventures use paired letter or similar codes to
remove the redundancy from text messages so that long text files will fit inside
the machine. This is how the Collossial Cave adventure from Adventure Interna-
tional manages to get everything that once demanded a mainframe dino into a
48K Apple without needing repeated disk access.

About the only way to attack these codes is to go into the code modules that
decipher them. Then, decipher the decipheree. Single step, trace, or breakpoint
access code modules till they show you how to read the file. Usually, there will
be some obscure command or program feature that will do things a lot faster
or simpler than the others. Trace this command or feature out and let it crack
the code for you. The last resort, of course, is to give up. Go back and attack
something that is simpler.

My first machine-language attack of a major program was Adam's Pyramid

Tearing Into Machine-Language Code 85

of Doom. This was done on a wilderness firetower using nothing but a 6502 poc-
ket card. It literally took all summer, but it led to this attack method, and there is
no better way to learn machine-language programming.

CONVERGE ON YOUR GOAL

Just as soon as you have the structure pretty well defined and as soon as you
have cracked most of the code modules, return to your original goal and solve
that particular problem.

Our goal in HRCG was to find the scroll hooks. By now, they should leap out
at you.

Just as the cursor is about to go off screen at $9208, a check is made to see
whether scrolling or wraparound is to be used. If scrolling is active, $9213 does
a jump to the scroll subroutine starting at $9221. Specifically, $9214 will hold
the low address and $9215 will hold the high address of the scrolling subroutine.

Just change these hooks enough so that you can use your own scrolling
subroutine.

Summing up ...

Easy, wasn't it?

The HRCG scroll hook is at $9214.
$9215 holds the address low of

the scroll subroutine.
$9216 holds the address high of

the scroll subroutine.
The existing scroll subroutine starts

at $9221 and ends with
$926F.

If not, go through a few practice target programs and see how fast and
powerful this method can be.

WRITE IT DOWN!

Surely you don't want to go through all this a second time on the same target
program. So, carefully write down everything you learned in some form that
works for you.

I

Make a clean copy of your analysis on the second listing you made. Also,
make a neat new table of variables, a new cross-reference, and write a complete
new script. Put most of this information onto disk so that you can have print-
able and updateable copies for later use. Use your word processor.

The insight that you have now will be long forgotten in a month. Be sure that
you will be able to later recover what you already have done, and will be able
to do so both quickly and hassle free.

Resist the urge to pull a "EUREKA! I have found it!" and run off with only your
limited goal met. Do so, and the key information will disappear down the tube
somewhere and all will be lost.

The following outline sums up all the steps involved in tearing into machine-
language code. Go back over them, and you'll find three parts to the attack. First
you prepare yourself, then you attack the target program, letting it reveal itself
through its form and structure. Finally, you follow up the attack to reach your

goal.

86 Enhancement 3

Here is a quick summary of the tearing method

TEARING INTO
MACHINE-LANGUAGE

CODE

PRE PARA TION

() Assemble the toolkit.
() Grok the program.
() Go to the horse's whatever.
() Set a limited goal.
() Empty the machine.
() Find where the program sits.
() List and hex dump the program.

ATTACK
() Separate action from bulk files.
() Paint subroutine returns green.
() Paint subroutine calls orange.
() Paint absolute jumps pink.
() Paint relative branches blue.
() Separate modules and stashes.
() Identify files and stashes.
() Attack variables and constants.
() Paint housekeeping yellow.

FOLLOW UP

() Make a list of variables.
() Write a script.
() Customize the attack.
() Converge on your goal.
() WRITE IT DOWN!

Practice makes perfect. Try it.
An obvious second program for your tearing attack would be FID on the

DOS System master diskette. Try this one on your own and see how far you
get. As a specific goal, find out how to use the code that tells you how much
space you have left on a diskette.

Tearing Into Machine-Language Code 87

WILL THE REAL LISTING PLEASE JUMP OUT?

There are times when the disassembler in the Apple monitor lies like a rug.

A disassembler always assumes it is working with valid op codes. It starts with the first code
byte it finds and, then, decides what operation the Apple is to do. Depending on the particular
op code, one, two, or three bytes will be needed to complete the operation.

For instance, the CLC or clear carry command is an implied addressing instruction handled
with a single byte. No further information is needed. The LOX #05 immediate command takes
two bytes, one to tell you what to do and one to answer "How much?" The STA $4050 com-
mand uses absolute addressing and takes three bytes, one to tell us what to do and two bytes to
answer "Where?" by giving us address low and, then, address high values.

Thus, a disassembler will automatically jump one, two, or three bytes to get to the start of the
new instruction. The disassembler always assumes it is working with valid code from a legal
starting point.

If either the starting point is wrong or if what is being disassembled is not legal code, the "lis-
ter" starts lying.

Suppose we have these bytes stashed in memory ...

$0800- 80 80 AD 02 AS 18 EA

Here is what you get if you try to disassemble this code from various starting points

$0800- 80 I??
$0801- 80 AD 02 ST A $02AD
$0804- AS 1 8 ST A $1 8
$0806- EA Nap

$0801- 80 AD 02 STA $02AD
$0804- AS 1 8 ST A $1 8
$0806- EA Nap

$0802- AD 02 AS LOA $As02
$0805- 18 CLC
$0806- EA Nap

$0803- 02
$0804- AS 18
$0806- EA

I??
STA $18
Nap

We see that we get a different disassembly every time, depending on where we start irom.
Which one is correct?

The correct disassembly is the one that begins with the first valid op code on the list. The first
valid op code is often pointed to elsewhere in the program by a jump, a branch, a subroutine
call, or an external entry point.

You can expect the "lister" to lie about one-half of the time when it comes out of a file ordead
code and starts into legal code.

Usually the "lister" will correct itself after two or three wrong entries. So, you usually only
have to worry about the first few entries into valid code.

If what you have just listed seems dumb, try listing from one above or one below where you
think the legal code starts. Most of the time, there will only be one rational and sensible starting
place and the valid code will leap out at you.

But remember that the "lister" will only tell the truth when it has both true code and a true
starting point to work with.

88 Enhancement J

SEEDS AND STEMS

To extend the life of a game-paddle
connector that gets used a lot, plug the
paddles into a 16-pin, premium machined-
contact DI P socket. Then plug this socket
into J14 on the Apple mainframe.

It pays to put sockets on all of your
joysticks, paddles, and whatever, as well.
Should a pin bend or break, repairs are far
easier.

SEEDS AND STEMS

To edit a comment line in EDASM without
having big holes chopped in it, use the "T"
command to eliminate all tabbing.

To restore EDASM back to normal, either
reboot, or else, use a "T14, 19, 29"
command.

Tabs must be restored before assembly.

