

Enhancing Your Apple® 11 and I le

Volume 2

Don Lancaster heads Synergetics, a new-age prototyping and consulting firm involved in
limit pushing micro applications and electronic design. He is the well-known author of
the classic CMOS and TTL Cookbooks. He is one of the microcomputer pioneers, having
introduced the first hobbyist projects involving integrated circuits, the first affordable
digital counting modules, the first low-cost TVT-1 video display terminal, the earliest
personal computing keyboards, and lots more. Don's numerous books and articles on
personal computing have set new standards as understandable, useful, and exciting
technical writing. Don's other interests include ecological studies, fire fighting, cave
exploration, bicycling, and tinaja questing.

The DON LANCASTER Library

Assembly Cookbook for the Apple II/lie 22331
Active Filter Cookbook' 21168
Cheap Video Cookbook • 21524
CMOS Cookbook . , 21398
Enhancing Your Apple II, Vol. 1 2182i
Hexadecimal Chronicles ;_ 21802 .
Micro Cookbook, Vol. 1 (Fundamentals)•.. 21828
Micro Cookbook, Vol. 2 (Machine Language) , 2rni9
TTL Cookbook 21035
Son of Cheap Video• 21723
TV Typewriter Cookbook 21313
The Incredible Secret Money Machine (Available only from Synergetics)

Enhancing Your Apple® II and lie

Volume 2

by

Don Lancaster

Downloaded from wwwApple20nline.com

Howard W. Sams & Co., Inc.

4300 West 62nd Street, Indianapolis, Indiana 46268 U.S.A.

c, 1985 by Don Lancaster

FIRST EDITION
FIRST PRINTING -1985

All rights reserved. No part of this book shall be
reproduced, stored in a retrieval system, or transmitted by
any means, electronic, mechanical, photocopying, ..
recording, or otherwise, without written permission from
the publisher. No patent liability is assumed with respect to.
the use of the information contained herein . While every
precaution has been taken in the preparation of this book,
the publisher assumes no responsibility for errors or
omissions. Neither is any liability assumed for damages .
resulting from the use of the information cont~ined herein .

International Standard Book Number: 0-672-22425-9
Library of Congress Catalog Card Number: 85-50022

Edited by: Welborn Associates, Inc.
Illustrated by: Da~id K. Cripe

Downloaded from wwwApple20nline.rom

Printed in the United States of America.

Contents

Introduction . . . • • • . . • • • . . • • . . . • . . • • • • . . . 7

ENHANCEMENT 9

Microjustify and Proportional Space Apple Writer lie ...••••..•........•... . 11
Dramatic and simple hard-copy upgrade approaches "typeset" quality. Included are
many other ideas you can apply to most any word processor or printer. Epson and
Diablo self-tutoring command glossaries are shown, along with some automatic
formatting programs that can even be used on already existing text files.

ENHANCEMENT 10

Absolute "Old Monitor" Reset for the lie•..•.•. 65
Get back into total control with this "old monitor" memory upgrade for your lie.
EPROM scheme eliminates hole blasting and passes diagnostics. Included are the
secrets of programming EPROMS on older burners, an upgraded source code, and a
simple process to automatically capture your own object code.

ENHANCEMENT 11

Castle Wolfenstein Escape Maps ... 93
A set of six playing aides that are easy to build and will greatly improve your survival
odds. Learn the nonviolent "vest stealing" secret to effectively deal with those trou
blesome and meddling SS.

ENHANCEMENT 12

Tearing Into Apple Writer lie ; ...•...........•.•.........••..••.. 107
The single most popular and most used Apple lie program is torn stem to stern, giving
you a thorough and complete disassembly script, along with full details on capturing
your own source code for custom modifications: New irnprovements on the powerful
"tearing method" are also shown.

ENHANCEMENT 13

The Vaporlock .•••....•.•...••...•.•.••...•.......................... 193
A fast, exact, and jitter-free screen lock that uses software only to let you mix and
match text, HIRES, and LORES anywhere on the screen in any combination~ Included
are a very simple windowing module and a software-only color killer. The vaporlock
works equally well on the II, II+, lie, and lie.

Apple Enhancer Support Services •....•................................. 227

Index "· •.•.•....•............•...••.•...•••.......................... 231

Introduction

Per your feedback card and hotline requests, Volume 2 in this continuing series has
far more in the way of br~md new, in-depth, and ready-to-use software and hardware
concepts. These will push both the real and imagined limits of the Apple II and lie to
the utmost.

Around 75% of you using the response cards have verified receiving your own
personal "IT'; messages from your own Apple. I guess the main reason for the 25 % no
shows is that the Apple involved suspects any no-shows of being users instead of
hackers.

As we'll find out in Enhancement 13, the penalty for an Apple revealing "IT"
messages to a user is severe indeed. At any rate, the secret "IT" messages continue fast
and furious, at least from my own lie . . . ·

...
Did you know that you can save up to 40% of the cost of all the software you buy?

Just buy through a distributor, rather than a retailer. It is that easy.
There usually is a minimum order of $100 or so, and a letterhead or a tax number

may sometimes be needed. Both of which get paid for out of the savings oil your first
purchase. Just bunch your orders together or go in with a few friends.

Suitable distributors advertise regularly in such magazines as Computer Retailing,
Computer Retail News, and Computer Dealer. Two of my favorite distributors are
Ingram and First Software, but there are many more. Many distributors will accept 800
phone orders and ship on VISA® or UPS COD.

. . .
The words "software pirate" have been much bandied about lately. Up to now,

though, these words have lacked a precise and scientific definition. let's nail them
down once and for al I.

Since it is an observable, immutable, and unarguable scientific fact that there never
has been any piece of Apple software ever that was worth over $25, we will,
henceforth and evermore, define a "software pirate" as anyone who charges over
$24.99 for an Apple program.

• • •
How do you keep others from stealing code that you have written? Certainly not by

copy "protection," for copy "protection" is nothing but a ridiculous game that penal
izes and inconveniences the legitimate user while waving a red-flag challenge and
providing unbeatable entertainment to all the rest of hackerdom.

To protect yourself: First through ninety-ninth, reduce the final user price of your
product.

One-hundredth on your survival list is to have as much added valµe as possible
outside of your actual code. Do this with a thorough and professional user manual;
with support forms, charts, or game pieces; with a free backup copy or detailed and
"up-front" copy instructions and a $5.00 or less exchange policy; wjth source.code
easily available; and with personalized and long-term hotline and mail product
support.

• ••
Newcomers to Appledom are often confused by the differences betweer the Apple"

DOS and CPM operating systems.

7

8 Introduction

The two are very simple to tell apart. Just run the program. it the program is
innovative, useful, and creative, then it is running under DOS 3.3 or 3.3e .

• • •
My Apple is continually amazed that the single most important reason for bootleg

copies of programs existing is never mentioned in polite company and has not once
appeared in print.

It turns out that a bootleg copy is often the only way available that you can get
prompt, courteous, and well-informed service at a reasonable price. Let's look at a sad
but true story that happened to a female friend of a machine friend of my Apple. It
happened quite a while back, but my Apple sees the same thing repeating over a,nd
over again. .

A new and major upgrade of a very heavy piece of software was announced, and
review articles appeared in all the usual magazines. So, she promptly ordered one
through her local dealer. They took a deposit, but six months later, no delivery. She
then went to two large and distant cities, checking no less than seven different stores.
Six of the stores told her flatly that the product did not exist. One of thern .tried to shove
an inferior substitute product onto her that Peelings; in a fit of generosity, had rated a
full "D" instead of the flat "F" it rightly deserved. The seve.nth store owner did admit
that the product she needed had existed for quite il while, but he did not presently
stock it.

So far, over half a year had gone by, much gasoline, time, and.phone money down
the drain, and still no product. So, with. no reasonitble alternative, she got on the
piracy underground net, and, because she was now desperate for this cpde, she used
the gold channel with (gulp) an "R3" priority. Two days later she had two copies, one
by UPS blue label, and one by express mail, along with a complete list of all known
bugs, use hassles, and application hints. All at a total cost of only five BEU barter
exchange units. Had any dealer made any effort at all todose an.immediate cash sale,
this would never have happened in the first place .

. . .
Are you one of those still trying to get the miniassembler going on a II+ or lie?
Forget it.
There's a brand new tool called the Bugbyter available on the latest versions of the

DOS 3.3 toolkits. A full-blown and expanded version of the miniassembleris built into
the Bugbyter, among its many other valuable features.

Turning to real assemblers, the latest toolkits (now'part of Apple's Workbench series)
also offer a total overhaul and major revision of good old EDASM. Which now
includes all the goodies like macros, in place assembly; 80 cot'unins, co.:resident
assembly, lowercase, execution time printouts, branch taken addresses, sweet16 and
65C02 support, improved conditional assembly, plus much more. You simply use
Apple Writer lie helped along by WPL. This "newway" full screen editing is modeless
and trivially easy.

By the most astounding coincidence, there is a book out called Don Lancaster's
Assembly Cookbook for the Apple I/Ille and published by Howard W. Sams & Co.,
Inc., (Cat. No. 22331). This includes full details on "old" and "new" EDASM, along
with secrets of "new way" editing. Needless to say, neither Sams nor I would be
adverse to your latching onto one of these. If you can't find one of these around locaHy,
try dialing (800) 428-SAMS.

. ..
Want full color for the MAC? How about a// of the MacPaint features for the lie? You

can have both for only $3.42. Just plug a cable between the lie game paddle port and
the MAC's communication port. Add some simple machine language drivers that swap
screen images on command, and you are home free.

Introduction 9

. . .
Turning to this volume's enhancements, number nine is chock full of goodies on

print quality. Included are ways to proportional space and microjustify your Apple
Writer lie, full self-tutoring glossaries for the Epson and Diablo, a sneaky way to
upgrade to "camera ready" print quality, sources of low-cost hard-copy munchables,
and some fully automatic WPL programs that let you take your already existing text
files and upgrade them, invisibly and automatically.

The worst "feature" of the lie is the intentional omission of an absolute monitor
reset. In Enhancement 10, we find a simple "swap the chip," $6.00 rriod that returns
absolute and unconditional control back to you. There's no more "hole blasting" done
when you try to reset. Your absolute control is there all the time'; yet remains
completely invisible until you ask for it. All diagnostics pass.

Easing up a little, Enhancement 11 is a set of playing aids for Castle Wolfenstein. You
can simply and cheaply build these, and they are more than rugged enough for
continuous use.
· Our heaviest enhancement in this volume tears Apple Writer lie from stem to stern.

In Enhancement 12, you will find a complete, thorough, and detailed analysis of the
single most-used and most-popular lie program of all time. Included are lots of extra
details ·on our super-powerful "tearing method," new tearing resources, and specific
instructions for capturing your own lie source code for custom mods.

One of the complaints of the last volume was that there was too much needed in the
way of hardware mods. So, to round out this volume, Enhancement 13 shows you
several ways of doing fast and exact field sync that takes zero hardware niods, besides
being'much faster, much simpler, and much more powerful than before. Included are
some windowing software and a completely software-driven color killer. ·

You saw them here first. ·
As usual, all of the software presented here is available ready to run on a companion

diskette. Low cost and unlocked, naturally. For those of you heavy into Apple Writer
lie, there are also separate AWlle Toolkit packages· available, a total of 16' diskette
sides. The order blanks are in the back of the book.

Also as usual, we have the Apple enhancers voice hotline going at(602) 428-4073.
This is a combined service of the Gila Valley Apple Growers association and Syn
ergetics. We might expand this to a bulletin board or possibly a CompuServe® service
sometime soon. The double "focus" of the hotline currently involves machine lan
guage programming and Apple Writer lie word processing.

Everything here is more or less my own work and is donewithout Apple's blessing or
consent. Many useful comments on the AWlle tearing were made by Bob Sander
Cedarlof.,Moose choreography was by Elanior Fairley. Apple is a registered trademark
of Apple Computer, Inc. So,is Apple Writer. Castle Wolfenstein is copyrighted by the
Castle Wolfenstein people. Anyone else I have run roughshod over, I usually mean
their trademarked or copyrighted product, for which credit is hereby.given.

This book is dedicated to Carl and Jerry.
Yes, that Carl and Jerry.

DON LANCASTER

This enhancement can help you
improve print quality on most any word
processor. Detailed examples use
Apple Writer lie.

Enhancement

MICROJUSTIFY AND PROPORTIONAL
SPACE APPLE WRITER lie

Print quality of most any word processor and printer combination can be
dramatically improved by following a few simple rules. You can easily
and automatically proportional space and microjustify Apple Writer lie,
improve underlining, do shadow printing, and lots more.

11

12 Enhancement 9
• <,··

\

MICROJUSTIFY AND PROPORTIONAL SPACE APPLE WRITER lie

Most hard copy from most personal computers looks just plain awful.
If I had my way, I would use a phototypesetter for al I my computer rough drafts and

"quick and dirty" internal printouts. Naturally, anything that went out the door should
be done much better than this.

Gravure would be nice.
Which says that the first person to come up with a $200 phototypesetting or laser

printing plug-in for an Apple will run away with a very large bag of marbles.
Particularly if the font library is available for less than a dollar a whack.

It also says that those dot-matrix printer ads will sooner or later run out of new
euphemisms for the word "atrocious" when describing their print quality. Also sooner
or later, the daisywheel people will run out of weasel words that lie about their print
speed. How about "paragraphs per century"? That ought to handle it once and for all.

Anyway, back to reality. You are probably stuck with a dot.:matrix or a daisywheel
printer at this point in time; What can you do to be sure you have the best possible print
quality on everything you send out your door?

Let's look at some major ways you can improve the print quality of your particular
word processor and printer combination. Then, as some specific examples, we'll find
out how to add some real bells and whistles to an Apple Writer lie and Diablo 630
word processing setup. These bells and whistles will get you within shouting distance
of "typeset" quality. With some care, all this can be handled fully automatically, even
using your already existing word processor files!

Regardless of your word processor or printer, you'll find lots of ideas here you can
adapt for your own use.

We will first look at four print quality rules that will apply to you regardless of what
you are now printing with. After that, we'll find out extra-cost choices that will let you
upgrade beyond your present print quality . .

Here's our first rule ...

Have the original image created by the original author
match the final image seen by the final reader as
EXACTLY as possible.

It's not just the words that count in the communication process. It is how those
words are arranged and how they are viewed that is everything.

The closer your "rough draft" looks like the "final result," the better your print
quality will be. And the better you will be able to · balance the content and the
appearance of what you are trying to create. And, most importantly, the fewer ways
people between you and the final result can find to foul up the works.

Now, this is no big deal on a business letter. But, on anything like an article, a
paper, or a book, this rule becomes crucial.

Make what you first type look as exactly as possible as what your final reader will
see. Anything else in this day and age is not even absurd.

Microjustify and Proportional Space Apple Writer lie

Here's our next rule ...

Be sure you get ALL the parts needed for your printer.
These are NEVER included in the purchase price.

13

Question: A Diablo 630 printer lists for $1800 on dealer special. How much will
this printer cost you? Answer: With lots of luck and some compromises, you might
squeak by for less than $3000.

All of the essential and good parts needed for top print quality are purposely left out
of most printer packages sold by most computer dealers.

First, you will need the real manuals for your printer. These include the service,
maintenance, configuration, interface, and repair manuals. Not just that vapid what
ever that got stuffed into the shipping box. Cost of these special manuals is typically
$25 to $45 each. Normally, a dealer will go out of his way to prevent you from ever
getting your hands. on any of these, for it cuts dearly into his service work. You usually
have to order directly from the factory.

The complete manuals are absolutely essential for (a) finding out the true
capabilities of your machine, (b) maintaining printqualityon a long-term basis, and (c)
solving compatibility and use hassles.

Secondly, you will need some decent way of feeding paper. For daisywheels, this
means a printtractor. A bidirectional tractor is needed for graphics and for top text
qua I ity. One-:-way tractors simply cannot hack it. No tractor at all is a cruel joke at best.
Tractors are best bought used or surplus, since they are far cheaper this way.

Thirdly, you will need the special toolkit required to keep the printer alive. Diablo
will gladly let you buy their little box with two funny screwdrivers, a tiny steel rod,
some sticky glop, and two pieces of stamped metal in it. All this for a mere $75 plus
shipping. Unfortunately, you must have these tools and parts to make any sane use of
the printer at all. ·

Fourthly, you will need to find out about the extra-cost bells and whistles. Like an
engine and wheels. On dot-matrix printers, this .includes graphics ROMs, screen
dumpers, and font downloaders. ·

On daisywheel printers, look for enhanced or expanded circuits that let you do
microjustification, full word processing, vector graphics, PS table downloading, or
otherwise add intelligence. As we'll find out later, the key trick is to let the word
processor software do what it does best, let the printer firmware do what it does best,
and then link the two as intelligently as possible.

Finally, you will probably want to build a silencer. Most any printer will drive you
up the wall if you work anywhere near it. While the dot-matrix printers seem
somewhat quieter than the daisywt,ieels, their noise is higher pitched and much more
stressful. If you think toolkits and manuals are priced out of sight, wait till you see the
pricing on silencers. Hoo boy. It is best to build your own. Be sure to include a fan.

The bottom line is to find out what you really ne(!d to get your printer doing useful
things, and then pick up as much of it as quickly and as cheaply as you possibly can.

14 Enhancement 9

On to our third rule ...

Find sanely priced sources of word processing supplies.

All of the "munchables" that get gobbled up by your word processing system will
eat you out of house and home if you let them, which either costs you plenty or else
forces you to use second rate materials and supplies.

Tune yourself into reasonable and sane sources of paper, ribbons, diskettes, mail
ers, formfed checks, stationary, labels, and whatever. This will both save you money
and give you a far better product out the door.

Microjustify and Proportional Space Apple Writer lie 15

Here's a list of some of the supply sources I use . ..

New ribbons and paper: QUILL CORPORATION
100 S. Schleter Road
Lincolnshire, IL 60069

Ribbon rewinding:

Diablo parts:

Printer bargains:

Bulk 3M diskettes:

Diskette Mailers:

;- .

Checks and labels:

(312) 634-4800

TORRES Rll;3BONS
416 East State Street
Redlands, CA 92373

(714) 792-0831

THE PRINTER WORKS
1961 Alpine Way
Hayward, CA 94545

(415) 887-6116

COMPUTER SHOPPER
Box F
Titusville, Fl 32796

(305) 269-3211

ALF PRODUCTS
1 31 5 F Nelson Street
Denver, CO 80215

(303) 234-0871

CALUMET CARTON
16920 State Street
S. Holland, IL 60643

(312) 333-6521

NEBS COMPUTER FORMS
1 2 South Street
Townsend, MA 01469

(800) 225-9550

Once again, these are justtne sources I happen to be using at this writing. Naturally,
the instant I find some place that is better or cheaper, they will get my business.

Two tips. Quill has far and away the best pricing on ribbons and metal daisywheels
anywhere, but be sure to wait for their monthly " loss leader" sales. What you need
will usually come back around again in a few months. Secondly, Calumet calls their
reusable diskette mailers a "#1 Stay-Flat Mailer." Pricing is-are you ready for this
under a dime each in quantity.

Always ask around for the best pricing and delivery on your word processing needs.
Chances are you are presently being ripped off. As guidelines, medium-quality
dis~ett~s should cost you no more than $1.50 and Diablo film ribbons no more than

16 Enhancement 9

$2.75 . Diskette mailers not over a dime. Metal daisywheels should not exceed $30.
Our fourth and final rule ...

Let the word processor program and the printer commu
nicate with each other as intelligently as possible.

If you do not tell your word processor what is hung on its output as a printer, it will
assume it is something worse than a Model 28 Teletype®, and you will get print quality
that is both atrocious and slow. On the other hand, if you let your word processor and
printer talk to each other at the highest possible level, you can optimize your results for
superb quality.

The trick is to let the printer do what it does best, and let the word processor do what
it does best. For instance, if you have a word processor with only medium-quality fill
justification and a printer with full microjustification, have your printer and not the
word processor do the justification for you.

There are two levels of communication involved ...

Low-Level Communication -

Letting the word processor send stuff to the printer as
quickly and as error-free as possible.

High-Level Communication -

lmbedding special commands into the text that acti
vate special printer features when and as they are
.needed.

Low-level intelligent communication is nothing more than making sure your inter
face works. We won't worry too much about that here. Many, if not most, of the better
quality printers communicate serially under standard RS-232.

Should you need extra RS-232 cables to extend a printer, you can build these
yourself by buying press-on connectors and flat cables out of most any electronic
hardware catalog. Cost is far less than ready-made cables, and the result is compact
and flexible. Suitable cables may also show up as surplus bargains.

You should always try to communicate at the fastest possible baud rate, preferably
9600 bits per second. Otherwise time is wasted passing characters back and forth and
your printer will have to wait every now and then for new characters. This becomes
crucial on daisywheel graphic dumps.

Needless to say, both ends must use the same baud rate. Hidden switches can get
flipped or software commands can get sent to adjust the baud rates.

You should also defeat any Apple video display echo unless you really need it. The
reason is that the long screen scrolling times will further slow down any exchange of
characters between your word processor and printer. The "old" lie has an especially
slow screen scroll .

And, most importantly, you should be sure you have handshaking between your
printer and your word processor. If the printer ever gets behind, it must have some way

Microjustify and Proporti,ona/ Space Apple Writer lie 17

of telling the computer to stop sending characters for a while. The usual microcom
puter way of handling this is with a "busy" signal line that goes from printer to
computer. The busy signal holds up any characters being sent until they can be used.

The object of the game is to have the printer limit its own maximum speed, rather
than slowing things down just to avoid handshaking.

Summing up ...

For a good serial interface -

(1) Run at the fastest baud rate.
(2) Defeat the Apple screen echo.
(3) Provide "busy" handshaking.

As you have probably focttid out by now, "RS-232 Compatible" means only that
you do not have to call the fire department before you plug two RS-232 interface
connectors into each other. The compatibility in no way guarantees that the two
devices will actually talk to each other or do what you expect of them.

The number and use of each wire in an RS-232 interface differs with each printer
application. Fig. 9-1 summarizes the important RS-232 signal lines, while Fig. 9-2

PIN #5 OI TO SEND
TELLS THE 1/0 CARD TO
STOP SENDING CHARACTERS
WHEN LOW. PRINTER
BUSY SIGNAL USUALLY
JUMPERED TO HERE.

PIN #3 DATA IN
PRINTER CHARACTER INPUT
NORMALLY ·CROSSED OVER•
TO PIN 2 AT THE 1/0 CARD.
THE "OTHER• PIN 3 TO PIN 2
CROSSOVER IS ONLY NEEDED
IF THE PRINTER HAS TO

:. SEND CHARACTERS BACK TO THE
1/0 CARD.

PIN #2 DATA OUT
SEND CHARACTERS FROM
UO CARD TO PRINTER
PIN 2 AT THE 1/0 CARD END
IIUST.BE CONNECTED TO PIN
3 AT THE PRINTER END.

PIN ,r SAFETY GROUND
.. TIES FRAME OF PRINTER

TO FRAME OF APPLE.
SHOULD NOT BE USED AS

' A SIGNAL GROUND SINCE
OTHER CURRENTS MAY
CAUSE BIT ERRORS.

PIN #6 UO READY ,
TELLS THE PRINTE!l 'WHEN
THE 1/0 CARD IS PWGGED
IN & TURNED ON . • USUALLY
HELD HIGH AT 1/0 CARD
END OF CABLE.

(SHOWN PIN END)

SIGNAL GROUND PIN #7
THIS IS THE RETURN
PATH FOR CHARACTERS
AND HANDSHAKING
SIGNALS. ANY OTHER
CURRENTS THRU THIS .
PIN WILL CAUSE BIT
ERRORS.

CARRIER DETECT PIN 18
TELLS THE 1/0 CARD
TO STOP SENDING
CHARACTERS WHEN LOW.
USUALLY HELD HIGH.
INTENDED FOR A PAIR
OF MODEMS BETWEEN
1/0 CARD & PRINTER.

BUFFU FULL PIN Ill
THIS PIN IS UNDEFINED
BY Rs:232 BUTIS RARELY
USED AS A • PRINTER BUSY.
SIGNAL.

PRINTER READY PIN #20
THIS PIN TELLS THE
1/0 CARD THAT THE
PRINTER IS CONNECTED
AND POWERED.

FIGURE 9-1. The RS-232-C pin connections normally used in a
serial printer interface. ·

shows the interface I use between an Apple lie with a Mountain Hardware AIO card in
slo~~n~. This interface lash up is more or less typical, but detai Ismay change with your
needs. ,

18 Enhancement 9

• ½

2.7 kO

I
S CARRIER DETECT

+12V
8

6
1/0 READY

6

20
PRINTER READY 20 SSII DIABLD

630 S OK TO SEND 5 "AIO "

DAISYWHEEL ·· 7
SIGNAL GROUND INTERFACE

7 CARD
3

DATA IN x:= ! 2 DATA OUT

I SAFETY GROUND I

.. ·'
' NOTE: JUMPER BLOCK RS·232.C

REQUIRED AT PIN NUMBERS
A6().5 TO A6().6
ON HPROS BOARD

FIGURE 9-2. Examples of the "customizing" often needed to get
an RS-232-C interface to work properly. This exam-
pie links a Diablo 630 daisywheel to an SSM "AID"
interface card.

In general, some "customizing" may be needed to get a serial RS-232 printer
interface running the first time, if you use an oddball older printer or printer card. Th is
usually involves crossing a pair of wires and jumpering some other wires or lines
together.

Note in particular that the "data out" and "data in" lines, pins 2 and 3, must be
crossed once and only once. The reason for this is that what is output from the Apple is
input to the printer, and vice versa. Commercial "modem eliminators" are available
that will cross these two wires for you. Pricing is unreal.

In many RS-232 interfaces, you can simply tie pins 6, 8, and 20 together. Pin 20 is
usually the busy signal line from printer to computer. Unfortunately, this introduces a
bug in the extended Diablo 630 that swallows two characters out of each buffer
loading, so pins 6 and 8 are separately held active as shown. This is done by using a
pullup resistor.

Incidentally, the circuit of Fig. 9-2 only works on a Diablo 630 that has the little blue
jumper placed between pins A60-5 and A60-6 on the HPROS board. Details like this
drive home why the special manuals are so important.

If you are having interface problems, first make sure your baud rates are the same on
both ends, as are such things as the word length, the number of stop bits, the forced
carriage returns, and the type of parity in use. Then make sure your interface has pins
two and three crossed in both directions. As an RS-232 baseline, cross 3 to 2, 2 to 3,
and separately jumper pins 6, 8, and 20 together. Next, try printing at the lowest
possible baud rate, preferably 110 baud . This will separate any fundamental gotchas
from handshaking problems. Finally, go up to full speed to resolve any handshaking
problems. Handshaking problems usually won't show up until a few hundred charac
ters have been properly printed.

If all that fails, use an oscilloscope or a voltmeter to check which lines are doing
what to whom.

More information on interface fundamentals appear in the TV Typewriter Cook
book, Micro Cookbook Volume 1, and Micro Cookbook Volume 2, Sams Cat. Nos.
21313, 21828, and 21829, respectively).

Microjustify and Proportional Space Apple Writer lie 19

That just about summarizes the four most important print quality rules and some
interface guidelines. These ought to work for you, no matter where you are or what
you have now in the way of hard copy.

FOR STILL MORE PRINT QUALITY

If you are willing to spend more to get more, here are some additional ways you can
upgrade your print quality ...

Use a daisywheel printer, rather than a dot-matrix
printer.

Use a real daisywheel printer, instead of a toy one.

Use a metal daisywheel element, rather than a plastic
one.

Use a proportional-spaced wheel, rather than a fixed
pitch one.

Use a printwheel font whose vibes match the image you
are after.

Use a film ribbon, rather than a fabric one.

Use fresh ribbons from a quality source.

Use a bidirectional print tractor, rather than a unidirec
tional one.

Use the slowest possible printing .speed with maximum
settling time. ·

Use the highest quality paper that best suits the job to be
done.

Use a ribbon and paper combination that work well
together.

Use microjustification rather than full space justification.

Use your maintenance manual tp keep the printer fine
runed. ·

Use a new platen, rather than one that is two years old.

Use every feature you can, so long as it improves your
final product.

Some comments here. Daisywheel print quality is vastly better than dot-matrix print
quality.

Period.
XVhile e\/en the toy daisywheels will do a reasonable printing job, only the "real"

dais)rwneels can give you top-drawer quality. At this writing, there are only three

20 Enhancement 9

"real" and mainstream daisywheel sources. These are the Qume Sprint series, the
Diablo 630, and the heavier NEC Spinwriters®. Technically, the NEC is really a
thimble printer rather than a daisywheel, but you end up with essentially the same
results and about the same print quality.

There is as much difference in print quality between a metal daisywheel element
and a plastic one as there is between a plastic wheel and dot-matrix quality. Admit
tedly, the metal wheels have a much higher "first cost" and are very easily damaged;
but for superb results, there is no contest.

Note that the print elements on metal daisywheels are thicker than those on plastic
ones. Thus, the optimum printer hammer setting for metal is unsuitable for plastic, and
vice versa. It is best to stick with all metal daisywheels, rather than continually
readjusting your machine.

The best daisywheel elements will offer proportional spacing, rather than fixed
spacing. This means that thin characters get printed close together and fat characters
get printed far apart. With proportional spacing a capital "W" takes up more room
than a lowercase "i". This is just like real printing, but unlike your usual typewriter.
Proportional-spaced printing is far more readable. With proportional spacing, you can
often cram more message in less space.

You will find hundreds of different daisywheels available. The type font you pick
sets the overall "vibes" of your message and the tone with which it is to be received.
Experiment to get the best overall results. I personally like the BOLD PS wheel for
people-style communications, and the TIT AN 10 for machine language dumps and
other computer listings. Later on, we will find out how to automatically handle
oddball spokes on offbeat wheels.

There is also no comparison between film and cloth ribbons. Film is sharper,
blacker, and far better looking. High-quality fresh ribbons from a source you trust will
give you better and more uniform results. Often, though, the "house brands" will be
just as good and far cheaper than "genuine" name-brand stock. It pays to check.
Never nurse a sick ribbon. Flush it as soon as it even threatens trouble.

Also uncomparable are two-way, or bidirectional, print tractors. The bidirectional
tractor positions the paper far more precisely. These are essential for clean graphics or
for printing pages with several text columns in them. It is a fairly simple matter for a
bidirectional tractor to back up as much as a full page. Any reverse motion at all gets
sticky fast with one-way tractors.

Just as some dot-matrix printers will give you higher quality by slowing down and
printing more dots per character, some daisywheels will let you slow down your
printing by increasing the carriage settling time. Increased settling time gives you more
accurate character hits, which are essential for shadow printing and otherwise may
improve results. Thus, it is often a good idea to run your final "out-the-door" copy as
slowly as you possibly can.

Your choice of printer paper should be obvious. At the very least, use 20 pound,
extra-white, microperf paper for anything except rough internal drafts. On sale, this
stuff runs less than a penny a sheet. Where customer acceptance is critical, step up to
classic laid papers or bond papers with a high rag content.

Should you be going to offset print for your final text, use a super-white, slick
surface, hard-coated stock for your camera-ready copy. The litho camera used to
make printing plates will give you much sharper characters on this type of stock. Your
local printer can put you on to sources. Hewlett-Packard plotter paper makes a fairly
cheap but workable substitute.

Some of the newest daisywheels offer a "camera-ready" print mode. Usually, they
just shift the ribbon into high gear so each character gets its own fresh chunk of ribbon
for its own private use. Normally, there is only a one-fifth character advance of the

Microjustify and Proportional Space Apple Writer lie 21

ribbon on each hit, so the price for "camera-ready" quality is higher ribbon use. A
good tradeoff, but worthwhile only for your "final" copy.

You might be able to fake this "camera-ready" mode if your daisywheel offers
downloading of custom proportional space/ribbon advance tables. Just change the
table so each character uses enough ribbon for a.guaranteed clean hit.

I've come up with a program called WPL.CAMERA READY that dramatically
upgrades the final appearance of my Diablo, particularly on better quality paper. It
works by giving the wheel extra time to settle down, and then whacks each character
twice. All you have to do is run this program on your existing files just before printing.
Ribbon cost is around double, and printing time is much slower, but the results are
superb.

WPL.CAMERA READY is available as a bonus program on the companion diskette
to this volume. See the order card in back of the book for full details.

Some ribbons work well with certain papers and poorly with others, so it is best to
carefully test and then match your paper and ribbon to each other.

Microjustification means that you can fill out a line by uniformly expanding each
space and, if needed, the space between letters. The adjustment can be as small as
1/120 of an inch, or a tiny fraction of the width of a full character. The fill justify option
on most word processors only lets you do whole space justification. This creates an
awkward "shading" across the text and is visually jarring. Microjustification also can
let you individually adjust side-by-side characters so they look as natural together as
possible.

This side-by-side adjustment is called kerning. More on this later.
Keeping your printer properly adjusted is very important. The print quality of just

about any machine wi II deteriorate with time. Important things to do every few months
on a daisywheel printer include "washing" the printwheels, adjusting the print ham
mer mechanism, freeing up the tractor, correcting the linefeed stepper backlash, and
doing a general cleaning and lubrication. Once again, you'll find the maintenance
manuals essential to help you do the job right. Special tools and gauges may also be
needed.

It is also a good idea to replace the platen at least every two years. Do this whether it ·
needs it or not. Naturally, if the platen looks bad at any time, replace it promptly.

Platens on personal computer printers tend to wear unevenly, since much of the
copy consists of narrow listings or machine dumps. Sometimes a mildly worn platen
can be flipped end for end to extend its life.

Finally, there is nothing worse than failing to use. an existing printer feature that
genuinely will help your hard copy. Be sure to learn each bell and whistle on both your
printer and word processor.

Then figure out how to combine them in original and useful ways.

An Example

Fig. 9-3 shows an example of second-rate personal computer hard copy. Unfortu
nately, it is the best I know how to do at the present time.

As you can see, there is full microjustification and proportional spacing, improved
titles, attractive spacing, hassle-free underlines, and kerning done between the "V"
and the "A" in the title.

What you cannot see is that this was done fully automatically by starting with a stock
Apple Writer lie textfile that has very little special in it over and above what you are
probably now using. With the process I'll be showing you here, you can easily and
automatically print your existing and new textfiles to this quality level.

\ou.c:an do all this without worrying about or even looking at the special imbedded
instructions that handle the "magic" printing for you.

22 Enhancement 9

What you see here is an unretouched litho photo of the original daisywheel hard
copy, except for the obvious games we played with the magnifying glass. The blowup
inside the glass is also unretouched.

Lancaster, Vaporlock, page 2

THE VAPORLOCK

The VAPORLOCK is a sneaky way to do an exact video
field sync that works with most any "real" Apple II, D+ or
Ile. It is very fast, takes zero hardware modifications,
and pushes the Apple limits to do what at first seems to be
"impossible". ·

Locking time can be as few as eight horizontal .scan
lines, and a substantial amount or "free use" throughput
remains available to you during a mixed 'field display. The
VAPORLOCK can be used in your commercial programs with suitable
credit.

If you've come in late, any exact field synchronization
scheme on the Apple lets you mix and match HIRES (High
Resolution Graphics), LORES (Low Resolution Graphics), and text
anywhere on the screen in · nearly any combination, can give you
glitchless and flawless animation, can greatly simplify light
pen hardware, and opens up lots of new application areas.

Running on "fumes"

Let's review. The Apple shares its main
the video display electronics and the ·
does this by switching between the>
twice every CPU (Central Process'
each half microsecond.

memory between
· itself. It

·~ is done
·1nd once

This invisible memory s 1· de Transparency is the ability
display images, even while t
changing or updating the same
video.

In any stock Apple, the.
CPU to tell exactly where the ~
scanning process. If the CPU coulo ~'!Ill----~·· the Call
is black during its long vertical retrac .. , you can clean ...
most animation. You do this by replottlng to screen memory
only during the times when the display scanning won't confuse
"old" and "new" data bytes. Proper use of blanking times can
eliminate any on-screen "sugar" or "collisions", making things
much more viewable.

Better yet, if both you and the CPU can find out
precisely and exactly when a fresh video field is going to

FIGURE 9-3. Typical second-rate personal computer hard copy.

Microjustify and Proportional Space Apple Writer lie 23

By the way, the wide margins and extra spaces between paragraphs in this example
are a compromise that attempts to give the editor room to work, yet closely approxi
mates one on one what the final reader will actually see on a book page.

Now, I won't for an instant claim that this is "good" print qua I ity or that it approaches
"typeset" quality. That would be almost as absurd as claiming that dot- matrix printing
was legible or that daisywheel printing was fast.

What I do suggest, though, is that you use this example as a minimum quality
standard. Don1t let anything get out your door unless it looks at /east this good. You can
start with this as a "baseline" quality goal and improve things from there.

Let's find out how to get there from here.

IMBEDDING PRINT COMMANDS

There are several older ways of passing "high-level" commands back and forth
between a word processing computer and a printer. Some of these older methods
involve hardware switch flipping and some involve configuration jumpers. Others
involve direct pokes or stores to certain memory locations.

Today, most printer intelligence is passed back and forth With easily used imbedded
printer commands ...

lmbedded Printer Command -

A "message inside a message" that tells the printer to
start doing sqmet,hing special or different.

Let's look at three examples of imbedded commands.
The Epson command "[esc]4" tells the printer to begin printing in italics, while

"[esc]S" turns italics off. Similar commands will pick the boldness of the printing,
italicize or underline, or set the number of characters per inch vertically or horizon
tally.

We will use the WPL method of showing control keys here. Thus, "[esc]" means
"press down the escape key," while "[L]" means "press down the control key, press
and release the "L" key, and then release the control key."

Turning to daisywheels, the enhanced Diab/a command "[esc]M" will turn on the
microjustify feature, while "[esc]X" will turn microjustify back off again. Similar
imbedded commands alter margins, spacing, graphics selections, proportional print
ing, shadow printing, and similar features.

Some plug-in interface cards will also need imbedded commands. More correctly,
these are communications commands, rather than printer commands. One familiar
example is the" [1]80N" command used by parallel interface cards to set the line width
to 80 characters and cancel the Apple video echo.

If you are going to use aU of the really neat features of your particular printer and
interface, you have to be able to understand and use imbedded print commands. More
importantly, you have to figure out how to let your word processor handle these
commands for you.

24 Enhancement 9

Here's how to start ...

To understand imbedded commands

(1) Find a list of them.
(2) Play with them one on one.
(3) Add them to your word processor.

I like to do things by hand and by myself. This way, I force myself to think about
what I am doing when I am exploring something new.

So, get a list of special commands for your printer, and then hand list them.
Rearrange things in order of likely interest to you. After that, spend some time
"exercising" each new feature. Do this until you thoroughly understand what each
command does and what it can do for you. It is very important to check out each of
these commands well ahead of time as a separate study, rather than trying to figure
something out in the middle of some "real" printing.

Be sure to explore both what the imbedded command is intended to do as well as
what it really can accomplish if you use it in new and unexplored ways.

How do you place your imbedded commands in your word processor text files?
That, of course, depends on your choice of word processor. With Apple Writer lie,

there are three different levels at which you can imbed print commands . ..

Verbatim Method -

Use the "[VJ" command to place control characters
into your text when and as they are needed.

Glossary Method -

Use the glossary to give you single-keystroke entries of
long imbedded commands.

WPL Method-

Use the WPL word processing language to enter or strip
whole documents of the needed commands. ·

The Verbatim method is the simplest. You use it to immediately put an occasional
control character directly into your text. Use this method for practice and for seldom
used or oddball commands.

The glossary method lets you shorten each often-used series of imbedded com
mands into a single keystroke. This saves looking up and keying for commands that
you use repeatedly. The glossary selections are put there in the first place by using the
verbatim method. The glossary is then saved to disk for later reuse.

The WPL method is a super heavy. Under automatic program control, the WPL
method can get a document spread over as many drives as you have in your system. It
will then scan the document and automatically insert or remove any and all imbedded
commands of your choice, any way you want.

Microjustify and Proportional Space Apple Writer lie 25

One big plus of the WPL method is that you never have to look at imbedded
commands or work directly with text that has lots of hard-to-read instructions imbed
ded in it. You take a plain, old text file, done the way you already know, and then use
WPL to automatically imbed the commands immediately before each printing.
Changes or corrections are always made to the original, pre-imbedded document.

The WPL method is particularly handy if you have to send your files to, say, both a
daisywheel and a phototypesetter. Each of these will have its own set of wildly
different imbedded commands. It is best to have your text files with a minimum of any
imbedding at all, and then customize the files as needed for each output.

Let's look at each imbedding method in turn. If you are not using Apple Writer lie,
then try and find some "alike but different somehow"method that works for you. But,
as you will quickly find out, there is nothing, repeat nothing, in the entire word
processing world that can even hold a candle to WPL.

Verbatim Method

The [VJ key tends to drive new users to Apple Writer lie up the wall. If you
accidentally hit this key combination, all sorts of weird things start happening to your
text and you seem to lose control. Inverse "H" gets added every time you try to
backspace, and every attempted deletion ends up adding a new character.

What's going on here?
Remember that we will use the [VJ symbol to mean "hold do\',!n the control key,

press and release the capital V key, and then release the control key."
When you do a [VJ, you tell your Apple Writer lie word processor, "From now on

until further notice, I want you to ignore all the control commands I give you except for
[VJ and [Ml." "Instead, you are to directly imbed any other control keys into your text
file." '· · ·

Thus, on an accidental [VJ hit, the left arrow gets ignored, but a backspace gets
imbedded into your text as an [HJ. Tabs become [I) and so on. The more you stir it, the
worse it gets, since the only commands the program will recognize as commands are
[VJ and [Ml, the carriage return.

Unfortunately, there are several different ways of showing control commands.
Table 9-1 gives you a list of the 33 ASCII control commands, their traditional names,
and how they are keyed from your Apple. For instance, we see that ASCII code hex
$11 or decimal 17 is called "DC1 ", short for "Device Control One", and is entered
from your Apple keyboard by a [QI.

Note that any and all ASCII control commands can be entered directly from the lie
keyboard. Some, such as [QI will need the control key held down. Others, such as
[esc) or [tab) will directly generate the needed code, with or without using the control
key.

While we are looking at tables, Table 9-2 shows us a table of "N" and "N -1"
values. Many intelligent printers expect to receive certain numeric values as an
equivalent ASCII character. This is akin to the "CHR$" command in BASIC that sends
out a carriage return "CR" for a "CHR$(13)", and so on.

The reason for this oddball turn of events is that a numeric value can be sent as a
single ASCII byte, rather than needing two or three. There is also no guessing involved
on whether a received "1" is really a "1 ", the start of a "12" or the very beginning ofa
"123" sequence. Thus, instead of a "101 ", you send a lowercase "f" instead. One
fixed byte instead of three variable ones.

Sometimes, the actual or "N" value is used. Other times, an "N -1" value is sent.
Which one is used depends on the command and the printer. Line and tab values are
o~n done with "N" commands, while VMI and HMI motions are often handled by " .

26 Enhancement 9

the "N - 1" values. See the advanced manuals on your particular printer for full
details.

We are purposely not going to studythe individual commands of individual printers
in depth. First, because you must do this on your own if you are to get the most bang for

Table 9-1. ASCII Control Codes Are Needed for Most Intelligent Printer
Interfaces. They Can Appear in Many Different Forms. Here Is How to Key Them:

ASCII Hex Code Dec Code lie Keys Original Use

NUL $00 00 [@]* Do nothing or null
SOH $01 01 [Al Start of heading
STX $02 02 [Bl Start of text
ETX $03 03 [Cl End of text

EOT $04 04 [DJ End of transmission

ENQ $05 05 [El Enquiry
ACK $06 06 [Fl Acknowledge
BEL $07 07 [G] Bell or alarm

BS $08 08 [HJ Backspace
HT $09 09 [I] Horizontal tab
LF $0A 10 Ul Line feed
VT $OB 11 [Kl Vertical tab

FF . $0C 12 [Ll Form feed
CR $OD 13 [Ml Carriage return
so $OE 14 [NJ Shift out
SI $OF 15 [0] Shift in

DLE $10 16 [Pl Data link escape
DCl $11 17 [Q] Device control #1
DC2 $12 18 [R] Device control #2
DC3 . $13 19 [SJ Device control #3

DC4 $14 20 [Tl Device control #4
NAK $15 21 [Ul Negative acknowledge
SYN $16 22 [VJ Synchronous idle
ETB $17 23 [W] End block transmit

CAN $18 24 · .. [X] Cancel
EM $19 25 [Y] End of medium
SUB $1A 26 [Z] Substitute
ESC $1B 27 [{l Escape

FS $1C 28 [I] Form separator
GS $1D 29 [}] Group separator
RS $1E 30 ·.i n Range separator
us $1F 31 [_] User separator

DEL $7F 127 DELETE* Delete

Equivalent keys: LEFT ARROW = (HJ = BS
TAB = [I] = HT
DOWN ARROW Ul = LF
UP ARROW = [Kl = VT
RETURN = [Ml = CR
RIGHT ARROW = [Ul = NAK
ESCAPE = [{] = ESC

Gotchas: Many Apple uses setthe ASCII mostsignificant bit. To setthe MSB, add hex $80 or decimal
128 tci above values.

• - NUL ($00 or $80) and DEL ($7F or $FF) are reserved for internal use by Apple Writer
lie.

Microjustify and Proportional Space Apple Writer lie 27

Table 9-2. Many Intelligent Printers Need Command Values Passe~ to Them by
Using the Numeric "N" or "N -1" Value of an ASCII Character. Here Is a

Complete Table:

· uN·-1" "N" SEND "N-l" "N" SEND "N-1" . "N," SEND

./
c

0 1 [Al 44 45 - 88 89 y

1 2 !Bl 45 46 89 90 z
2 3 [CJ 46 47 I 90 91 [

3 4 [DJ 47 48 0 91 92 t

4 5 [El 48 49 1 92 93 I
5 6 [Fl 49 50 2 93 94 '

6 7 [GI 50 51 3 94 95 -
7 a . [HJ 51 52 4 95 96

8 9 [I) 52 53 .5 96 97 a

9 10 Ul 53 54 6 97 98 b
10 11 [Kl 54 55 7 98 99 C

11 12 [LI I, 55 56 8 99 100 d

12 13 [MJ 56 57 9 100 101 e

13 14 [NJ 57 58 : 101 102 f
14 15 [OJ 58 59 ; 102 103 g
15 16 [Pl 59 60 < 103 104 h

16 17 !QI 60 61 = 104 105 i
17 18 !RI 61 62 > 105 ' 106 j

18 19 [SJ 62 63 ? 106 107 k
19 20 [T) • 63 64 @ 107 108 I

20 21 [U) 64 65 A 108 109 m
21 • 22 [VJ 65 - 66 B .109 110 n

22 23 [WI 66 67 C 110 111 0

23 · 24 [XI 67 68 D 111 112 p

24 25 [YI 68 ' ..
69 E 1'12 113 q

25 26 [Z) 69 70 F 113 114 r

26 27 l{) 70 71 G 114 115 s

27 28 Ill 71 72 H 115 116 t

28 29 [}I 72 73 I . 116 117 u

29 30 n 73 74 J 117 118 V

30 31 (_) 74 75 K 118 119 w
31 32 (space) 75 76 ,L 119 120 x_

32 33 ! 76 77 M 120 121 y

33 34 " 77 78 N 121 122 z ·'
34 . 35 # 78 79 0 122 123 {
35 . 36 $ · 79 80 p l23 124 I
36 37 % 80 81 Q 124 125 }
37 38 & 81 82 R 125 126 -
38 39 ' 82 83 s
39 40 (83 84 T .

40 41) 84 85 u
41 42 * 85 86 V
42 43 + 86 87 w
43 44 , : 87 88 .X

'" .
"N -1" values are often used by HMI and VMI motion commands.
"N" values are often used for lines/page and tab values.

ASCII values of $00, $7F, $80, and $FF are reserved for internal useWAppie Writer lie and should
not be imbedded i,ntp text files. \

.

28 Enhancement 9

the buck outofyour printer. Second~ because there are so many printers and countless
variations out there. And, last of all, because the final .user need not worry about such
things if he uses the invisible and automatic methods we are about to develop here.

Back to the program. How do you use [VJ?
Say you want to switch yrn,1r Epson to print italics. This means you want to imbed an

"[escJ4" into your text. To do this using [VJ, first go to the place in the text where you
wantto imbed the command. Then type "[VJ [escJ [VJ4". The first [VJ says to verbatim
enter the escape key into the text. The second [VJ says to quit imbedding funny
commands and switch back to normal word processor use of the control commands.

Note in this example that we need a plain, old "4" and not a "[4J". Watch this detail
very carefully. Provide control characters only when they are called for.

As an enhanced· Diablo example, the command "[esc)M" turns on the micro
justification.To imbed this in your document, go to the right place, then type "[VJ [esc)
[YIM," and you are home free.

Obviously ...

Do NOT forget to use the second [VJ when you finish
imbedding a command!

Let's look at another simple example of the verbatim method.
One of the weaknesses of Apple Writer lle's underline mode is that there is no direct

way to underline up to a period, comma, or question mark. At least not without also
underlining the punctuation or adding at lec1st one unwanted space.

There is both a "micrometer" and a "sledgehammer" solution to this problem.
The "micrometer" way is to imbed a backspace afterthetrailing underline token but

before the comma or period. For instance, you type "zorch\ [VJ [HJ [VJ." to underline
the "zorch" but not the period. The backspace swallows the space forced by the
underline processor.

Unfortunately, this is only a "perfect" fix in the left justify mode. If you are using
A WIie's fill justify mode, you may have to play some very fancy right margin games as
well.

The imbedded backspace does work, however, on any printer that can recognize a
backspace. The imbedded backspace is a simple fix to the one problem that seems to
bother beginning Apple Writer lie users the most.

The "sledgehammer" solution is to imbed commands that turn the printer's under
lining off and on.This lets the printer do its own much more flexible underlining. The
usual result is a cleaner underline because the printer will step up the ribbon advance.
lmbedded backspaces are also not needed this way.

Better yet, do you really want to underline? How about a double strike, a font
change, a switch to italics, or a shadow print instead?

Solutions ...

(1) lmbed a backspace before the pun_ctuation.

(2) Use the underline feature of the printer instead. '

(3) Substitute shadow printing, bold, or italic fonts.

Microjustify and Proportional Space Apple Writer lie 29

There is a subtle gotcha involved with [VJ.
If you really want to imbed a [VJ into a textfile, you have to get sneaky. The "one- '

line" entry mode.that lets you create a glossary will let you directly generate a [VI, but
the "full editing" normal operating mode will not. One simple answer is to put a [VJ
manually into your glossary, and then call it over and over again as needed into your
text. The [Fl, or find-and-replace, command also works.

There are two other imbeddings that may give you fits.
If you imbed a reverse slash and if you are using the same symbol for your internal

underlining, you may end up with serious problems. The Diablo command to disable
backwards printing needs the reverse slash. It pays to go out of your way to never use
reverse slashes for anything but an underline command. Among other reasons, this
symbol is not available on all daisywheels.

The magic sequence"(<" also must be avoided. This will try to turn on the footnote
machine.

So how did I just print it?

lmbedding With the Glossary

The intermediate way to imbed print commands with Apple Writer lie µses the
glossary. This way, a single and meaningful key hit imbeds the whole command for
you. No muss, no fuss, no bother. For instance, you can use "<open-apple>I" to start
italics on your Epson, and "<open-apple>i" to turn them back off.

Big "I" turns the italics on. Little "i" turns the italics back off.
Or, on an enhanced Diablo, an "<open-apple>J" starts microjustifying and

"<open-apple>j" stops it.
Big "J" to turn the microjustify on. Little "j" to shut the microjustify off.
By now, you are probably up to your ears in Epson MX-80 glossaries. Program 9-1,

called EGLOSS, gives you yet one more. ..
This one has made all the keystrokes as meaningful and as easy to learn as possible.;

A built-in single-key help screen is included that leaves your text unaltered. There's
also lots of room to add your own custom code.

Few people realize that glossary entries can be used to directly execute WPL and
other machine commands in Apple Writer lie. This is in addition to the usual use of
entering text into your main text file, which is the secret to the self-prompting features
of EGLOSS, a feature that leaves a// of the others out in the cold.

In A WIie, any control characters imbedded in a glossary will do their usual editing
function. Any control characters imbedded in a glossary that are preceded by a [VJ and
followed by a [VJ will actually get imbedded in your text. A carriage return is
automatically substituted for each "]" in the glossary.

Directly entering a tutorial help screen out of a glossary seems to take around 20
seconds and messes with your textfile. Both are unacceptable. What this glossary does
instead is it reloads a portion of itself only to the screen. This displays the help screen
that is tacked onto the end of the glossary. Total time to display is about 3 seconds.
Erasure is instant, and your main textfile is untouched.

Typing "<open-apple>z" gives you the tutorial help screen. Typing [return] exits
you to your undisturbed workfile.

Alternately, typing "<open-apple>Z" both gives you a help screen and saves a
copy of the glossary to the currently active disk drive. Use this as a hassle-free way to
transfer the glossary to each disk as needed.

The save-before-loading" <open-apple> Z" glossary option works even if you have
changed diskettes and drives. It also puts a free copy of the glossary on each and every
diskefe~that is likely to need it. --

30 Enhancement 9
. ,:;

\

PROGRAM 9-1 Epson-MX80 Formatting Glossary With Tutorial

? Applewriter Ile/Epson MX80 Formatting Glossary
?
A[VJ [escJt[VJ
a [VJ [escJ > [VJ
B [VJ [escJ G [VJ
b [VJ [escJ H [VJ
C [VJ [escJ [OJ [VJ
c [VJ [escJ [SJ [VJ
D [VJ [esc] [NJ [VJ
d [VJ [escJ [TJ [VJ
E[VJ [escJE[VJ
e [VJ [escJ F [VJ
F [VJ [escJ C [VJ
f [VJ [escJ C [@J [VJ
G [VJ [escJL [VJ
g [VJ [esc]K [VJ
H [V] [escJ J [VJ
h [VJ [escJ 2 [VJ
I [VJ [escJ 4 [VJ
i[VJ [escJS[VJ
J [VJ [escJ N [VJ
j [VJ [escJ O [VJ
K [VJ [VJ
k [VJ [VJ
L [VJ [escJ = [escJ [JJ [VJ
1 [VJ [esc] > [escJ [J] [V]
M [VJ [VJ
m [VJ [VJ
N [VJ [GJ [VJ
n [VJ [GJ [VJ
O[VJ [escJU[@J [VJ
o [VJ [esc] Ul [VJ
P [VJ [escJ 9 [VJ
p [VJ [escJ 8 [VJ
Q [VJ [V]
q [VJ [VJ
R [V] [escJ = [V]
r [V] [escJ > [VJ
s [VJ [esc] s [@J [VJ
s [VJ [escJ Sl [VJ
T(V]D[V]
t[V]D[V] _
U [VJ [esc] -1 (VJ
u [V] [esc] - [@J [V]
V [VJ [esc] 1 [V]
v [VJ [esc] O (V]
W[VJ [escJQ[VJ
w [V] [esc] Q [VJ
X [V] [esc]@ [V]

PROGRAM 9-1 cont

X [V] [esc] T [V]
Y [V] [V]
y [V] [V]
"[V] [L] [V]
< [V] [H] [V]

Microjustify and Proportional Space Apple Writer lie 31

Epson MX-80 Open-Apple Formatting Commands: , .
(A) ascii b8 as is (H) height custom*
(0) two way print (V) VERY tight 7/72
(a) ascii b8 one (h) height normal
(o) one way print (v) very tight 1/8
(B) bold print on (I) italics on
(P) paperout sense (W). width column*
(b) bold print off (i) italics off
(p) paperout ignore (w) width column*
(C) compressed on (J) jump perf on*
(Q) (spare) (X) off all modes
(C) compressed off (j) jump perf off
(q) (spare) (x) off sub/super
(D) doublewide on (K) (spare)
(R) reset B8 = 1 (Y) yourstuff on
(d) doublewide off (k) (spare)
(r) reset B8 = 0 (y) yourstuff off
(E) emphasized on (L) linefeed w/rst
(S) superscript on (Z) tutorial+ save
(e) emphasized off (1) linefeed only
(s) subscript on (z) tutorial only
(F) fmlngth lines* (M) (spare)
(T) tab set* (....) formfeed
(f) fmlngth inchs * (m) (spare)
(t) tab set* (<) backspace
(G) graphics 960 * (N) noisy bell
(U) underline on
(g) graphics 480 * (n) noisy bell
(u) underline off

Capital letter is "on", "yes", "above", or "more".
For full features, the AWIIe NULL patch is needed.

* - follow with ASCII value(s). (See Epson us
er manual for details.)

32 Enhancement 9

PROGRAM 9-1 cont

Z [P] nd [F] <>>><><A] [Q] FEGLOSS] [L] EGLOSS<> <ls.)>><\] [P] yd]
z[L)EGLOSS<> <ls.)>><\]

Gotchas: Pairs of brackets mean control commands. [esc) = escape key, [QI means "<ctrl>Q", etc. Note
that any isolated brackets really are isolated brackets.

The line preceding the tutorial screen must have four spates on it. "Z" and "z" selections must N0T
precede the tutorial or they will find themselves.

Eighty-column tutorial text lines have been split. Entries (A), (H), (0), and (V) all go on one line. The
dot row is also one continuous line, a_s is the line starting with"* - Follow".

By the way, certain features of EGLOSS will not be available to you unless you mal<e
a simple mod to AWlle that lets you imbed NULL commands in a document.

Which leads us to a large can of worms . ..

NULLIFYING AWII~ AND SUPERSCRIPTING EPSONS

There are two "features" of Apple Writer lie that quickly lead to some printer
compatibility hassles ...

(1) ASCII characters of $00, $7F, $80, and $FF are not
·allowed in an AWlle text file.

(2) Any imbedded ·printer commands that AWlle does
not recognize get treated as real characters and will
shorten lines that are fill justified .'

We can call the first one the "Epson NULL" problem, since it restricts sending ASCII
$00 or NULL commands needed for Epson features on older printers, particularly
underline and superscript. The second one is obviously the "short line" problem.

Note that the ASCII $80 character was easily entered in old Apple Writer 2.0, simply
by doing a [@). This character is specifically excluded from A WIie.

Automatic "repair" programs, called the AWIIE NULLIFIER and the AWIIE
STRETCHIFIER, are included as bonus programs on the support disk for this volume.
Free copies are also available.directly from the helpline. In add•tion, one version of the.
NULLIFIER patch appears in Chart 9-1.

As near as I can tell, this NULL patch is benign. You lose an oddball feature of the
DELETE key, which you should not be using in the first place. Remember that you can
undo a deletion that was done by "<open-apple>-<left arrow>", while the DELETE
key is forever.

The auto-repeat will nail you every time if you try to use the DELETE key.
Even witb9ut this NULL patch .. .

Microjustify and Proportional Space Apple Writer lie 33

NEVER use the AWlle DELETE key, for anything, any
place, ever!

Use <open-apple> and <left arrow> instead, since any
possible damage can later be undone.

Chart 9-1 NU Llifying Apple Writer lie

While the ASCII $00, or NULL command is easily placed in an older Apple
Writer 2.0 file by doing a [VJ [@J [VJ, NULLs are specifically excluded from
Apple Writer lie.

Among their many other uses, NULLs are needed for some HIRES graphics
dumps and for Epson under~/ning or superscript features.

Here is a two-byte patch that lets you imbed NULLs into your A WIie fiies.

WARNING: The following descriptions work ONLY on EXACTLY the DOS
· 3.3e "E" and "F" versions of Apple Writer lie, circa March of

1983. Use the "tearing method" to adapt to any updates or
revisions.

USE ONLY YOUR THIRD BACKUP COPY FOR THESE PATCHES!

For the "E" version used with a normal 80-column card:

.(1) Boot normal DOS 3.3
(2) BLOAD OBJ.APWRTJ [E,A$2300
(3) PRINT PEEK (9956) (quit if not 15)
·(4) POKE 9956, 00

' '.(5) PRINT PEEK (18621) (quit if not 214)
(6) POKE 18621, 00
(7) UNLOCK OBJ.APWRTJ [E

.. (8) BSAVE OBJ.APWRTJ [E,A$2300,L$2F5A
(9) LOCK OBJ.APWRTJ [E

For the "F" version used wJth an extended 80-column card:

, (1) Boot normal DOS 3.3
(2) BLOAD OBJ.APWRTJ [F,A$2300

.)3) PRINT PEEK (10116) (quit if not 21)
(4) POKE 10116, 00

, (5) PRINT PEEK (18998) (quit if not 214)
: (6) POKE 18998, 00

(7) UNLOCK OBJ.APWRTJ [F
(8) BSAVE OBJ.APWRTJ [F,A$2300,L$30D3
(9) LOCK OBJ.APWRTJ [F

Test either version by booting the modified A WIie disk. Start typing random stuff
into a new text file. lmbed a NULL by doing a [VJ [@] [VJ or a [VJ [2J [VJ. The
NULL should appear as an inverse"@".

A bonus program called AWIIE NULLIFIER appears on the companion diskette to
this volume. It will automatically patch both versions for you, after it verifies that

\the. code is safe to alter.

34 Enhancement 9

You can imbed a NULL using EGLOSS, or else by using [VJ [@) [VJ, after making the
patch.

To avoid disallowed $FF values during a HIRES screen dump, use six rather than
seven pins on the dot~matrix printhead. More on this in a future enhancement.

A DIABLO 630 GLOSSARY

Program 9-2 is an enhanced Diablo 630 glossary that provides nearly all of the
available features plus lots of room for macros of your own. Once again, an instant
access help screen is provided, keying on "<open-apple>z" for help only, or on
"<open-apple>Z" for a combined save and help screen.

Why the WP enhanced Diablo 630?
First, because it is what I use. If I find something that is faster, cheaper, quieter, more

reliable, and more flexible than the 630, and if it also has better long-term print
quality, I'll quickly buy it.

Only it hasn't happened yet and it doesn't seem likely for a while.
Secondly, because the other two daisywheel heavies, Qume and NEC, are "alike

but different somehow" in their use of imbedded commands. And finally, because
many of the new toy daisywheels claim to be more or less "Diablo compatible,"
whatever that means.

One glossary tip that a lot of people miss ...

In Apple Writer lie, the <open-apple> key does the same
thing as [GI.

This little trick saves you lots of keystrokes. I usually put the entire top of the fancy
thought boxes into the glossary under a space key. One pressing of " <open
apple>(space)" instantly gives you the entire top of a text display box.

One sloppy keystroke replaces around 65 careful ones!
There are two very minor gotchas. First, don't use " / " as a glossary key since

"<open-apple> / "gets you the main help screen instead. If you like, comments can
be inserted into a glossary with your choice of"?","*", or" / "as the first character in
the comment string.

Secondly, note that the "z" and "Z" help screen commands must follow the help
screen text itself. The reason for this is that there are search strings in both of these
commands. If the command precedes the screen text, the command will find itself
instead of the tutorial text.

Nearly anything you can do with the [VJ method can be done quicker and simpler
with the Glossary method. Just use the [VJ method to create the glossary once. Theri
use the glossary as often as needed. Once your glossary is created, nontechnical
people will find it very simple and easy to use.

As usual, all of the programs here are available and ready to go on the companion
diskettes. See the response cards and ordering information in the back of the book.

Microjustify and Proportional Space Apple Writer lie 35

PROGRAM 9-2 Diablo 630 Formatting Glossary With Tutorial

? Applewriter IIe/Diablo 630 Formatting Glossary
?
A [VJ [esc) [K) [V]
a [VJ [esc) [U) [VJ
B [VJ [esc) O [V]
b [V] [esc) & [V]
C [VJ [esc) = [V]
C [VJ [esc) X [V]
D [V] [esc) $ [V]
d [V] [esc) X (V]
E [V] [esc) 0 [V]
e [V] [esc] 9 [V]
F [VJ [esc) A [V]
f [V] [esc) B [V]
G [V] [esc) 3 [V]
g[V] [esc]4(V]
H [V] [K] [VJ
h [V] [tab) [VJ
I [VJ [esc) % [V]
i [V] [esc) N [V]
J [VJ [esc] M [V]
j [VJ [esc] X [V]
K [VJ [esc] [QJ [V]
k [VJ [esc) X [V]
L [VJ [esc) [L] [V]
1 [V] [esc] [H] (V]
M [VJ [esc]" [V]
m [VJ [esc] [V]
N[V] [esc]T[V]
n [V] [esc] S [V]
O[V) [esc]D[V]
o [VJ [esc] U [V]
P (V] [esc] P [V]
p [VJ [esc) Q [V]
Q [VJ [esc] 7 [V]
q [V] [esc] X [V]
R [VJ [esc] / (V]
r [VJ [esc] \ [V]
S[V] [esc]W[V)
s [V] [esc] & [VJ
T [V] [esc] - [V]
t (V] [esc] 1 [V]
U [V] [esc) E [V]
u [V] [esc] R [V]
V [V] [esc) [J] [V]
v (V] [J] [VJ
W[V] [esc) z [V]
w [V] [esc] Y [V]
X [VJ [esc) 2 [V]

36 Enhancement 9

PROGRAM 9-2 cont

x [VJ [esc] S [VJ
Y [VJ [VJ
y [VJ [VJ
"[VJ [L] [VJ
< [VJ [HJ [VJ
, [VJ [esc] Q [esc] 1 [HJ [tab] [VJ
• [VJ [esc] P [VJ

Diablo 630 Open-Apple Formatting Commands:

(A) absolute VTAB*
(0) offset hl up
(a) absolute HTAB*
(o) offset hl down
(B) bold print on
(P) proportional on
(b) bold print off
(p) prop. space off
(C) centering on
(Q) quit printing
(c) centering off
(q) quit wp modes
(D) dash hyphen on
(R) reverse<- on
(d) dash hyphen off
(r) reverse<- off
(E) west margin set
(S) shadow on
(e) east margin set
(s) shadow off
(F) funny ribbon on
(T) tab vert. set
(f) black ribbon on
(t) tab horiz~ set
(G) graphics on
(U) underline on
(g) graphics off
(u) underline off

(H) vertical tab
(V) vertical up
(h) horizontal tab
(v) vertical down
(I) improve quality
(W) wheel spoke $7F
(i) normal quality
(w) wheel spoke $20
(J) justify on
(X) clear tabs
(j) justify off
(x) clear HMI
(K) kerning set*
(Y) yourstuff on
(k) kill v margin
(y) yourstuff off
(L) lines/page set*
(Z) tutorial+ copy
(1) little backspace
(z) tutorial only
(M) motion VMI **
(") formfeed
(m) motion HMI **
(<) backspace
(N) north margin
(,) dots start
(n) soµth margin
(.) dots end

Capital letter is "on", "more", "above", "vertical", or "right".

* - follow with ASCII value (use Table 9. 2 " N ")
** - follow with ASCII value-1 (use Table 9.2 "N-1")

Microjustify and Proportional Space Apple Writer lie 37

PROGRAM 9-2 cont

Z[P]nd[F]<>>><><A] [Q]FDGLOSS] (L]DGLOSS<> <-1") >><\] [P] yd]
z[L]DGLOSS<> <-1")>><\]

Gotchas: Pairs of brackets mean control commands. [esc) = escape key, [Ql means "<ctrl>Q", etc. Note
that any isolated brackets really are isolated brackets.

The line preceding the tutorial screen must have four spaces on it. "Z" and "z" selections must NOT
precede the tutorial or they will find themselves.

Eighty-column tutorial text lines have been split. Entries (A), (H), (0), and (V) all go on one line. The
dot row is also one continuous line.

Another Glossary Example

Sometimes, you may want to combine several commands at once into a "macro"
for your glossary. Let's look at~ macro example of Diab/a glossary use.

One of the stickiest problems you will come up with if you try proportional spacing
is that columns of figures will get messed up, as will alignments of addresses, or
anything else that is supposed to be "lined up" in the middle of a long string of
characters.

The usual way out of this bind is to set tabs that align any needed columns. Most
proportional-spaced fonts have constant values for all the numbers, so numbers will
align on proportional spacing if they start at the same position.

Unfortunately, the hex characters "A" through "F" do not. The solution is to print
columnar hex values at constant spacing, set so wide that the letters do not run into
each other. Which is a royal pain, but well worth it for top appearances.

Note that the tabs must be set inside the printer, and not inside the word processor,
for only the printer knows where it is on a proportionally spaced line at any instant.

Fig. 9-4 shows us a worst-case example of exiting proportional spacing at a totally
random point on a line, putting down an aligned row of dots at fixed pitch, and then
resuming proportional space with an aligned column.

If you try this without getting sneaky, you will find the dots "microstaggered" all
over the lot, for each exit of a proportional-spaced line can end up anywhere with
respect to fixed pitch.Thus, on exiting to 12 pitch, you can end up in any of 10 possible
dot positions, only one of which ends up properly aligned.

The solution to this? Two glossary entries, called"," and"." You do"," first, then
your dots, then the" ." glossary entry. Or, if you just want spaces, you still do the same
thing, putting"," before the string of spaces and"." after. Do this while holding down
the <open-apple> key.

What happens is this: After the book name, you cancel proportional spacing. Then
you set a tab. The tab sits at a constant value in 12-pitch, rather than the microjustified
position you ended up in at the end of the proportionally spaced character string. We
don't have to worry about exactly where this tab sits.

This newly set tab takes the end "slop" out of the line. Next, you back up one
character and then tab to your newly set tab location. All of which eliminates any
microstaggering and gets you back in line with plain old 12-pitch spacing.

'~e"t, you put down your dots at 12 pitch, nonproportional. After that, you switch
back to full proportional for the rest of the line.

38 Enhancement9

The DON LANCASTER Library

Apple II &: Ile Assembly Cookbook •.•••...• # 22331
Active Filter Cookbook•..•• # 21168
CMOS Cookbook •..•.....•••.•..••.•••.... # 213 98
Cheap Video Cookbook .•..•••....••••.•..•. # 21524
Enhancing your Apple II vol I ••••••••••••• # 21822
Hexadecimal Chronicles ••..••.••.........• # 21802
Micro Cookbook I (Fundamentals) •.•••..•. # 21828
Micro Cookbook Il (Machine Language) •.... # 21829
Son of Cheap Video•.•.•.....••.... # 21723
TTL Cookbook ...•.........•........•..•. # 21035
TV Typewriter Cookbook••..•....•.... # 21313

FIGURE 9-4. One of the trickiest things involving proportional
spacing is proper column alignment.

One minor gotcha. When you do this, some of the columns may still not be aligned.
This is caused by lots of wide characters in one name and a few thin ones in another.
But, the column alignment will now be off by whole 12-pitch character spaces one
way or the other. Simply do a printout and paint green all the lines that are short and
paint pink all the lines that are long, using page high liters. Then add or remove a dot or
two or a space or two as needed. It all comes out even.

Reviewing, the first part of the line gets put down in full proportional spacing. Then
a tab is set to take out any microstaggering. Then you move to that tab. Then you put
down dots, and then you go back to full proportional spacing. To do this, you put
down your first character string, a comma glossary entry, a string of periods, a period
glossary entry, and your final listing. Then you dump to a printer, and add or remove
any whole dots as needed.

That quick and that easy.
The glossary command of"," combines moving forward one space, switching off

proportional spacing, setting a tab, backspacing, and then going to that same tab you
just set, and then doing another space.

Not bad for one keystroke.
If you like, you can follow this with spaces instead of dots. And that the "<open

apple> ." glossary entry does is get you back into proportional spacing. The "<open
apple>P" command would do the same thing.

Chances are that there are other things you might like to do with one keystroke
instead. There is lots of room left in the glossary for anything you like along these
macro lines. ·

Oh, yes. Almost forgot.
There are, of course, several obscure bugs in the Diablo 630 firmware, just as each

and every decent piece of firmware anywhere unavoidably and inevitably has obscure
bugs in it. As near as I can tell, these bugs come from sloppy initialization or else from
two routines using the same variable for two different uses.

Two examples. On the first right-to-left pass after setting up a full microjustify,
underline commands on the 630 either get ignored or else are badly garbled. So do
certain spoke commands involving "[esc)Y" or "[esc)Z". Unfortunately, you have to
restart microjustifying on each and every paragraph, since the microjustifying is far too
aggressive to use on the last line of a typical paragraph. And, getting back to our

Microjustify and Proportional Space Apple Writer lie 39

example, the first time you feed those assorted"," glossary commands to your 630, it
will misuse them.

The sledgehammer way around the centering hassle is to print each paragraph that
has any underlining or funny spokes in it left to right only. The way around the dot
adjusting routine is to "adjust" a line of several blank spaces before you try using real
characters on real lines.

What I am leading up to is ...

Strange bugs are likely to crop up if you try using printer
firmware in new, obscure, or oddball ways.

Expect this, and be willing to experiment your way to a
solution.

By the way, I have an older but WP enhanced 630. The newer ECS and API
machines may have these bugs corrected. On the other hand, there are almost
certainly new bugs introduced to replace the fixed ones. In general, the number of
bugs in a system will always increase with time.

As you go through the Diab/a examples, you are likely to find some really weird and
wondrous things that I have done. Things like a positive linefeed followed immedi
ately by a negative one. Stunts like this seemed to eliminate a bug that seemed to exist
at the time. The logical basis is that something got initialized this way that didn't
before.

Other times, it is sort of like whacking a mule twice with a 2 by 4. The first time gets
his attention; the second accomplishes what you really have in mind.

If it works, use it.
lffen ain't broke, don't fix it.
Now for the really fun part. The part that lets Apple Writer lie run away with al I of the

marbles. Of course, I'm talking about the neat things that start happening when you
begin automatically ...

IMBEDDING WITH WPL

Program 9-3 gets us started on the heaviest method of upgrading print quality.
This program is called WPL.FORMAT DIABLO 630. It takes a text file and imbeds

magic values in just the right places to radically upgrade your print quality. Text is
printed with proportional spacing, rather than the uniform spacing you would seem to
be stuck with. This means that a lowercase "i" is more closely spaced than an upper
case "W", and so on.

The results almost look typeset.
Secondly, all full lines that were fill justified are now fully microjustified, automati

cally expanding and compressing text so it will nicely and smoothly fit. Where before
you could only add whole spaces, you can now microjustify in spaces of ½20 of an
inch. Since the Diab lo microjustify is far too "aggressive" on incomplete text I ines, the
last line in a paragraph is automatically left justified instead. To not do this would
spread out the last line unacceptably. Unless you are working with very narrow
columns.

As additional features, any center justified text is automatically shadow printed,
stretched out slightly horizontally, and tightened vertically. Any underlined text is

" ~

40 Enhancement 9

PROGRAM 9-3 Diablo 630 "full Features" WPL Formatter

pnd
ppr[L]
pprFormatting for Diablo 630 Special Features:
ppr • •••.••...••••.••.••••....
ppr
ppradjusting squashticity
b
psx4 squashticity factor
f<>.dbl<>.dbl>.rm+(x)<
y?
p
e
f<<>.rm-(x)><
y?
p
pprimproving underline
b
f<<.ut><
y?

d f<\< [esc]E<
y?
pgodl
pgod2

dl f<\<[esc]R <
y?
pgod

d2 b
pprfix (.,)
f<[esc]R .<[esc]R.<a
p
p
f<[esc]R ,<[esc]R,<a
p
p
f<.[esc]R<[esc]R.<a
p
p
f<, [esc]R<[esc]R,<a
p
p
f<. ><.><a
p
p
pprfixing underline bug
e

e u
f<[esc]E<
p
pgoel
pgoe2

PROGRAM 9-3 cont

el f<><>[esc]\<
y?
f<[esc]E<
p
pgoe

e2 p
pprfix bold PS wheel
b
f<!<"'<a
p
p
b
f<)<[esc]Z<a
p
p
b
f/</\/a
p watch ut!
p
b
f/ [/</a
p
p
b
f/l/1/a
p
p
b
f/>/'/a
p
p
b
f/@/[esc]Y/a
p
p
pprsetting title microjuatify
pas==$A right margin• til
b

Microjustify and Proportional Space Apple Writer lie 41

f<>>.db2><>.db2>[esc]X [eac] [tab]z [esc] [tab]$A [e
sc] O [esc] [taa] • [eac] [tab] [A] > [esc]M<

y?
p .
f<>>.ff<>[esc]X>.ff<
y?
p
ppradjusting byline
b
f< by D<[esc]Xby D<
y?
p

42 Enhancement 9

PROGRAM 9-3 cont

f<><>[esc]M<
y
p
pprshadowing main title
psx5 lines in title
psx+l
b
f<>.db2<
p
pgoa3
pgoa2

a3 u
f<><
p
u
p

a f<><>[esc]%[esc]W<
y?
pgoal
pgoa2

al psx-1
pgoa

a2 b
pprtightening spacing
b
f<>.dbl<
p
pgob
pgob3

b h
h
f<>>><>[esc]U><
y?
pgobl
pgob3

bl f<>>><>>[esc]D><
y?
pgob2
pgob3

b2 f<>>><
p
pgob

b3 p
pprsetting body microjustify
pasF=$A • rm70
b
f<>.dbl<
p

....

f<>. fj >< [esc] X [esc]N [esc] [tab] z [esc] [tab] $A [esc] 0 [e
sc] [tab] z [esc] [tab] (A] [esc] /> .lj > [esc]M<A

PROGRAM 9-3 cont

p
pprjustifying insets
pas<=$A • rm60
b

Microjustify and Proportional Space Apple Writer lie 43

f ! i .lm+l2 ! [esc] X [esc] [tab] z [esc] [tab] $A [esc] 0 [e
sc] [tab] z [esc] [tab] [A] [esc]Mi .lm+l2 !A

p
pprfixing insets
b
f<>* <>[esc]X* [esc]U[esc]D[esc]M<A
p
pprshadowing titles
b
f<>.dbl<
p
pgoc
pgocl

C h
h
f <>. cj ><> .cj > [esc] \ [esc] X [esc] W [esc] '[Q) [BJ [esc] % <
y?
p
f<><[esc]N[esc]P><
y?
h
f<>.cj<
p
pgoc

cl p
pprfixing paragraph ends
b
f<>.dbl<
p
f<.><[esc]X.[esc]7[esc]/>[esc]M<a
p
b
f<>.dbl<
p
f<A><[esc]XA[esc]7[esc]/>[esc]M<a
p !=A bold ps
b
f#?%#[esc]X?[esc]7[esc]/%[esc]M#a
p
b
f<'><[esc]X'[esc]7[esc]/>[esc]M<a
p >=' bold ps · ·
pprstretch blurb
psx6 lines
b
f<> .db3><> .db3> [esc] 1J): [esc] [J) <

44 Enhancement 9

PROGRAM 9-3 cont

y?
p
pgof
pgofl

f f<><>[esc]U <
y?
p
psx-1
pgof

fl p
pin[GJ [G] (GJ--- detail work filename?---> =$d
psz+l for wpl supervisor
pas$d =$d
pcs/ /$d/
pgog
pdo$d

g pqt

Gotchas: Pairs of brackets mean control commands. [esc) = escape key, [LI means "<ctrl>L", etc. Note that
any isolated brackets really are isolated brackets.

Heavily indented lines are a continuation of the previous line and must be entered without
intervening spaces or carriage returns.

Fixed right margin values of 70 for body text, 60 for insets and 61 for a special title box are presently
built into this program. These values can be patched where shown and as needed, or prompting
can be added.

This WPL program assumes a Diablo 630 printer with an enhanced HPROS board having full word
processing features. The program MUST be customized if any other printer is to be used. Certain
features may not be available on other daisywheel configurations.

Be sure to follow the use rules in the text!

underlined with Diablo's underliner. Many of the apparent A Wile bugs either disap
pear or else become moot with this program.

Lots of other features are available in the various support modules. Best of all, you
can take what you want and leave what you don't want, customizing things to suit
your own particular word processing needs.

Most importantly, the Diablo formatting takes place immediately before printing.
There is no need to imbed or read all those weird and mysterious commands in your
working text files. What you do is take your plain, old text file, do a
"[Pl DOWPL.FORMAT DIAB LO 630", wait a minute or two for the tweed le, and then
print.

Please note you have to have the expanded WP options HPROS board in your
Diab lo 630 for this program to work fu I ly. Note also that the commands may have to be
changed to suit other daisywheels.

Microjustify and Proportional Space Apple Writer lie 45

There are usually two steps to formatting a document. The general, or WPL.FOR
MAT DIABlO 630 part does everything it can to format any old document. Then a new.
WPL.DETAIL WHATEVER takes over and handles anything oddball or specific that
your current document may need in the way of special treatment.

We will shortly see detailed working examples of many different WPL support
modules. Before we begin, please note that you are looking at what I am using for me.
If you don't like what you see, then rearrange things to suit yourself. The beauty of WPL
is its extreme flexibility. In fact, I know of no other computer language available
anywhere ever that has such powerful editing features.

Every attempt has been made to keep anything special out of your unformatted text
files. But, there are some simple rules you will have to exactly follow if you want these
ready-to-go modules to work for you. Naturally, you are free to eitherobey the rules or
else change the modules.

These are the present text file restrictions ...

1. The machine mli.lst be less than 85% full since your
text fi.fe will get longer.

2. No footnotes are allowed, unless you split the WPL
programs into smaller chunks.

3. An imbedded 11 .db 1" must precede the body of what
you want printed with fully justified paragraphs and
improved titles.

4. lmbedded 11.db2", 11.db3", etc., lines are needed to
point out any areas tha~ need spe,cial or detailed
treatment.

5. Each and every center justified line must be immedi
ately preceded by a 11 .cj"; even with multiline cen
tered titles.

6. Present text body margin settings are ..lm7 and
.rm70. Prograrn 9-1 is very sensitive to right margin
settings and mustbe customized on any change.

7. The reverse slash must be used only for underline
on/off calls. No backspaces are to be imbedded at
the end of an underline call.

8. Any paragraph that follows a centered title or an
inset bo",rnust be' pr~ceded by a blank line followed
by a II .fj",

9. A'II imbedded commands must always be done .in
lowercase.

10. All right margin changes must be relative rather than
absolute.

As.-yeu can see, there is very I ittle that is different from what you are probably now
doing. Just be sure to put a 11 .db 1" at the start of the body of your work, have a 11 .cj"

46 Enhancement 9

immediately before each and every title, and have a blank line and a ".fj'' preceding
every entry into plain, old paragraphs from anything else. Use only lowercase
imbedded commands.

Each WPL module starts with a comment line that explains what that module does
and ends with the last statement before the comment line that starts the next module.
In general, you can add and remove modules any way you like, although the order of
some modules is critical.

Here's a rundown of WPL.FORMAT DIABLO 630 ...

WPL

WPL is a supervisory language that runs an executive controlling program. It does
almost everything a person can do, given a long and detailed enough list of which keys
to press in what order. The way a WPL program is activated is by a [Pl, the DO
command, and the program name.

You write WPL programs exactly the same way you write any text file. You test and
debug them the same way you would test and debug any computer program. Full
details on what WPL is and how it works appears in the WPL Programming Manual.
Please note that WPL is intimately linked to Apple Writer lie.

Owning A WIie and not using WPL is like buying a Porsche just to listen to its radio.
You automatically exclude yourself from well over 95% of the potential of A WIie if
you do not become thoroughly WPL literate.

To understate, WPL is ''not easily" moved to another word processor. I know of no
other word processor available at any price that has anything remotely as flexible or
powerful as WPL available for it.

Squashticity

During printing, the Diablo will be in its full microjustify mode, while Apple Writer
lie will run left justified. When in left justify, AWlle tends to shorten lines by a few
characters, since, more often than not, the word wraparound will move the last word
down to the next line.

If left alone, this means that the average line will appear "stretched out'' during full
microjustify. lmbedded commands, particularly underlines, will also tend to stretch
lines. Stretching means that the line will be the same length as the others, except that
the individual characters will be further apart.

The optional "squasht1city" factor tells AWlle to give you longer lines than the
Diablo would normally use. I like a factor of plus four or so, which is how much the
AWlle right margin is advanced during formatting. This means that the average line
will end .up neither squashed nor expanded. Note that the Diablo fill justify can
expand or contract lines as needed. It is "elastic" in both directions, just like an
already-stretched rubber band.

The optimum squashticity will give you the best overall appearance. It also will ease
any problems AWlle has in shortening lines during Command imbedding, although
the AWIIE STRETCH I Fl ER patch does a much better job of this.

Squashticity is adjusted by finding the ".dbl" body marker and following it with a
.rm+ 4 or plus whatever. One gotcha. All right margin commands that follow must be
relative.

Improving Underlining

There are several undesirable features of the AWlle underliner, so it is best to
transfer this task to the 630 firmware.· You get faster operation, blacker and more

Microjustify and Proportional Space Apple Writer lie 47

uniform underlines, and no hassles underlining up to punctuation. You can also
underline and proportional space without ratty results.

To upgrade, the reverse slash underline token is cancelled and replaced with an
empty" .ut" .Then, pairs of reverse slashes are found. The first is replaced with a space
and a "start underline" command. The second of each pair is replaced with a space
and a "stop underline" command.This continues for all underline commands in the
text.

Next, the "stop underline" commands are checked for either periods or commas. If
the period or the comma is outside the underline, the trailing space is dropped. If the
period or the comma is inside the underline, it is moved outside. Either way, you end
up with your underline up to a period or a comma but stopping before the punctua
tion. This module also makes sure there is no space following.the period at a paragraph
end.

As we mentioned, there is a bizarre underline bug in the 630 that louses up
underlining on the first "backwards" carriage run after a change to microjustify. A
sledgehammer solution is used in this module. The document is scanned backwards.
For every paragraph with any underlining in it at all, the entire paragraph' is printed left
to right only.

Several gotchas. You must use this underline repair module before you inadver
tently insert any reverse slashes into the text by later modules. Reverse slashes might
be needed by margin settings, cancellations of right-to-left carriage motions, or
redefined spokes on oddball daisywheels. Right now, you cannot underline up to a
question mark or exclamation point, although you could easily add this feature if you
think it is important.

Using italics instead of underline is available on the 630-ECS. You also could do
italics by wheel swapping, but this takes a lot of time and dedication. Other viable
alternatives to underlining are to use doublestrike or shadow printing instead.

Redefining Wheel Spokes

As you no doubt have already found out, not all daisywheel elements have all their
characters coded the same as does the .Apple lie keyboard. Some spokes may be
missing, while others will print the wrong character. Yet other spokes will be available
that have no key for them. The usual result is some wildly wrong punctuation and
symbol errors.

The TITAN 10 wheel almost matches the Apple keyboards and AWlle. All of the
keys print the expected symbols in the expected way. You can also print a cents
symbol by using "<open-apple>w" and a closing single quote by using "<open
apple>W".

Incidentally, these "two hidden characters" are typical of most 96 spoke wheels.
There are two symbols on a 96 character wheel that cannot be directly printed. The
reason for this is that there are only 96 printable ASCII characters, and the $20 space
a_nd $7F delete are reserved. To print the hidden characters, you use imbedded
commands that I have coded into the Diablo glossary as "w" for the $20 wheel spoke
and "W" for the $7F wheel spoke. These also will get fouled up on the first backwards
630 pass after a switch to microjustification.

Anyway, if you try to use the BOLD PS printwheel, you will find 15 problem spokes.
These spokes will either print the wrong character or will print the right character on
the wrong code. Seven of these are coded wrong, while the remaining eight will print a
wildly different symbol.

Wrongly coded BOLD PS spokes include the opening and closing brackets, the
ope_ning and closing carats, the exclamation point, the vertical line, and the II@"
symoof. ,Missing entirely are cents, reverse slash, up carat, tilde, squiggly brackets,

48 Enhancement 9

opening single quote, and closing single quote. The only serious loss here is the up
carat, which limits your use of this wheel on some program listings.

But, proportional spaced listings are bound to lead to serious problems anyway.
Use the fixed pitch TITAN 10 wheel instead, whenever you are doing program listings
and dumps.

The eight "new" BOLD PS spokes are nothing to get excited about. These are listed
in the usual printwheel catalogs. The degree symbol can sometimes help round the
edges of big characters and other graphics dumps. Filled in, it makes a nice bullet.

What this module does is redefine the seven wrongly coded spokes. The document
is scanned, once for each of the seven spokes. Each spoke is replaced with its correct
coding. After this is done, the formatted listing will look wrons, but it will print
properly with a BOLD PS wheel.

Gotchas here include that this module only works correctly for the BOLD PS
printwheel. It also introduces some reverse slashes, so all the underline fixing must be
done before this module is used. There is also no attempt to use any of the "new"
spokes. If you really must have a copyright, trademark, double underline, degree
symbol, or whatever, you can pick them up separately with your detai~ work,
remapping them any way you care to.

Another major gotc_ha. Once the spokes are redefined, the new characters will
affect all of the modules that follow this one. Thus, when you set around to searching
for end-of-paragraph exclamation points, or "please don't justify" right carats, you
have to search for the already remapped equivalent character.

Main Title Rework

I use a main title that is inside a box formed from rows of dots. At present, the title
must be preceded by a blank line followed by a ".db2" marker. The present right
margin is 61.

This module sets up the words inside the title box for full microjustification and
proportional spacing. Then the byline that follows the main title is unjustified, keying
on "by D". Finally, five lines in the main title are shadow printed. For best shadow
printing, the carriage settling time is also increased. ·

This is admittedly a rather specialized module. You might like to rework it to suit
your own private "title page" needs.

Tightening Spacing

Titles in the body of your text will often look better if they are spaced 1½ lines apart,
instead of 2 full lines. This module finds each and every sequence of 3 successive
carriage returns in your body, and converts them into 2½ carriage returns. The result is
that all your titles get spaced by 1½ lines vertically.

What gets sticky fast is that AWlle software is keeping track of page lengths. It knows
nothing about half line feeds. This means you have got to keep the position on the page
the same as where AWlle thinks you ought to be. Otherwise, you'll get a bad case of
"page creep," where your headers and footers will keep wandering up or down with
respect to the page breaks.

The solution sounds hairy, but it works. On the first tightening, three carriage returns
are replaced with three carriage returns and a negative half line feed. On the second
tightening, three carriage returns are replaced with two carriage returns and a positive
half line feed . The result, for each pair of tightenings, is one return removed from the
text file and one line removed from the paper. It an comes out even, with no page
creep.

Microjustify and Proportional Space Apple Writer lie 49

One minor gotcha. You might end up with a rare shift of half a line on your page.
This happens if an odd number of tightenings takes place on a page. The next page
straightens things back out, so there is no page creep. Careful use of conditional form
feeds will eliminate this. Chances are nobody would notice anyway.

Body Microjustify

The body of your text is intended to start at position 7 and end on position 70. This
module finds all ".fj'' commands in the.body. It then converts them to ".lj'' for AWlle
and substitutes full 630 firmware proportional microjustify.

The module sets the 630 margins and switches on 630 justify while switching off
AWlle fill justify. AWlle ends up thinking it is left justifying text. The Diablo then takes
the single-line text string and does a full microjustify on it.

There are several gotchas. Each paragraph in the body that is preceded by some
thing funny, such as a title or an inset, must have a blank line and a ".fj" immediately
before it. Paragraphs that fol low paragraphs need no special treatment.

The right margin setting must be changed if you move your right body margin. To
simplify this, the WPL string $A is used. You then get the character you need out of
Table 9-2 and substitute it. We will later see a user prompting way of handling the same
task.

Insets

As you might have guessed by now, I like to use a lot of insets or "thought boxes."
The theory here is that your key points can be made to a reader who is quickly
scanning your message. You can also integrate your text and visuals more closely this
way. These thought boxes always have a border made of all asterisks. I try to make most
of them 40 columns wide, a leftover from good, old AWl .0 days. These are all
preceded by a blank line and a ".lm+12".

What gets sticky here is that you want to microjustify and proportional space the
contents of the thought boxes while maintaining a smooth left margin to the printing
inside of the box. Fortunately, the 630 firmware is reasonably good at justifying part of
a line.

Fig. 9-5 shows us the problem. You want to justify from the second printing
character from the left and not from the left border. Otherwise, you end up with a
ragged column inside the box.

The module first sets the. 630 right margin to 60 and then sets up a full microjustify
for the box. Then, each and every line in the box has its fill justify cancelled until after
the first asterisk. Two whacks with a 2 by 4 are needed to get the 630's attention, so
cancelling line feeds in both directions is used as a sloppy bugstomper. There is
normally no paper motion when this happens. The result is that the justification does
not begin until the first printing character after the box border.

Lots of gotchas here. Each inset must be preceded by a blank line and a ".Im+ 12".
Each must be exactly 40 spaces wide, and each must have a right margin at 60. Any
special columnar material or hex addresses will need special detail work. Asterisks
must presently be used for the box border.

Naturally, you are free to change any of this anyway you like. What I am showing
you is what I use for me. The beautyofWPL lies in its .extreme flexibility. Rearrange itto
suit yourself.

Any way you like ..
Just don't expect my code to automatically do exactly what you ask of it if you aren't

going to play by my rules. ·

50 Enhancement 9

lmbedding Commands in Applewriter lie

··
Verbatim Method -

Use the "<ctrl>-V" command to plant
control characters into your text
when and as they -are needed.

Glossary Method -

Use the glossary to give you single
keystroke entries of long imbedded
commands.

WPL Method -

Use the WPL word processing
language to enter or strip whole
documents of the needed commands.

FIGURE 9-5. Handling insets and "thought boxes" can get rather
tricky when you proportional space and micro
justify at the same time.

Shadowing Titles

Titles are shadowed by using shadow printing. Shadow printing whacks the char
acter, moves ½20 of an inch and then whacks it again. For optimum results, you also
have to slow the machine down while you are doing this. You also will want to spread
the title out somewhat.

This module goes through the body and finds each ".cj". It then cancels any
remaining modes, sets up the slower shadow printing, while slightly spacing out the
characters for that line. Normal speed is resumed at the end of the line.

The [BJ following the "[esc]Q" gives you 21bo of an inch extra spacing between
characters. This makes up for the space lost in double whapping, and g·ives you some
additional character spread. For less spread, use [A). For more, use [CJ, [DJ, etc.

Gotchas here include the need to precede each line to be centered by a ".ct: The
".cj'' must be the last thing before the title, and separate ".cj" commands must precede
a// lines of a multiline title.

I elected to use· the AWlle centering, rather than the 630 centering, since it seems
much easier to use and control. One disadvantage of this is that some titles may not
center themselves exactly. This is caused by the proportional spacing and becomes
bad on very long titles with lots of capital letters in them. Some adjustment is built ihto
this module, but you may have to touch up your centering here and there with your
detai I work.

Microjustify and Proportional Space Apple Writer lie 51

The other option of using the Diablo centering will give you exact centering, but
leads to all sorts of margin setting hassles. So far, I have used the AWlle left margin and
paragraph margin. The 630 left margin is left on column zero.

Actually, the BOLD PS wheel tends to overdo long sequences of all capital letters
anyway. You tend to use fewer "all caps" title strings with this wheel.

Fixing Paragraph Ends

The 630 microjustification is extremely aggressive. It will both crunch and stretch by
an amazing amount. Such aggressive justification is needed for very narrow columns.
But, on book-width lines of 63 characters, most last lines of most paragraphs will get
stretched out ridiculously far and will look awful.

To beat this, this module cancels the microjustification on the last line of each
paragraph. What happens is that the body is scanned for a period followed by a
carriage return. This is unique to a paragraph ending. That line then has its micro

. justification cancelled . With the right amount of squashticity and careful use of
hyphens, all of your paragraphs lines should look fairly uniform.

Note the2 by 4 technique here. Whack it a good one for openers. Then clobber it
again. The only nice thing you can say about this coding is that it works.

Just watch out for splinters.
Since some sentences end in question marks or exclamation points, these are also

scanned and corrected . So is a right carat, which lets you fake centering of an editorial
comment without enhancing it as you would a regular centered title. Note that the
right carat and the exclamation point have been redefined here, assuming a BOLD PS
wheel. Other wheels will need special treatment.

There is one very annoying gotcha. It is fairly easy to get some spaces following your
last paragraph period but before the carriage return. This is easy to let happen on
rework and changes. I tend to do this every time I break a long paragraph. Single
spaces before carriage returns are caught back in the underline module, but multiple
ones are not. If you have a last paragraph line that refuses to unjustify, use a glossary
command to search for hidden spaces.

In fact, it is best to always scan your copy before you do any formatting. Otherwise,
you will get final paragraph lines stretched margin to margin, even if they only have a
few words in them.

Stretching a Blurb

I call a blurb those lines that follow the main title and explain what the text is all
about. These look good when they are microjustified to the same width as the main
title and spaced out vertically by 1½ spaces each.

This module finds a ".db3" start-of-blurb marker and then adds an extra half~line
feed to each of the six blurb lines. After that, two negative full line feeds and a form
feed are used to reset the page position.

Gotcha: If you have fewer than six lines in your blurb, provide blank lines after your
blurb but before the form feed to add to a total of six. For more than six lines, change
the (x) line counter and add one negative line feed for each two blurb lines.

Detail Work

That should just about complete the automatic formatting that will handle most of
what you need in the way of automatic formatting and justification.

52 Enhancement 9

Note that these formatting modules do not pay much attention to the content of your
text files, so long as you obey some fairly simple rules. You are thus free to take older
and existing text files, and then make a few very minor and low-key changes to them.
Then, you can invisibly and automatically upgrade your print quality, just by running a
WPL program or two immediately before printing.

If you are a print quality perfectionist, there will always be some loose ends leftover
that apply to the one particular document you are printing. So, when the formatter is
finished, it asks you for the name of a detail work file. It then does the detail work
needed to put the final touches on one specific document. Note that custom detail
work will only apply to one specific text file . ,

Program 9-4 shows us two examples of detail work.
One of these is called WPL.DETAIL VAPORLOCK. A second is called WPL.DETAIL

E9.
I'll leave these modules for you to puzzle over.
In WPL.DETAIL VL, one module improves the title centering. The next one

unjustifies a reference bibliography at the end of the text. After that, one of the boxes
that has some columnar material in it gets repaired so that the columns are aligned.
Finally, the "V" and the ''A" in the title are kerned so thatthe top of the "V" overlaps the
bottom of the "A".

In WPL.DETAIL E9, the first module fixes up the little "configuration" box that starts
off this enhancement. Some titles are stretched out, and then a wider thought box is ·
improved. The suppliers list is also cleaned up some. A perfect cleanup was purposely
not done, since the copy need not be camera-ready.

It is normally a good idea to avoid doing any detail work at all, unless superb final
quality or "camera-ready" copy is really needed. The best approach is to "take half
and leave half." Repair anything obviously bad, but don't spend hours and hours
removing a glitch that nobody cares about anyhow ...

Avoid doing any detail work that is not really needed.

You can waste monumental amounts of time on things
nobody will notice.

As before, iffen it ain ' t broke, don' t fix it.
As an aside, it gets tricky to dump a glossary or a WPL program to a printer, because

the imbedded control commands will take over and start doing some really nasty
things. Ugly even. A bonus program called WPL.LISTER solves this hassle for you and
appears on the companion diskette to this volume. It was used to help create all the
program listings for this module.

Note that WPL.LISTER does not find imbedded backspaces, frontspaces, or start-of
footnote commands. These must still be hand patched when and where they crop up.
The program works by scanning for control characters, and then replacing them with
the WPL notation, such as an [esc) for the escape key, or a [QI for a DC1.

Ironically, WPL.LISTER is not very good at listing itself, although it does a beautiful
job on practically everything else.

FINAL TOUCHES

Because of all the bells and whistles, you may find WPL.FORMAT DIABLO 630
taking several minutes to format a long text file. You will probably also find it wasting

Microjustify and Proportional Space Apple Writer lie 53

PROGRAM 9-4 Two Examples of "Detail Work" Custom Formatting

p
p
p
p

630 detail formatting file WPL.VAPORLOCK
(requires DGLOSS on same disk)

ppr improve title center
b
f<THE VAPORLOCK
y?
p
f<TH< TH<
y?

<THE

ppr unjustify references
p
b
f/.rm+40/
p
f/[esc]M//A
p
ppr fix columnar list
b
f/.dbS/
p
pgog
pgog2

g psx3
gl f<[esc]U[esc]D[esc]M <<

y?

VAPORLOCK<

f <$< [esc] [tab] & [esc] U [esc] D [esc] M$<
y?
psx-1
pgogl

g2 p
ppr kerning VA
e
qedgloss

h f<VA<
p
pgohl
pgoh2

hl u
gl
gl
f<><>[esc]\<
y?
pgoh

h2 b
ppr [G] (G] [G]
pqt

.

54 Enhancement 9

PROGRAM 9-4 cont

p
p 630 detail formatting file WPL.DETAIL E9
p
ppr justifying use box
pas)=$A .rm36
b
f ! t .db4 ! [esc] X [esc] [tab] z [esc] [tab] $A [esc] 0 [e

sc] [tab] z [esc] [tab] [A] [esc]Mt .db4 !A
p
p
ppr fixing use box
psx7
b
f/.db4/
p
p

a f<>??<>??[esc]X[esc]U[esc]D[esc]M<
y?
p
p
psx-1
pgoa
p
ppr spreading titles
b
f/ MICROJ/MICROJ/
y? '
p
f/IONAL /IONAL/
y?
p
f/ SPA/SPA/
y?
p
f/IIe /Ile/
y?
p
psx4

bf/ Print Q/Print Q/
y?
p
f< *><*>
y?
p
psx-1
pgob
ppr justifying wide insets
p
b

PROGRAM 9-4 cont

pas@=$A .rm65
b

Microjustify and Proportional Space Apple Writer lie 55

f 1 i .lm+61 [esc] X [esc] [tab] z [esc] [tab] $A [esc] O [e
sc] [tab] z [esc] [tab] [A) [esc]Mi .lm+6 !A

p
ppr fixing supply list
b
f/.db8/
p
pgozl
pgoz

zl psx7
y f<:=*><

p
p
f< *>< *><
y?
psx-1
pgoy

z b
ppr [G] [Gl [G]
pqt

Gotchas: Pairs of brackets mean control commands. [esc] = escape key, [G] means "<ctrl>G", etc. Note
that any isolated brackets really are isolated brackets.

Detail work should be avoided.

These WPL programs assume a Diablo 630 printer with an enhanced HPROS board having full
word processing features. The program MUST be customized if any other printer is to be used.
Certain features may not be available on other daisywheel configurations.

Be sure to follow the use rules in the text!

time on things you neither want nor need. To speed things up, Program 9-5 is a
shortened formatter called WPL.FORMAT D630 NOFRILLS.

This one "only" does the squashticity, underline improvement, spoke fixing, space
tightening, body microjustify, title shadowing, and paragraph end fixing. As an added
convenience, you are prompted for your body right margin setting, letting you change
margins without changing the code. The no-frills version may be all you ever need,
and it formats much faster with fewer complications.

Almost certainly, the firsttime you try to use any of these routines, they wi II either do
nothing at all or else will thoroughly plow up your document. Expectthis and carefully
work with each module until you understand what it can and cannot do. Be wilJing to
experiment ahead of time, rather than fighting a deadline on something critical. Don't
forget that ".dbl" before the body of your text.

56 Enhancement 9

PROGRAM 9-5 Diablo 630 "No Frills" WPL Formatter

pnd
ppr[L)
pprDiablo 630 •no frills• Formatter:
ppr••...•.......•.............
ppr
pprPlease enter right margin setting as one SINGLE CHARACTER.
ppr
ppr[.rm50 = 2 .rm60 = < .rm70 = F .rm80 = P .rm90 = z, etc.)
ppr
pin Your right margin SINGLE CHARACTER-----> =$A
ppr
ppr
ppradjusting squashticity
b
psx4 squashticity factor
f<>.dbl<>.dbl>.rm+(x)<
y?
p
e
f<<>.rm-(x)><
y?
p
pprimproving underline
b
f<<.ut><
y?

d f<\< [esc)E<
y?
pgodl
pgod2

dl f<\<[esc)R <
y?
pgod

d2 b
pprfix (.,)
f<[esc)R .<[esc)R.<a
p
p
f<[esc)R ,<[esc)R,<a
p
p
f<.[esc)R<[esc)R.<a
p
p
f<,[esc)R<[esc)R,<a
p
p
f<. ><.><a
p

PROGRAM 9-5 cont

p
pprfixing underline bug
e

e u
f<[esc]E<
p
pgoel
pgoe2

el f<><>[esc]\<
y?
f<[esc]E<
p
pgoe

e2 p
pprfix bold PS wheel
b
f<!<"<a
p
p
b
f<]<(esc]Z<a
p
p
b
£/</\/a
p watch ut!
p
b
£/ [/</a
p
p
b
£/l/1/a
p
p
b
f/>/'/a
p
p
b
f/@/[esc]Y/a
p
p
pprtightening spacing
b
£<>.dbl<
p
pgob
pgob3

Microjustify and Proportional Space Apple Writer lie 57

58 Enhancement 9

PROGRAM 9-5 cont

b h
h
f <.>>><> [esc] U><
y?
pgobl
pgob3

bl f<>>><>>[esc]D><
y?
pgob2
pgob3

b2 f<>>><
p
pgob

b3 p
pprsetting body microjustify
b
f<>.dbl<
p
f<>. fj>< [esc] X [esc] N [esc] [tab] z [esc] [tab] $A [esc] O [e

sc] [tab] z [esc] [tab] [A] [esc]/>.lj > [esc]M<A
p
pprshadowing titles
b
f<>.dbl<
p
pgoc
pgocl

C h
h
f <> .cj ><> .cj > [esc] \ [esc] X [esc] W [esc] [OJ [BJ [esc] % <
y?
p
f<><[esc]N[esc]P><
y?
h
f<>.cj<
p
pgoc

cl p
pprfixing paragraph ends
b
f<>.dbl<
p
f<.><[esc]X.[esc]7[esc]/>[esc]M<a
p
b
f<>.dbl<
p
f<A><[esc]XA[esc]7[esc]/>[esc]M<a
p l=A bold ps

Microjustify and Proportional Space Apple Writer lie 59

PROGRAM 9-5 cont

b
fl?ll[esc]X?[esc]7[esc]/l[esc]Mta
p
b
f<'><[esc]X'[esc]7[esc]/>[esc]M<a
p >=' bold ps
pin[G] [G] [G]--- detail work filename?---> =$d
psz+l for wpl supervisor
pas$d =$d
pcs/ /$d/
pgog
pdo$d

g pqt

Gotchas: Pairs of brackets mean control commands. [esc] = escape key, [LI means "<ctrl>L", etc. Note that
any isolated brackets really are isolated brackets.

The indented line in the "body justify" section is a continuation of the previous line and must be
entered without intervening spaces or returns.

This WPL program assumes a Diablo 630 printer with an enhanced HPROS bocird having.full word
processing features. The program MUST be customized if any other printer is to be 1,1sed. Certain
features may not be available on other daisywheel configurations.

Be sure to follow the use rules in the text!

Follow those rules!
Once your document is formatted and dumped, there may still be some things you

aren't happy with. That's where your detail files come in . You can do as much detail
work as you feel you have to for any particular printing task.

Note that it is sometimes a good idea to add, change, or remove a word here or there
to improve the balance and the overall appearance of your text on the final page. Don't
be afraid to change the text to make it look better. The trick, of course, is to not change
the meaning. Sometimes, a slightly wordy or slightly awkward structure will "read"
better because it looks "cleaner" on the page. Hyphens can also be used to balance
lines.

Another thing to watch for are the "widows" and "orphans" created when only a
word or two ends up at the very top or very bottom body line on a page. There are lots
of obvious solutions that include conditional form feeds, rewording, and changing
".pl" values on the fly.

You might not like the appearance of certain proportionally spaced letters when
they end up beside one another. Type font design is an art, not a science. It is a real bear
to get all the characters looking good beside one another.

Compromise is the watchword .
Fortunately, you can easily move two adjacent characters closer together by using

the ½20 inch little backspace under the "<open-apple>I" command. You can also
stretch characters apart, but this is trickier. One way is to temporarily change the
spacing table with a suitable adder. This is how the centered titles got spread out to

60 Enhancement 9

make up for shadow printing. Another way is to arrange the line wording or position
ing so that the microjustifier will pull things slightly apart for you .

The proper name for pulling characters together is kerning. On hand-set lead type,
kerning is done by notching the lower right side of one letter and the upper left side of
the second one. The two type pieces then fit closer together, improving the balance
between the visual spacing and the actual spacing.

Kerning can do wonders ...

1984 ---> 1984

Thatcher ---> Thatcher

VAPORLOCK ---> VAPORLOCK

In the date, we have done a double little backspace to move the nine closer to the
one. Dates look so bad the normal way, that you may always want to do this. The gap
between the "a" and the "t" in the town name was closed with a single little
backspace, as was the gap between the "t" and the "c". A double little backspace was
also used between the V and the A in the tradename. Note how the bottom of the A is
actually under the top of the V, yet you still get a visual balance.

Another nasty gotcha rears its ugly head: The A WIie [F]ind and replace commands
do not let you directly imbed backspaces or frontspaces. It seems that the "one-line"
A WIie entry prompter used by [Fl refuses to accept backspaces, frontspaces, and real
carriage returns. Interestingly enough, the one-liner does accept control commands
directly, without any need for [VJ imbedding. Note that this is significantly different
than older versions of this program.

At any rate, neither you nor WPL can directly find, search, or replace an [HJ or
[esc] [HJ backspace. To beat this, you have to search for the character pair where you
want to insert the backspace. Then, you back up one with the left arrow key or use a
single lowercase "h" as your WPL command. Then, pull the backspace or little
backspace out of your glossary or off a disk text file.

Arrgh!
Naturally, you can play games like this forever. The trick is to do just enough detail

work, word changing, and kerning to give you acceptable results for what you are
trying to accomplish.

As to "perfect" print quality you can't get there from here.
Short of gravure.

WHAT NEXT?

Either of the fully automatic formatters and any detail files can themselves be
controlled by another "master control" supervisory WPL program. This is most useful
for printing entire book chapters or working over several disk drives at once. To do
this, use the $D string to hold the name of your detail file and bypass any user input.
You can also increment the (z) counter in WPL to ,let one supervisory program reuse

Microjustify and Proportional Space Apple Writer lie 61

the automatic formatter many times over. The detail file should then rerun the
supervisory program.

To handle this last trick, your main WPL program should check its (z) numeric
variableto find out which text file it is working with. The supervisor sets (z) to one and
gets a file, formats it, details it, and prints it. The supervisor is then rerun. (z) is
checked. This time, (z) is now two since it got incremented. So, the second text file is
given the royal treatment. Continue this for the entire document over as many files and
drives that you care to.

What you have done is used entire WPL programs to act as subroutines for each
other, keying on a (z) "program counter." The advantage of this over regular WPL
subroutines is that your total program can now be vastly longer than the 2048
character WPL single-program limit.

Should you need footnotes, you can shorten your WPL programs to 1024 or fewer
characters, and then chain them in the usual way.

There is supposedly a way to pick up a limited 630 hyphenation capability since the
Diablo can be trained to automatically carriage return on any hyphen within five

62 Enhancement 9

spaces of the right margin. I haven't looked much further into this, but it could be just
what you need.

Lastly, one of the big myths of computerdom is that you cannot do decent graphics
on a daisywheel printer. As Fig. 9-6 shows us, this myth is an outright lie. In fact, some
graphics can be done much better by daisywheel printers than by dot-matrix printers.
We'll save more details on this for a future enhancement.

Now it is your turn.
What can you do with all these exciting new word processing features that will lead

you toward superb print qua I ity? Use the response card or the hotline to close the loop,
letting us know what you come up with.

TEN YEAR COMPARISON OP CALLS

40 --------------- - - ------------ --- - ----- ----- -

"'"

30 ---------------------- .- ------------ -

"'"
20 ---- - ----- -------- - - - -----"'" -

"'" "'"

10 - - - - -

0 ..-.... --......... .-..........__ _

CAS.TLE PRESS RETURN, TO BEGIN.

WJ o I f B-"s ta i" ' BY SILAS S. WARNER

COPVRIGHTMUS· :E
___ 1_9_9_1 · SOFTWARE ""

FIGURE 9-6. High quality graphics are easily done using daisywheel printers, and HIRES
dumps can be done from within a slightly modified Apple Writer I le.

Microjustify and Proportional Space Apple Writer lie

The following programs are included on the companion
diskette to this volume:

DGLOSS
EGLOSS
AWIIE NULLIFIER
AWIIE STRETCHIFIER
WPL.FORMAT DIABLO 630
WPL.DET AIL VAPORLOCK
WPL.DETAIL E9
WPL.LISTER
WPL.CAMERA READY

Sixteen additional disk sides of Apple Writer tools and
tutorials are also available.

See the response cards in the back of the book for more
details.

63

This enhancement works only on the
Apple lie, although EEPROM program
ming details shown here are good for
use anywhere.

Enhancement

ABSOLUTE "OLD MONITOR" RESET
FOR THE lie

There's no need to put up with the inanities of the Apple //e's reboot
process. You can get back into total control with this simple, $6.00 .
monitor modification. Included are full details on programming new
EPROMs on old EPROM burners.

65

66 Enhancement 10

ABSOLUTE "OLD MONITOR" RESET FOR THE lie

Once upon a time, in a magic kingdom far away; there lived a truly wondrous
automobile.

It was the first "no excuses, no apologies" automobile ever available and was very
popular among the princes and the populace alike. Alas, this otherwise stupendous
machine had a single and very serious flaw. A flaw so insane and so incredibly stupid
that it could only have been placed there by a demented and wicked witch.

For, you see, this wondrous automobile had a large pedal on the floor that was
plainly marked "BRAKE." Drivers of this wondrous automobile expected and assumed
that, when this "BRAKE" pedal was pressed, the automobile would be brought to a
swift and safe stop, without harm to the driver, passengers, or any cargo.

But this was nought to be. Forsooth, the "BRAKE" pedal was really a magical pedal
under a horrible spell. If the "BRAKE" pedal was pressed by itself, the automobile, the
driver, and all contents got magically and instantly whisked back to the carriage house
from whence the trip began.

If a driver was foolish enough to press the "BRAKE" pedal at the same time he turned
on the windshield wipers, the wondrous automobile did, in fact, come to an immedi
ate stop. But, alas and alack, the immediate stop was so sudden and so violent that it
destroyed the driver, passengers, and all contents of the magical vehicle.

Well, not really destroyed. For you see, all that really happened is that a pair of
holes, five "urflogs" in diameter, got neatly punched completely through the driver,
any passengers, and all else that happenstance had placed inside the wondrous
machine.

When the grand vizeers were asked why the "BRAKE" pedal was not really a
"BRAKE" pedal, but instead an evil and demonic device, they offered two reasons.

Some vizeers said that the multitudinous makers of hood ornaments and glove
compartment door hinges did not want the drivers bringing their vehicles to a quick
and safe stop, since the hood ornaments and glove compartment door hinges could
then - horror of unspeakable horrors - actually be inspected and possibly modified
by the driver.

Others said that there must be some protection to keep the driver from inadvertently
and unintentionally pressing the "BRAKE" pedal if he did not, in fact, really want to
bring his wondrous automobile to a swift and safe stop. And, indeed, a much older
model of the same wondrous automobile, did have its "BRAKE" pedal situated where it
could easily be mistaken for the horn ring.

Lo and behold, a certain driver of the wondrous automobile finally decided he had
more than enough of this male bovine excreta.

He pulled out the old "BRAKE" pedal by its roots and threw it away. Then, he
replaced the magical "BRAKE" pedal with a real one that was able to swiftly and
controllably bring his wondrous automobile to a safe and sure stop. Having done so,
that driver grabbed the nearest handy princess, drove off into the sunset, and lived
happily ever after.

A fable you say? Only perhaps.
The Apple Ile monitor has a fatal flaw. Not in the code itself, but in the credibility of

what a system monitor is supposed to do. Fortunately, the Ile monitor is resident in
chips that can be swapped for stock 64K EPROMs. You can easily and swiftly change
the Apple lie firmware to do things the way you would like them done, rather than the
ways those who think they are in power choose to dictate unto you.

Let's see what is involved in burning your own 64K EPROMs, using them as Ile
monitor substitutes, and then providing your own "old" monitor absolute reset.

The code we will show you for an improved monitor does everything the original lie
monitor does, except for two crucial differences. First, there is no "hole blasting" done

Absolute "Old Monitor" Reset for the lie 67

on a cold restart. Secondly, if you keep your finger on the open-apple key for a
minimum of four seconds after a cold reboot, you will be dropped directly in the "old"
monitor, awaiting your machine language commands.

We will show you details here for the "old" lie ROM. Contact the helpline for free
information on the lie ROM or the "new" lie ROM replacement. You can tell an "old"
lie ROM by a 6502 (rather than a 65C02) in a stock machine, and its refusal to accept
lowercase Applesoft commands, "Old" lie ROMs were shipped up to January of 1985.
What we show you here will not directly work on a lie or a "new" lie.

We'll call this new monitor a KREBF monitor, named after the magic spell that
"repairs willful damage" in lnfocom's Enchanter adventure. Actually, we won't repair
any willful damage. We just won't do any damage in the first place. ·

Beyond this simple and special monitor change, you can now custom modify
Applesoft, or, for that matter, provide your own entire operating system for special
Apple lie uses. You can also use a custom pair of monitor EPROMs to do most of what a
"snapshot" cardwill do, at a tiny fraction of the cost.

Legally, I can not just "give" you an EPROM to plug into your Apple because of the
copyright hassles involved in the Apple firmware. Instead, I will show you a painless
and fully automatic process for converting your own firmware into a form useful for
EPROMprogramming. I will also give you the full new source code patch and detailed
instructions that will return absolute control of your lie back where it rightly belonged
in the first place. I will also show you one EPROM programming service.

The rest is up to you.

SFFFF -

$F800 -

$F00~ -

$Ef!ll0 -

$D000 -

$C000 -

"OLD"
MONITOR

APPLESOFT
FIRMWARE

&
INTERPRETER

80-COLUMN
FIRMWARE

&
ZE MONITOR

ENHANCEMENTS
(TIME-SHARED

WITH 1/0 SPACE)

MAIN
BOARD

LOCATION
El0

MAIN
BOARD

LOCATION
E8

FIGURE 10-1. Apple lie firmware is held in a pair of 8K x 8
ROMs. Standard 2764 EPROMS may be directly
substituted, letting you easily ~ustomize your lie.

68 Enhancement 10

ABOUT lie FIRMWARE

The stock Apple lie has 16K of ROM-resident firmware that sits between $C0O0 and
$FFFF. As Fig. 10-1 shows us, this firmware is held in two 64K read only memories.
One of these is called the "CD" memory and sits in main board location E8, while the
second is called the "EF" memory and sits in board location E10.

The traditional monitor area on older Apple ll's needed only the 2K space from
$F800-$FFFF. This area is still used as a small part of the lie monitor. To provide for the
many new lie features, expansion hooks have been added to also allow use of the
$C000-CFFF memory area.

Since $C00O-CFFF is in the 1/0, or input/output, area, special soft switches are used
to pick either "normal" 1/0 or "monitor" use of this address range. Thus, anything that
wants use of the "new'' lie monitor area must first turn off the 1/0 and then turn on the
"CD" firmware ROM. When you are finished using the new monitor area, the "CD"
ROM must be turned back off and the 1/0 must be reactivated.

There are four soft switches involved. One pair handles only the memory area from
$C300-C3FF and is used to make the 80""column firmware look like it is sitting in slot 3
of the 1/0 space. The second pair of soft switches is used to switch everything else and
is called the $CX00 switches. The "X" here can be a 1, 2, 4, 5, 6, or 7.

The top half of the CD memory and the bottom three-quarters of the EF memory hold
the Applesoft firmware. This code is apparently unchanged from earlier models in the
"old" lie firmware. ·

Older Apples used 16K read-only memories, or ROMs, that were not quite compati
ble with industry standard 2716 EPROMs. One enable pin was active high on the
ROM, compared to an active low state needed by the EPROM. While you could just
change some jumpers around to do some short-sighted 2716 replacements, to do the
job right, an inverter and a small plug-in card was needed.

·Without the inverter, certain plug-in cards could cause memory contention and
hang the machine. Quite a few articles on adding EPROMs to older Apples ignore this
key point, leaving you with a potential time bomb on your hands.

Thus, swapping for 2716 EPROMs did not get done much on older Apples because
of the hassles involved.

Very fortunately, the 64K read-only memory firmware used in the lie is directly and
exactly compatible with the standard 2764 EPROM. So, to customize things any way
you like, you simply swap chips ...

The "CD" or "EF" chips in a lie may be directly replaced
by 2764 EPROMs.

In case you have tuned into the microcomputer revolution late, a 2764 is a special
"read-mostly" memory that you can custom program and reprogram yourself. You
buy these for around $6.00 from ads in the back of any decent computer magazine.
You erase any old memory contents by using a special ultraviolet lamp. You
reprogram the memory to suit yourself by using either a programming card for the
Apple or a stand-alone EPROM programmer.

EPROM programmers are readily available at any hacker's club if you do not
already own one. We will shortly see a sneaky way to program the 2764 on older
burners that may not be directly able to handle such a large EPROM.

Absolute "Old Monitor" Reset for the lie 69

One commercial EPROM burning service is E-TECH SERVICES, Box 2061, Everett,
WA 98203 (206) 337-2370. They are specifically set up to burn monitor EPROM.

To customize your lie to suit yo\Jrself, all you have to do is burn one or two 2764
EPROMS and then swap them for the CD or EF memory they are to replace. That quick
and that simple.

There is one minor gotcha though ...

The 2764 EPROM used MUST be an Intel or Hitachi
brand with 28 pins and an access time of 250 nano
seconds or less.

It seems there are two kinds of 2764 EPROMs kicking around these days, real ones
and fake ones. Real 2764s don't eat 24-pin sockets.

THE IRfJ LINE GETS
HELD AT +5VDC DURING
A READ AND AT +24VDC
DURING A WRITE.

THE I PGII! LINE GETS
HELD AT +5VDC DURING
A READ AND IS GROUNDED
DURING A WRITE.

THE 00U LINE IS BROUGHT
LOW FOR A READ OR WRITE. ___ _
+5VDC TURNS OFF, OR
DISABLES THE CHIP.

+5
VDC

Al2 AO

THE I ADDRESS! LINES
PICK THE MEMORY
CELL TO BE WRITTEN
TO OR READ FROM.

FIGURE 10-2. How a 2764 is used.

THE [g] LINE GETS HELD
AT GROUND DURING A READ.
TO WRITE, CE IS NORMALLY
LEFT HIGH AT +SVDC WHILE
THE DATA AND ADDRESS IS
BEING SET UP. WRITING
IS DONE BY BRINGING PGM
TO GROUND FOR EXACTLY
50 MILLISECONDS AND THEN
RETURNING HIGH TO +SVDC.
A HIGH CE ALSO REDUCES
THE STANDBY CURRENT.

DO D7

THE I DATA! LINES
OUTPUT STORED VALUES
DURING A READ, AND
INPUT DATA TO BE
ENTERED DURING A WRITE.

70 Enhancement 10

Real 2764s are made by Intel, Hitachi, and several other mainstream suppliers.
These always come in a 28-pin package, and are the only type of 2764 usable as a
direct Apple monitor replacement. Both Motorola and Texas Instruments have their
own imitation versions of fake 2764s that come in 24-pin packages. These are not
compatible with anything anywhere, not even with each other.

Be sure to use a real 28-pin Intel or Hitachi 2764!

ABOUT 64K EPROMS

Fig. 10-2 shows us the pinouts for a real 2764, along with some use details.
To analyze any memory chip, break the package leads down into four groups of

supply, address, data, and control lines. Then analyze each group.
Only a single + 5-volt supply and ground is needed for normal reading of the 2764

EPROM. Supply current is typically around 150 milliamperes in the read mode.
The 2764 is a 64K memory that is organized as 8K by 8. This means that there are

65,536 bit locations that are programmable to a one or a zero. These bit locations are
arranged into word bytes of 8 bits each. There are 8192 different 8-bit words.

The address lines pick which word is to be written to or read from. Thirteen address
lines are needed, since 2 t 13 = 8192. To select a particular 8-bit word, the correct
binary pattern of ones and zeros is placed on the 13 address lines. Internal address
decoding inside the chip then· picks the correct byte for reading or writing.

The address lines always input from the microcomputer to the 2764.
Turning to our third group of lines, there are eight data lines. These data lines are

used to route the contents of the addressed byte to the microcomputer during a read.
The same lines are used to send the data to be written into the EPROM during a write.

Thus, the data lines input to the EPROM during a write, and output from the EPROM
during a read.

It turns out there are five possible activities an EPROM can be up to ...

fC

EPROM Activities

Erase

Program

Verify

Read

Standby

-Clears the entire memory when
exposed to strong ultraviolet light.

- Writes a single byte into memory.

- Checks a byte just written during pro-
gramming.

- Outputs a previously programmed
data value.

- Does nothing, allowing other data
bus uses.

These activities are handled by four control lines, call VPP, PGM, OE, and CE.
To use an EPROM, you first have to program it. Before you program it, you have to

erase anything old that was previously stored in it. Erasure forces all of the data bits to
ones, and all bytes to $ FF's. This erasing is done with a special ultraviolet lamp.

Absolute "Old Monitor" Reset for the lie 71

Alternately, you can leave the chip out in bright sunlight for a week.
Unlike newer EPROMs, the 2764 has no way to "unprogram" a single byte. You

erase the entire chip at once.
The VPP, or programming voltage, line provides normal + 5 volts de for standby

and reading. To program, this line must be brought positive to + 21 to + 24 volts.
Earlier EPROMs did not have this programming voltage on a separate pin, which
complicated things. On some micro systems, it is a simple matter to in-socket program
or alter a 2764. Unfortunately, the stock Apple lie does not have this capability.

At any rate, leave VPP at +5 to do anything but program. Raise it to +24 to
program.

Incidentally, rriost 2764s can use either a + 21- or a + 24-volt VPP programming
voltage. Some older 2732As and a few 2764As demand a maximum of + 21 volts
while being programmed and will self-destruct on the traditional + 24 volts. Check
the data sheet for the exact brand you are using if there is any doubt.

The PGM, or program line is a normal logic control signal. This one is grounded to
program and is set to + 5 for everything else.

The OE, or output enable line is brought low for a read or a write. A high OE line
disconnects the outputs of the EPROM, but leaves the chip addressed and fully
powered.

The CE, or chip enable is used to turn the entire EPROM on or off. During a read, CE
must be brought low. During a write,CE is held high until an address is selected and
data is input. Then CE is brought low for exactly 50 mil Ii seconds to blast the data value
into the EPROM. CE is then returned high while the address changes for the next byte.
A high CT also greatly reduces the standby supply power needed.

Apple chose to use the OE line as an alternate chip enable, since it is faster. They
were not in the least worried about saving any supply power, since they already had
problems meeting the minimum power supply current drain during the lie redesign.

Apple also permanently grounded the CE line and permanently held thePGM line at
+ 5, forcing any 2764 plugged into the main board into a read-only mode.

Thus, unless you want to do some major board carving, "in situ" programming of a
2764 EPROM in an Apple lie is not normally feasible. Instead, you have to use an
EPROM programmer or programming card and then swap out the chips.

Let's summarize these control lines . ..

VPP (pin 1) - Raise it to + 24 vdc for program-
ming, but hold itat + 5 for anything
else.

PGM (pin 27) -Ground it to program, but hold it at
+ 5 for everything else.

OE (pin 22) - Ground it all the time, unless you are
using it as a faster read chip enable.

CE (pin 20) - Ground it to read. To program, hold
it high, but bring low for 50 milli
seconds after address and data are
stable.

72 Enhancement 10

Reviewing, we have four control lines. VPP provides the special + 21 to + 24 volt
supply power needed during programming. PGM inhibits p(ogramming unless it is
grounded. OE is normally grounded, unless you are using it to speed up your system
access. CE is grounded for a read and held high for everything else. To blast one byte,
you stabilize your address and data lines and then bring CE low for 50 milliseconds.

We saw how we also had eight data lines that output from the EPROM during a read
and that input to the EPROM during a write. There are 13 address lines that pick which
of the 8K locations are to be written to or read from. Finally, there is the normal + 5
supply line, which is all you need for read or standby operation.

For more information on this and other memory chips, check into Don Lancaster's
Micro Cookbooks (Sams Cat. Nos. 21828 and 21829).

Except for one little detail, we are almost ready to blast some bits . ..

PROGRAMMING A 2764 ON AN OLD BURNER

Today, the 2764 costs around $6.00 and it will almost certainly drop further in price
when the larger 27128s and 27256s reach jellybean status.

Many of the older-EPROM burners cannot directly handle a 2764, and you won't
find too many newer models available yet that do. Some of the nasties involved in
physically upgrading an older burner include going from a 24 pin to a 28- pin socket,
providing that thirteenth address line, getting a PGM signal to the socket, or figuring
out how to stuff 8K worth of data into the 4K 1/0 space normally available on an Apple
lie.

SEEDS and STEMS

NEVER Write to a Game Diskette!

ALL game diskettes WILL eventually fail. It may be
because the oxide is literally ground off the diskette. Or
too much peanut butter and jelly gets on the disk surface.
Or a drive speed error. Or dirty or loose contaets. Some
how, some way, the game disk WILL eventually fail.

If a game diskette of yours fails later than an average game
diskette; then your customers will be very happy with
you. If, instead, early failures are common, you get a very "
bad reputation very fast.No matter that the drive is slow,
cables loose, and fingers sticky. You get blamed.

Which says that diskettes that are used to load only will
last much lpnger than diskettes that are continually used
during a game session. Even more importantly, if .you
EVER write to a game diskette, you WILL dramatically
shorten the aver.age life. Even to only save a high score.
The reason is that you can write the wrong thing to the
wrong plate, plowing the otherwise usable works.

Hence the.above rule.

Absolute "Old Monitor" Reset for the lie 73

We can bypass all these hassles by adding a fairly simple and easy-to-use adapter to
an older EPROM burner. This adapter will make the 2764 to be programmed look like
a sequential pair of older 2732s. If you can program a 2732, as most older EPROM
burners can, you can easily program a 2764 with this adapter.

You'il find a two position slide switch on the adapter. Put the switch in the low
position to program the low 4K of your 2764 as if it was a 2732. Then flip the switch to
the high position so you can program the high 4K of your 2764 as if it was a separate
2732.

That simple.
Once again, if you do not already own an older EPROM burner, you should be able

to borrow one at most any school or club. EPROM burner plug-ins are also widely
available in the $50--$150 price range.

Our adapter is intended for use with the MPC "ap-ep" EPROM burner peripheral
card for the Apple II or lie. Certain details might change for other burners.

At any rate, here are the parts you will need ...

Parts Needed for a 2764 EPROM Burner Adaoter

1 - 28-pin machined contact DIP socket
1 - 24-pin machined contact DIP socket
1 - 11-pin machined contact DIP strip
1 - 7-pin machined contact DIP strip
1 - 3-pin machined contact DIP strip

2 - bare machined contact DIP pins
1 - "extra" DIP socket for heatsink
1 - miniature SPOT slide switch
1 - 1 N4001 silicon power diode
1 - mini-grabber test clip

1 - ¼-watt resistor, any value
1 - 4" white No. 22 stranded wire
1 - 2" bare No. 24 solid wire
1 - 2" red No. 24 solid wire
2 - 2" green No. 24 solid wire
1 -'- 811 piece of electronic solder

optional - super glue, epoxy, or silicon rubber

J

These parts should be readily available anywhere, although you MUST be certain to
use the type of premium machined contact DIP socket that can safely be plugged into
one another. Do NOT use regular el-cheapo sockets.

74 Enhancement 10

You als9 MUST use a slide switch, rather than a toggle switch. Toggle switches work
"backwards" and will scramble the 2764.

A schematic of the adapter is shown in Fig. 10-3.
We'll skip a list of tools, for all you will need are the usual small soldering iron,

dikes, needle nose pliers, wire stripper, and some small support vise.
Note that this adapter and these tools are only needed if you are having trouble

burning a 2764 EPROM on an older EPROM burner. All you need to do the actual
upgrade on your lie is a progammed 2764 and a simple chip swap.

~========================:--------,--------------1----------

IN4001 _r··---------
MINI -GRABBER

F'Pt•=::::=:;"~ CLIPS TO POINT IN L.J;==ij- BURNER THAT IS +5
DURING READ ANO
GROUND DURING WRITE.

SPOT
SLIDE

SWITCH

A12= "0" Al 2= "1"

(PIN I OF U·IO ON
THE MPC ap-ep CARO .)

LIGHT LINES ARE
"STRAIGHT THROUGH"
CONNECTIONS.

FIGURE 10-3. This adapter will let you program a 2764 EPROM in an older EPROM burner
set up for a 2732.

Fig. 10-4 gives you complete construction details for the adapter. It is very easy to
build, and should take all of one-half hour. Be sure to use an "extra" machined
contact DIP socket or socket strip when you are soldering anything. This will keep the
pins properly spaced and aligned should the plastic soften. Plug this "extra" socket
into the cool ends of the pins being soldered so it straddles any pins to be heated.

If you use the optional epoxy or super glue, be careful not to get any gunk inside the
slide switch. Carefully test the switch after the glue sets.

Absolute "Old Monitor" Reset for the lie 75

NOTE: This adapter is needed ONLY if you must burn a 2764 EPROM on an older 2732 burner.
You do NOT need this adapter to replace a lie monitor ROM with a 2764 EPROM.

1. Turn the 28 pin machined contact DIP socket over and
identify pin 22 by inking the plastic. Then carefully

() bend pin 22 towards the center as shown.

Be sure to use the long 28 pin socket, and NOT the
short 24 pin one for the steps that follow. Also be
sure to work from the socket BOTTOM SIDE UP. Note
that the pins count backwards from usual when you do
this.

2. Push a single bare machined contact socket pin onto
pin 14 as shown. Then push a second socket pin onto

() pin 26, also as shown.

NOTE: in any soldering steps that follow, use the "ex
tra" machined contact DIP strip or socket as a heat
sink by clipping it onto the cool end of the pins being
soldered. This will keep the pins aligned should the
plastic soften.

Carefully solder the bare pins to socket pins 14 and
26. Use very little solder. DO NOT GET ANY SOLDER
ON THE PIN TIPS!

(3) Push an 11 pin machined contact DIP strip on pins
3-13 as shown.

()
Push a 7 pin machined contact DIP strip onto pins
15-21 as shown.

Push a 3 pin machined contact DIP strip onto pins
23-25 as shown.

4. Carefully roughen one side of the SPDT slide switch
and the bottom of the 28 pin DIP socket between pins

() 14 and 15. Use very fine sandpaper, steel wool , or an
ink eraser.

Glue the switch to the 28 pin DIP socket as shown, us
ing a drop of superglue or VERY LITTLE epoxy.

DO NOT GET ANY GLUE INSIDE THE SWITCH!

Let the adapter dry overnight. Then, verify that the
switch still works.

FIGURE 10-4. Building your 2764 adapter.

28 0 1
27 0 2
26 0 3
25 0 4
24 0 0 5

PIN.
0 0 6

22 - 0 7
0 0 8

20 0 0 9

BEND 19 0 0 10
18 0 0 11 goo
17 0 0 12 s; 16 0 0 13
15 0 0 14

I ' I I

1• I I I

•
22 - •

• •
• •
• • • • •
•

15 •

28 PIN
MACHINED
CONTACT

DIP
SOCKET

BOTTOM
VIEW

76 Enhancement 10

5. Prepare a two inch length of bare #24 wire. Connect
this wire first to pin 14 of the 28 pin socket, then to

() the nearest pin on the SPOT slide switch, and finally
to bent pin 22.

Solder all three connections. Use the "extra" DIP strip
or socket as a heatsink, moving it as needed.

Cut off any extra wire remaining.

6. Connect the 1 N4001 silicon diode from pin 1 to pin 28,
of the 28 pin DIP socket, making sure that the cathode

() bar of the diode goes to pin 1. Make mechanically
secure connections, but do not solder them just yet.

7. Take a 2-inch piece of red 24 solid insulated wire and
strip ¼ inch from one end and ¾ inch from the other.

()
Solder the ¼ inch end of this wire to the far unused
pin on the SPOT slide switch. Loop the ¾ inch end of
this wire around pin 26 and then to the diode lead
coming from pin 28.

Using the "extra" DIP socket as a heatsink, solder pin
26 to the red wire and pin 28 to the diode lead and the
wire. Cut off any extra wire.

8. Prepare two 2-inch green 24 insulated wire by stripping
¼ inch off each end. Solder one end of one green

() wire to the center SPOT switch terminal. Solder the
other end of this green wire to pin 2 as shown. Use
the "extra" DIP socket as a heatsink.

9. Solder one end of the second green wire to pin 1 of
the 28 pin DIP socket and the cathode (bar) lead of the

() power diode. Use the "extra" DIP socket as a heat
sink.

Do not connect the other end of this wire just yet.

FIGURE 10-4. cont

RED
WIRE

BARE

!FULL SIZE)

(SEE ABOVE FIGURE)

RED

GREEN

2 ND
GREEN
WIRE

Absolute "Old Monitor" Reset for the lie 77

10. Prepare a 4 inch white 22 stranded wire by stripping ¼
inch off each end. Route this wire UNDER the bare

() wire at pin 22 and UNDER the wire between pins 26
and 28 of the 28 pin DIP socket. Then solder one end
of this white wire to pin 27. Use the "extra" DIP
socket as a heatsink.

11 . If you care to, place a small blob of silicon rubber
sealant over all the wires and the back of the switch.

()
This will act as a strain relief and further support the
switch. Do not get any glop inside the switch.

12. Study the grabber to see how the wire gets attached.
Slide the cover of the grabber over the white wire, and

() then do a trail assembly, WITHOUT SOLDERING to
make sure the grabber will go together properly.

Then solder the grabber to the wire using a minimum
of solder.

Slide the grabber back together. Then test the grabber
to be sure it works properly.

13. Take the remaining 24 pin machined contact DIP
socket and identify pin 20 by inking the plastic.

()
Push the bare end of the flying green wire into the
socket (TOP) end of pin 20 on the 24 pin socket.

Align the sockets so that pin 14 of the 28 pin socket is
above pin 12 of the 24 pin socket, and that the notches
are at the same end, but staggered from each other.

Solder the green wire to pin 20 on the 24 pin socket.
Use the "extra" DIP socket as a heatsink. Be sure to
solder to the TOP side of the 24 pin socket.

FIGURE 10-4. cont

WHITE
STRANDED

WIRE

'
I I

'

J~ITE
STRANDED
WIRE

I
I
I

I MAKE SURE
COVER WILL
SLIDE ON BEFORE
SOLDERIN G!

1 o o 24
2 O o 23
3 O O 22

GO UNDER
EXISTING
WIRES

4 o o- PIN
5 O o 20
6 0 0
7 O O 18
8 0 O 17
9 O O 16

10 O O 15
11 O O 14
12 O O 13

24 PIN MACHINED
CONTACT DIP SOCKET

TOP VIEW

78 Enhancement 10

14. Snap the two sockets together, being sure that the
switch end is flush and the notch ends are staggered.

()
Verify that Pin 3 of the 28 pin socket goes to pin 1 of
the 24 pin socket.

This completes the adapter.

If you are going to program lots of 2764's, you might
want to plug or solder a 28 pin ZIF socket into your
adapter. These are fairly expensive.

15. Study the schematic of your EPROM burner and find a
point that is grounded during WRITE and at + 5 during

() READ. Place a small wire hook or loop at this point In
the burner circuitry.

On the MPC ap-ep EPROM card, carefully tin the very
top of pin 1 of U10, and then add a small wire loop as
shown in the inset to Figure 10-5. Test grab this loop
with the grabber.

FIGURE 10-4. cont

SNAP TOGETHER,
THIS END
FLUSH

You might laterwantto add a 28-pin ZIF, or ,z;ero insertion force, sockettothetopof
the regular socket. Depending on the pins on the ZIF, this may plug in or may have to
be soldered. ZIF sockets are usually rather expensive. · ·

Fig. 10-5 shows you how to use the adapter on the MPC "ap-ep" card. A very slight
modification to the card itself is needed. You have to add a small wire hook to the top
of pin 1 of integrated circuit Ul 0. The easiest way to do this is to tin the top of the pin
with a very small amount of solder. Then bend a hook in the end of a resistor lead.
Reflow solder the resistor lead in place. Finally, cut away all of the resistor except
enough lead to form a small loop. Then, throw away the resistor, or reuse it elsewhere.

If you are using a different card or stand-alone burner, make sure you find a place
that is at ground during writing and at+ 5 during reading. Add a small wire hook to
this point so the grabber can access this signal. Also be sure that pin 1 will be at + 5
volts during read and at + 21 or + 24 volts during programming.

One detail. Note that the 2732 requires a VPP signal of ground for a read and + 21
or + 24 volts for a write. The 2764 instead requires a VPP signal of + 5 volts for a read
and + 21 or + 24 volts for a write. This read supply difference is the purpose of the
diode between adapter pins 1 and 28. If you are using an oddball EPROM burner,
make sure that no "hard" ground shorts this diode or a supply line.

To install the adapter, put it in the existing 24--pin ZIF socket so that the switch points
away from the ZIF handle. You might have to jiggle the handle slightly, center the
adapter, and then slide the locking handle home, as there is a very slight "negative
clearance" between the open handle and the adapter. Then glomp the grabber onto
the wire hook.

SOLDER 2 ND
GREEN WIRE
TO SOCKET #20

ADAPTER
FITS 21F
SOCKET
SWITCH END
DOWN

t::, ,----, 'il ___ J
;Jr----j
i.:~.---.__,.--------, I

I I
I I
I I
I

MOVE SWITCH LEFT (GND)
TO PROGRAM LOW HALF
OF 2764.

MOVE SWITCH RIGHT (+5 V)
TO PROGRAM HIGH HALF
OF 2764.

BE SURE TO USE
2732 PERSONALITY
MODULE; LEAVE
S2 & S3 OFF

Absolute "Old Monitor" Reset for the lie 79

~
I I
I I
L....J

r.-'"1
I I
I I
I I
LJ

~ ~ I I
I I I I I I I I

L...J L_J

MPC
AP-EP

r.'-'7 i;v-,
I I I I
I I I I
I I I I
I I I I
L...J L...J

WIRE HOOK
ADDED TO TOP OF
PIN 1 OF UIO

ATTACH GRABBER
HERE.

r.--17
I I
I I
I I
L...J

r.'--'1
I I
I I
I I
I I
L...J

FIGURE 10-5. Using the 2764 adapter on the MPC "ap-ep" burner card.

Two gotchas ...

Be CERT Al N that the EPROM burner or card is configured
for a 2732 burn!

NEVER try connecting or disconnecting the grabber with
a 2764 in place!

As a special note to MPC "ap-ep" users, also be sure both S2 and S3 are in their OFF
position, pointing towards the bottom of the card.

80 Enhancement 10

Here are the rules on the slide switch use ...

The slide switch points to GROUND (or pin 14) for a low
address A 12.

The slide switch points to + 5 VOLTS (or pin 28) for a high
address A 12.

Use the LOW switch position for a "C" or "E" monitor
burn.

Use the HIGH switch position for a "D" or "F" monitor
burn.

You might like to mark a "0" on the left switch position and a "1" on the right switch
position.

Well, we now have a way to substitute for a lie monitor ROM. And we now have a
way, to program a 2764 on an older burner. All we need now is a way of ...

CAPTURING THE lie MONITOR

Catching the "D", "E", and "F" segments of the monitor ROM is rather trivial. In
fact, some burner card software will let you simply move their buffer directly to these
locations.

But the $C00O-CFFF monitor capture is a bit tricky and nonobvious.
So, Program 10-1 shows you an Applesoft program called SNATCHMON. What

SNA TCHMON does is grab four 4K segments of the monitor. It places these on disk
under the names of IIEMON.C, IIEMON.D., IIEMON.E., and IIEMON.F.

You then modify these four segments as needed for your custom monitor.
These are saved to disk intending to be BLOADed to a buffer at $8000-8FFF. You

can relocate these as needed if your EPROM burner card requires a different buffer
area. If you have a stand-alone burner, you can use a modem program to send these
binary files out as serial data, and then use them as needed.

This Applesoft program automatically captures your existing Apple lie monitor
firmware and converts it into files convenient for customizing and EPROM burning.

SNATCHMON is suprisingly fast, since all of the actual moves are done using the
monitor "M" command. Suitable POKEs activate each move as needed. It is abso
lutely essential that the Y register be zeroed before a monitor move. To do this, any
SNATCHMON move CALL first goes to a five byte machine program at $7FFB that
clears the Y register and then jumps to the actual move routine at $FE2C.

Locations $3C (low) and $3D (high) hold the move starting source address. Loca
tions $3E (low) and $3F (high) hold the move ending address. Finally, locations $42
(low) and $43 (high) hold the starting destination address. After these six locations are
POKEd with the right values, the move can be made.

If you're having trouble converting Applesoft decimal into machine hex, check into
the Hexadecimal Chronicles (Sams Cat. No. 21802) for instant conversions.

To capture the $Cl 00-CFFF monitor as IIEMON .C, you have to flip two pairs of soft
switches just right. The magic switches involve $C006, $C007, $CODA, and $C00B.
Soft switch $C007 turns ON the monitor for the $CX00 access, while $C006 turns ON

PROGRAM 10-1 Listing of SNATCHMON.

10 REM
18 REM ***********************
20 REM * *
22 REM * "SNATCHMON" *
24 REM * IIE MONITOR GRABBER*
26 REM * FOR EPROM BURNERS *
28 REM* *
30 REM* VERSION 1.0 *
32 REM* *
34 REM* *
36 REM * COPYRIGHT 1984 BY *
38 REM * DON LANCASTER AND *
40 REM* SYNERGETICS, BOX *
42 REM* 1300 THATCHER AZ. *
44 REM* 85552. 602-428-4073 *
46 REM* *
48 REM* ALL COMMERCIAL *
50 REM * RIGHTS RESERVED *
52 REM * *
54 REM ***********************

[J]

80 REM THIS PROGRAM "CAPTURES"
82 REM THE APPLE IIE MONITOR
84 REM INTO FOUR 4K WORKFILES
86 REM FOR USE WITH AN EPROM
88 REM BURNER WHOSE WORK FILES
90 REM BEGIN AT HEX $8000. [J]

99 REM [J]
•••••••••••••• ". • • • • • [J]

Absolute "Old Monitor" Reset for the fie 81

[J)

100 TEXT: HOME: CLEAR: GOSUB 2000: REM GET TUTORIAL
110 VTAB 12: HTAB 7: PRINT "MONITOR SNATCH IN PROGRESS"
120 PRINT: FLASH: HTAB 14: PRINT "PLEASE WAIT": NORMAL
199 REM [J)

• [J]

200 REM: $Cl00-CFFF GRAB [J]

210 POKE 32763,160: POKE 32764,00: POKE 32765,76:
POKE 32766,44: POKE 32767,254:
REM CLEARY REGISTER BEFORE MOVE! [J)

220 POKE 32768,0: POKE 60,00: POKE ~1,128: POKE 62,254:
POKE 63,128: POKE 66,01: POKE 67,128: CALL 32763:
REM ZERO $8000-$80FF [J]

230 POKE 49159,0: POKE 49163,0:
REM READ INTERNAL C3 AND ex ROM [J]

82 Enhancement 10

PROGRAM 10-1 cont

240 POKE 60,00: POKE 61,193: POKE 62,255: POKE 63,207:
POKE 66,00: POKE 67,129: CALL 32763:
REM MOVE $Cl00-$CFFF [J)

250 POKE 49158,0: POKE 49162,0:
REM READ USUAL CJ AND ex SLOTS [J]

260 PRINT: PRINT "[D]BSAVE IIEMON.C,A$8000,L$1000
270 REM: SAVE $Cl00-$CFFF TO DISK [J]

299 REM [J]
• [J]

300 REM: $D000-DFFF GRAB
310 POKE 60,00: POKE 61,208: POKE 62,255: POKE 63,223:

POKE 66,00: POKE 67,128: CALL 32763:
REM MOVE $D000-$DFFF [J)

320 PRINT: PRINT "[D]BSAVE IIEMON.D,A$8000,L$1000
399 REM [J]

[J)

400 REM: $E000-EFFF GRAB [J]
410 POKE 60,00: POKE 61,224: POKE 62,255: POKE 63,239:

POKE 66,00: POKE 67,128: CALL 32763:
REM MOVE $D000-$DFFF [J)

420 PRINT: PRINT "[D]BSAVE IIEMON.E,A$8000,L$1000
499 REM [J]

[J]

500 REM: $F000-FFFF GRAB [J]

5·10 POKE 60,00: POKE 61,240: POKE 62,255: POKE 63,255:
POKE 66,00: POKE 67,128: CALL 32763:
REM MOVE $F000-$FFFF [J)

520 PRINT: PRINT "[D]BSAVE IIEMON.F,A$8000,L$1000
599 REM [J] [J)

600 TEXT: HOME: CLEAR
610 FOR N = 1 TO 30:ZZ = PEEK (49200) + PEEK (49200) +

PEEK (49200): NEXT N: REM BRACK [J)

900 PRINT "MONITOR SNATCH COMPLETE": PRINT: END
910 REM [J]

•••••••••••••••••••• · [J]

2000 REM: TUTORIAL AND PROMPT [J)

Absolute "Old Monitor" Reset for the lie 83

PROGRAM 10-1 cont
.

2008 POKE 49167,0: REM ALTSET ON
2010 VTAB 1: HTAB 12: FOR NN = 1 TO 15:

PRINT CHR$ (127);: NEXT NN: PRINT
2012 HTAB 12: PRINT CHR$ (127);" SNATCHMON ";

CHR$ (127)
2014 HTAB 12: FOR NN = 1 TO 15: PRINT CHR$ (127);:

NEXT NN: PRINT
2015 PRINT: PRINT
2016 PRINT "This program 'captures' the Apple IIe's monitor

ROM into four 4Kx8 binary files named IIEROM.C
thru IIEROM.F": PRINT

2017 POKE 1677,162: POKE 1686,162:
REM REAL QUOTES WITHOUT TEARS

2018 PRINT "Default use address is $8000, as needed by the
MPC ap-ep EPROM burner.": PRINT: PRINT

2020 PRINT "Please insert SAVE disk into Dr.ive 1.": PRINT :
PRINT: PRINT "Then press <space> to CONTINUE": PRINT

2022 HTAB 15: PRINT "-,or-": PRINT
2024 HTAB 13: PRINT"< escape> to ABORT": PRINT: PRINT
2026 HTAB 13: PRINT "---< >---"; CHR$ (08); CHR$ (08);

CHR$ (08); CHR$ (08); CHR$ (08);
2028 GETZ$
2030 IF Z$ > <""THEN TEXT: HOME: CLEAR: END
2040 TEXT: HOME
2050 POKE 49166,0: REM PRIMARY CHARACTER SET
2100 RETURN

Gotchas: [DJ means "imbed an "escape-D" into your listing.
[J] means "imbed an "escape-J" into your listing.

This program is best run in the "old" 40-column mode with the 80-column firmware inactive.

the normal l/0. Soft switch ·$COOB turns ON the monitor for $C300 access, while
$C00A turns ON the normal slot 3 usage.

Note that these switch flips are backwards from page 214 of the Apple lie Reference
Manual.

84 Enhancement 10

To repeat ...

Soft switch $C006 turns ON the usual $CX00 1/0 space,
and turns OFF the monitor "CD" ROM. (Decimal 49158)

Soft switch $C007 turns OFF the usual $CX00 1/0 space,
and turns ON the monitor "CD" ROM. (Decimal 49159)

Soft switch $C00A turns ON the usual $C300 1/0 space,
and turns OFF the monitor "CD" ROM. (Decimal 49162)

Soft switch $COOS turns OFF the usual $C300 1/0 space,
and turns ON the monitor "CD" ROM (Decimal 49163)

Be sure you correct your reference manual. Very bad things happen if you get these
actions mixed up. Note that you must write to these locations to activate them, such as
with a "C006:00 [er]" or a "POKE 49158,0 [er]".

Reads just won't hack it.
There are a few other soft switches used to control the monitor ROM area, but we

need not worry too much about these here. Normally, a cold boot is done before you
try running SNATCHMON, which flips the switches into their "normal" positions.
You then flip soft switches $C007 and $COOS long enough to move the $Cl 00-CFFF
monitor image to $8100-8FFF, and then flip these switches back to their usual $C006
and $CODA positions.

SNATCHMON assumes you have a single disk drive. A "press the spacebar"
prompt lets you change diskettes if you want the images of IIEMON.C, IIEMON.D,
IIEMON.E, and IIEMON.F to end up on a different diskette.

MODIFYING THE lie MONITOR

The lie monitor is crammed full and has very little in the way of free bytes. There are
a few bizarre bugs, such as a programmer's ASCII first name that can get executed as
op-codes by certain programs accessing <ctrl>-Y atthe old location. The percentage
of "compatible" II+ programs is far lower than Apple cares to admit, since just about
any decent II+ program makes use of "illegal" monitor access. As a general rule,
schlock II+ programs are lie compatible, while creative and useful ones are not.

Areas available for rewriting are the cassette routines, the screen message, and the
"Bryan" code. I urge you not to clobber the cassette routines, since cassettes can often
salvage a disaster, even after all else has failed.

About the only monitor area that nobody, but nobody, wants to keep is the hole
blaster from $C249 to C260.

So, as an example of patching the monitor, we will overwrite this hole blaster with
code that accesses the old monitor.

The source code appears as Program 10-2, and is called KREBF SPELL.SOURCE,
and assembles into the patch called KREBF SPELL. This module is simple enough that
we can forego a flowchart.

This EDASM program provides the patch needed to overwrite the "hole blaster" in
the monitor with a timed access to the "old" monitor entry point.

You get to location $C249 on a "[ctrl] <open-apple> [reset]. We first blast the
warm start location at $03F4 by incrementing it. This tells the Apple that we are to do a

Absolute "Old Monitor" Reset for the lie 85

PROGRAM 10-2 Listing of KREBF SPELL.SOURCE.

NEXT OBJECT

8249: 8249 3

8249: 5
8249: 6 J
8249: 7
8249: 8
8249: 9 J
8249: 10
8249: 11
8249: 12
8249: 13
8249: 14
8249: 15
8249: 16
8249: 17
8249: 18
8249: 19
8249: 20
8249: 21
8249: 22
8249: 23
8249: 24
8249: 25

8249: 27

8249: 29
8249: 30
8249: 31

8249: 33
8249: 34
8249: 35
8249: 36
8249: 37
8249: 38
8249: 39
8249: 40
8249: 41
8249: 42

FILE NAME IS KREBF SPELL

ORG $8249 Overwrites $C249 of IIE ROM CD

* *
* -< KREBF SPELL >- *
* *
* (REPAIR WILLFUL DAMAGE BY Ile ROM *
* *
* Version 1.0 ($C249-$C260) *
* *
* 1-24-84 *
* *
* *
* Copyright c 1984 by *
* *
* Don Lancaster and SYNERGETICS *
* Box 1300, Thatcher AZ., 85552 *
* *
* (602) 428-4073 *
* *
* All commercial rights reserved *
* *

*** WHAT IT DOES***

This patch gives you an alternate to the stock
Ile system monitor when properly burned into a
2764 EPROM replacement for the CD monitor ROM.

There are two improvements over the original:

1. There is no hole blasting or other willful
damage done on cold reboot.

2. Holding the op.en-apple key down for four
or more seconds on a cold reboot will drop
you into the "old" monitor at the "old"
entry point, for immediate••• access.

86 Enhancement 10

PROGRAM 10-2 cont

8249:

8249:
8249:
8249:
8249:
8249:
8249:
8249:
8249:
8249:
8249:

8249:
8249:
8249:
8249:
8249:
8249:
8249:
8249:
8249:

8249:

8249:
8249:
8249:
8249:

. 8249:
8249:
8249:
8249:
8249:
8249:
8249:
8249:
8249:
8249:
8249:

8249:

8249:
8249:

45

47
48
49 ;
50
51
52 ;
53
54 ;
55
56

58 ;
59
60 ;
61;
62
63
64
65 ;
66

68

70 ;
71;
72
73
74
75
76
77 ;
78;
79
80 ;
81
82 ;
83
84 ;

87

89
90

*** HOW TO USE IT***

To INSTALL the KREBF spell:

1. BLOAD an image of IIEMON.C into $8000-8FFFF.
Then BLOAD KREBF SPELL Then BSAVE KREBFMON.C,
A$8000, L$1000.

.
2. Use KREBFMON.C as a buffer image to burn the

bottom half of a 2764 EEPROM. Use IIEMON.D
to burn the upper half. Verify and then
replace the Ile CD monitor with this 2764.

To USE the KREBF spell:

1. Do a cold reboot in the normal way for normal
uses. Just don't stay on the open-apple key
for a ridiculously long time.

2. To drop into the "old" monitor, do a cold
reboot in the normal way, EXCEPT hold down
the open-apple key until the"*" appears.

GOTCHAS

Entry into the old monitor is with the I/O space
disabled and the CX00 ROM enabled.

To regain control of I/O, enter "C006:00<cr>",
after dropping into the old monitor.

The 2764 used MUST be a 28 pin INTEL or HITACHI
brand with an access time of 250 nanoseconds.

Do NOT use MOTOROLA or TEXAS INSTRUMENTS 2764's,
since they are not and never were.

EPROM burning methods vary with the programming
card design. See Enhancement 110 in the SAMS

,Enhancing your Apple II series for more detail.

ENHANCEMENTS

Other, more powerful monitor modifications can
be made using the same techniques shown here.

Absolute "Old Monitor" Reset for the lie 87

PROGRAM 10-2 cont

8249:
8249:
8249:
8249:
8249:
8249:
8249:

8249:

8249:
8249:
8249:
8249:
8249:

8249:

8249:
8249:
8249:
8249:
8249:

8249:
8249:
8249:
8249:
8249:
8249:
8249:
8249:
8249:
8249:
8249:
8249:
8249:
8249:
8249:
8249:

007D
FF59
C061
03F4
FCA8

91;
92
93 ;
94
95 1
96
97

99

101
102
103
104
105 ;

107

Similar ideas can be applied to the EF monitor
ROM for a totally custom system.

By diverting the NMI to your own code, you can
replace much of what a memory image card does
at a tiny fraction of the cost.

*** RANDOM COMMENTS***

The "KREBF" spell for repairing willful damage
originally appeared in Infocom's ENCHANTER.

It turns out enhancers need this spell even
more than enchanters do.

*** HOOKS ***

109 CSUMFIX EQU $7D ; Must force $OBAS checksum
110 OLDRST EQU $FF59 ; Old reset entry point
111 OPENAPL EQU $C061 ; Open apple key
112 PWREDUP EQU $03F4 ; Powerup funny EOR
113 WAIT EQU $FCA8 ; .Monitor time delay

116 ;
117
118
119 ;
120 ;
121;
122
123 ;
124 ;
125 ;
126
127 ;
128 ;
129
130 ;
131

*** KREBF SPELL***

The KREBF SPELL is a patch that overwrites
the hole blaster in the original "CD" ROM.

The code is replaced with a timer loop that
causes a jump to the •01d• monitor routine
if the open-apple key is held down for more
than four seconds after a cold reboot.

Actual time delay is done by the monitor
WAIT subroutine.

Note that the checksum correction byte must
force an overall $OBAS checksum for all bytes
used in this patch.

88 Enhancement 10

PROGRAM 10-2 cont

8249:EE F4 03 133 START INC PWREDUP 1 Abort warm restart

824C:A0 lC 135 LOY 1$28 For 40/lOths of a second

824E:A9 cs 137 RETRY LOA l$C5 for one tenth of a second
8250:20 AB FC 138 JSR WAIT stall via monitor delay
8253:2C 61 co 139 BIT OPENAPL 1 read the open-apple key
8256:10 oc 8264 140 BPL START+$1B and exit on key release
8258:88 141 DEY one less count
8259:D0 F3 824E 142 BNE RETRY 1 and keep it up
825B:4C 59 FF 143 JMP OLDRST go old monitor on timeout

825E:7D 145 DFB CSUMFIX 1 Fix diagnostics checksum

825F:00 00 147 DFB $00,$00 Two bytes complete fill

cold reboot, rather than letting the applications program in use "capture" the reset
back to itself.

Then, we run through a timing loop 40 times. Each time through, we stall for one
tenth of a second via the monitor WAIT routine at$ FCA8. We then check to see if the
open-apple key is released. If it is released, we continue with a stock cold reboot, sans
the hole blasting. If the key is down, we keep on stalling.

If we timeout to a full four seconds, we instead jump directly to the "old" reset code
which, thankfully, remains in the monitor at $FF59. The four seconds was selected to
be long enough that a child or an unknowing user is unlikely to accidentally trip the
old monitor access.

There are some undocumented Apple lie diagnostics stashed at $C400--CFFF that
will fail the "CD" ROM if a checksum of all the bits in the entire ROM does not agree
with a magic value.

To pass these diagnostics, the checksum of the KREBF SPELL must be the same as
that of the hole blaster bytes it replaced. The magic checksum for these $18 bytes of
code is $0BA8. The byte at $825E corrects this checksum to let your altered code pass
the diagnostics.

Note that any changes at all to this code will need a different value for the checksum
adjustment byte.

To use your source code, you assemble it into the patch, and then overwrite the
patch onto your monitor image. Alternately, you can hand-load the patch over the
monitor code. Details on this appear in Chart 10-1.

Basically, what you do is BLOAD IIEMON.C. Then you BLOAD KREBF SPELL. This
patch overwrites the hole blaster with the "old" monitor access timer. Then you
BSAVE KREBFMON.C, A$8000, L$1000. All of which casts the KREBF spell on your
monitor image.

Absolute "Old Monitor" Reset for the lie 89

Chart 10-1. How to Install Your "Old" Monitor EPROM in an Apple lie

1. Using the program SNATCHMON, place copies of lie ROM images onto a
work diskette under the filenames of IIEMON.C, IIEMON.D, IIEMON.E,
and IIEMON .F.

2. Place a copy of KREBF SPELL onto the same work disk. Do this by copying
the companion diskette, assembling from KREBF SPELL.SOURCE, or by
simple hand loading.

3. Cast the KREBF spell this way:

] BLOAD IIEMON.C. <er>
] BLOAD KREBF SPELL <er>
] BSAVE KREBFMON.C, A$8000,L$1000 <er>

4. If it is needed, plug the 2764 adapter into your EPROM burner. Be sure the
notch points to the handle and that the grabber contacts the correct point in
the burner. In the MPC ep-ap, the grabber goes to pin 1 of UlO.

WARNING: BE SURE YOUR BURNER IS CONFIGURED FOR AN INTEL
2764 BURN (no adapter) OR A 2732 BURN (with adapter)
BEFORE CONTINUING.

The steps that follow assume you are using the adapter on an
older burner, whose 2732 work buffer goes from
$8000-BFFF.

5. Erase a 28-pin, 250 nanosecond INTEL or HITACHI 2764 EEPROM using a
suitable ultraviolet source.

6. Insert the 2764 EPROM into the adapter socket. Be extra careful not to bend
any pins. New 2764s will need all their pins. "rocked" inwards to fit.

7. Flip the adapter switch to "O" or towards pin 14. Then arm the EPROM
burner and boot the support code.

8. Verify the erasure. Then, load, burn, and verify KREBFMON.C as if it were
intended for a 2732 EPROM.

9. Flip the adapter switch to "1" or towards pin 28. Then load, burn, and
verify IIEMON.D as if it were intended for a 2732 EPROM. Note that the
Krebf spell does NOT get cast on the "D" side.

10. Turn the Apple supply power off and remove BOTH ends of the line cord.
Carefully remove the CD ROM at EB, using an IC puller, while keeping one
wrist on the top of the Apple power supply. Store this ROM in protective
foam for possible later warranty repairs.

11. Remove the newly programmed 2764 from the burner and insert it in the
newly emptied socket on your lie, being very careful that the notch goes
TOWARD the keyboard and no pins are bent or tucked under. Keep your
wrist on the power supply as you do this.

12. Apply supply power and run the following checks:

(a) Normal cold boot of NONVALUABLE diskette in drive 1 when power
is applied.

(b) Normal reset to Applesoft or applications program on <ctrl >-<reset>.

90 Enhancement 10

Chart 10-1-cont. How to Install Your "Old" Monitor EPROM in an Apple lie

(c) Normal cold reboot on <ctrl>-<open-apple>-<reset>.

(d) Drop into the monitor on <ctrl>-<open-apple>-<reset> with the
<open-apple> key held down for four seconds after release of the
reset key. Wait for the beep and the "*" symbol.

(e) From the monitor, do a C006:00 <er>, followed by a 6-<ctrl>-P.
You should get a standard cold reboot.

BE SURE TO USE THIS "C006:00 <er>" AT THE START OF EACH
MONITOR ACCESS. OTHERWISE, THE 1/0 SPACE WILL NOT GET
PROPERLY ACTIVATED.

(f) Do a <ctrl>-<closed-apple>-<reset>. After some screen flashing,
you should get the "KERNEL OK" message.

13. Put some opaque tape over the lid of your new "old" monitor. Add a bright
dot to remind yourself of this change. Save the CD ROM should warranty
repairs ever be needed. This completes your installation.

You then program your 2764, using KREBFMON.C for the low half (switch left) and
IIEMON.D. for the upper half (switch right). For this particular use, you need only
replace the CD ROM with a 2764 EPROM. The "EF" ROM does not get changed.

Note that the KREBF spell is cast only on IIEMON.C, and not on the other monitor
images.

The Applesoft program SNATCHMON, source code KREBF SPELL.SOURCE, and
the machine language binary patch KREBF SPELL are included in the companion
diskette to this volume.

Since I cannot legally sell you copies of the lie monitor image if you do not
personally own a lie on which those images are to be uniquely used, these images are
not available from me. You will, instead, have to grab your own with SNATCHMON.
The painless and automatic process takes less than a minute.

Selling ready-to-go 2764 modified EPROMs would also be considered a no-no in
some quarters, despite its instant cash potential. I'll pass on this as well.

It is very interesting to compare Programs 10-1 and 10-2. Assembly language
Program 10-2 was written and debugged much faster than was Applesoft Program
10-1. Program 10-2 does more. And its documentation is far more legible.

Which, of course, proves once again that assembly language is not only better than
Applesoft, but cleaner and faster to program as well, besides being vastly easier to
understand and far cleaner to document.

If you are weak on assembly language programming, check into Don Lancaster's
Assembly Cookbook for the Apple I/Ille (Sams Cat. No. 22331) for some solid,
thorough, and easy-to-understand text and ready-to-use support modules.

TESTING AND EXTENDING

Step 12 of Chart 10-1 gives you a detailed checkout routine. Be very careful when
you swap EPROM for ROM that you bend no pins and that the code dot and notch goes
towards the keyboard, or front, of your lie. Save the old "CD" ROM in protective foam
should repairs be needed.

Absolute "Old Monitor" Reset for the lie 91

Be sure to turn power off, and remove BOTH ends of the Apple lie line cord. Always
lean on the top of the power supply with your wrist before inserting or removing any
integrated circuit. Justto be darn sure, hold the Apple end of the I ine cord in your hand
as you do this.

It might be best to program your EPROMs on one Apple and test them on a second
lie. This separates programming bugs from operational problems.

Your checkout procedure should include a cold boot, a cold reboot, a cold reboot
into the monitor, a cold reboot from the monitor, and a diagnostics pass using the
closed-apple key.

One very important gotcha ...

When you drop into the "old" monitor, you do so with
the 1/0 space disabled and the "CD" ROM enabled.

ALWAYS do a C006:00 <er> as your very first "old"
monitor instruction!

This sounds slightly flakey, but I haven't found a really good way around it. Maybe
you can. At any rate, this is no worse than good old CALL -151 ; in fact it is one
keystroke shorter. Besides, it always works.

Any time, any place, any program, any reason.
If you do not activate the 1/0 space, all of the usual monitor functions will work in

the usual way. The only I ittle problems are that you will have no DOS, printer, or other
1/0 slot acces.s. available. So, be sure to get in the habit of whapping $C006 on each
old monitor entry.

There are lots of possible things you can do with a custom monitor. For instance,
you can rearrange Applesoft to suit yourself. You can also do much of what a
"snapshot'' card can for a tiny fraction of the price. To do this, grab the NMI vector and
dump everything in sight to the stack, including all registers, all soft switches, hard to
read locations such as $0200, and some identifying markers. Then exit to some code
that uses none of the usual page zero or screen scrolling locations.

You can also replace the entire operating system with your own custom code. This
could prove most useful for dedicated data acquisition, certain CAD/CAM programs,
and "turnkey'' applications in general.

What other monitor mods would you like to see?
As a reminder, separate and different patches are needed for a lie or a "new" lie

absolute reset. Contact me directly via the helpline for further info on this.

The following programs appear on the support diskette
for this volume:

SNATCHMON
KREBF SPELL.SOURCE
KREBF SPELL

See the response cards in the back of the book for full
details.

Downloaded from www.Apple20nline.com

This enhancement works on all Apples.
It is useful by both cheaters and sur
vivors.

Enhancement

CASTLE WOLFENSTEIN® ESCAPE MAPS

Having trouble getting past the lowly rank of buck private? 55 troubling
you? This complete set of maps and playing hints might be just what you
need.

93

94 Enhancement 11

CASTLE WOLFENSTEIN ESCAPE MAPS

How to Create Your Own Escape Maps

1. Two sets of maps are provided . The set with the white
borders stays in this book and should not be removed .

2. Carefully cut out ONLY the three pages that have grey
borders. Cut first on the dashed line and then carefully
trim away all outside gray.

3. Get six sheets of laminating plastic from an office
supply or variety store. Separately laminate each of
the three cut sheets. Leave a wide border on all four
edges. Round all corners.

4. To use your maps, mark on them with a grease pencil ,
an erasable blackboard felt marker, or an overhead
projector crayon. Use suitable symbols for war plans,
bullets, uniforms, grenades, SS, bulletproof vests,
knackwurst, etc.

~----------------~ams-----------------.....

If you are Cocfwf in a closet, fire your 9un once
at tlie hl If tlie door does not open, wait for a
9uarc{ w open it for you.

....................
: Qiastle ~nlfenstein :
.. escape route

At tlie very start, notliing futppens until you
move or aim your 9un. So, TAKE IDUR
TIM£! ½uit until tlie 9uarcfs are in 9oocf posi
tions 6ef ore you rnau your first move.

Tne onfy way out of tliis ~ is up tlie stairs. If
tliings CooR liopeflss, 9ive up aru! try ~ain.
Your position in tlie first room is mtufumiw:f on
eacli repfay.

Tiy not to H((tlie 9uarcfs in tlie first room.
Wait until tliey are out of your patli am£ tlien
run for tlie stairs. You can fater return in uni
form am£ CntcR any coots .

......_---------------~ams ---------------~

~ams-------------

-----------..ll....-- . ., ~ -------- ff' ff' ff'

Tnere are two mutts tlimU9li tfus fevef. Tiy th£
Co~a mutt if tn£re are avoufubfe SS on tJie
mamroute.

ff' ff' ff'
Chtst . . L tlie opmmg tum can"" sped up 6y Ctani"9 on

He spaabnr or 6y usi"9 tlie II+ repent uy.

ff' ft ff'
Tiy not to 90 beyond' tfus feve[~ you are
wtan"9 a uniform and' a 6u&tproof vest.

~----------~ams-----------"

::::

~----------------~ams-----------------.....

.................. ,.
: (f[astle -olfenstein :
,. escape route ,. ,. ,. ,. ,.,. ,. ,. ,. ,. ,.

Tnm is onfy one reasonabfe way throU9fi this
fevef, 6ut that route is twelve rooms W"9-

Avoid: SW trips on your first pass throU9fi,
unfess you are in cfespemte nmf of sornetfii"9. If
you must, you can return Cuter.

Guards normaffy will not 6otfier you if you are
weari"9 a uniform ana a &uaetproof vest, ana
if you fiave not cfmwn your gun. Neitfier
guards nor SS can normaffy see throU9fi waf(s
or partitions.

"'1111111----------------~ams ----------------~

~----------------~ams----------------..

r·····,
I
I
I

+ I
I
I

L-----------+---------------

ftftftftftftftftftft
: <1Iastlc ~olfrnstein :
ft rscapr rout£ ft
ftftftft~ftftftftft

Tfim are two routt.s tfuuugli tfus CeveL 'Dy tfti
Conger routt if tlim are avoiaabfe SS on tlie
main route.

Grencults are &est u.secf to provide "sliortcuts"
tliT01J9li interior waffs. You wif[nwf one _gre
ruu!e tlirown vertica([y, OT two tlirown liori.wn
taffy.

You can lioli! up 11 guarcf witliout ltiUing liim to

increase your stocR of &uffets OT _greruu!es. 'Dy
tliis only wlien SS are not present ancf wlien you
can msify exit tlie room.

,,.,...---------------~ams---------------~

Castle Wolfenstein Escape Maps 99

***** * = * ~J '1 *] * ~~

* * '5 l * a -s * J! 'o-

1-s I} *~a* * i~ * 11
·-i* f'5 11 ~ * ~ :a * -~ : . -sl

* ~-~~ * ·s ~ .1~. ..g 6
] g-!: .. 6

ll i * E) * J! ~ I 0 _g
E--< J! Ci,,_,

f ;., "@f ii ..
::::.
·f:I·
:~ :~
:.::~
::.:.: :-·· -:· =·· :-.·:·.::· ::·_:;·

*
* ~· ~ * ~

~
tA

{#tJ

·.=·. ·. =··:.=:·.::.::·.·.·.:=··· : : :::. "!.::};. ______ ...
f j}Jrrx:: __ i,__ _._ --......... · _ _._._.,..r_. ti·· -;

{/ -----------· li 8 :.;=::·.·=:··.·:;:~;::·=·

.= .. ·:···.·.·::·. ::~-.:·:.::
: : . . . • . .~:.~:_}.:l:.~-. ·.":: ·.-----....,.,...,. --= i ;•;: ---

ft E

]j
t:i
~~

t11 ~=1 ~ ~:

it f
"']
~'51
E--< ~ g.!;

~ =i' i;l -ljl
~~l

.
~=.~.~.:.;=_ .. f.:_· . ~ .. :;_::_~-.~ ~ ,.::::: ;·:···;.~_.=.:.!_ .. :.=.:·:·;:,

~.·.J .. ~.·.:=.·.!. ·.·.·:. :-~:::::.

:;::;·; ·:. :)t:.:· ! ! !i l i?f {·:.=.=:.:::·· :··· !;::~~ f ·~~;;:: ?\~-X·;·:·.:~·;:_\;·~~:~:~\/:,f :-~/; :\:::?~.=_:ll\J: if·?:. il:tt:.tf f .:·; .-==·= '· .

~--------------- J§ams ----------------......

The pCayi119 dislt is VERY fra9ife ancf VERY
easy to cft.s~. Use only your seroncf or third
6ockup copy. Bacfops can 6e mruu ry any of the
u.sua[met.Fwcfs. .

AVOID WANTON KILLING! The faster you
tmvd ancf the fewer troops you 6Cow away, the
6etter your ocfcfs of survi vaf.

Always BRIEFLY enter a new room ancf then
ieave IMMEDIATELY. This gives you a quick
9Cance at what to expect, without arousi119 too
much attention.

The outsufe walls of the castle do not cha119e
with a "new" castle Cayout. Onfy the room con
tents ancf insiae partitions cha119e. As you 90
up in mnlt, the num6er ancf speecf of the .S.S wiff
increase.

ftftftftftftftftftft
: Qkstk ;lllolfrustein :
ft pl~ittB qints ft
ft ft ft ft ft ft ft ft ft ft

The 9uarcfs have short mmwries. If you mise
havoc in a room, ieave ancf then return. Ri9uCar
9uarcfs shou(c(90 6a& to routine patrol when
you do this.

Guarcfs that seem to 6e 6foclti119 your way can
6e enticed to a new position ry fi.ri119 your gun
once into the air. When the guard gets to where
you want him, ieave the room to fre= his new
routine.

If you are 6esufe a 9entll!fe when it goes off, you
die. If you are within two steps, you fuse your
uniform, vest, ancf pCans. Three or more steps
away is safe.

Grenacft.s can 6e usecf in pairs. Use the first one
to 6Cow a sma((hofe in an insiae waff. The sec.
oncf one can then 6e thrown through the new
hofe .

If you can get the drop on an .S.S, you can steal
his vest. If you then feave the room ancf return,
he gets cfemotecf to an ordinary guard on routine
patrol. Vest steali119 only worlts on an .S.S who
has not yet cfuufu! to chase you.

If the .S.S are chasi119 you, stop immecfiately at
the entmnce of the nt;rt room ancf pCan aheacf.
.SS wiff not enter a room unfess you are at feast
three steps from the entmnce.

A focltecf door can sometimes 6e openecf ry
stancfi119 at the room entmnce ancf fi.ri119 your
gun into the air. A guard wiff open the door for
you as he invesri9ates. Leave ancf then re-enter
the room.

Neither 9uarcfs nor SS wiff step over cfuuf

6ocfies.

...._ ________________ J§ams _________________ .,...,

....
= =

If you are foc.ke.£ in a cfosct, fire your 9un once
at the Coa. If the door does not open, watt for a
9uarcf to open tt for you.

ftftftftftftftftftft
:- <!Iastle ~olfenstein :
ft escape route ft
ft ft ft ft ftft ft ft ft ft

At the very start, notfu119 futppms until you
move or aim your 9un. So, TAKE IDUR
TIME! ½utt until the 9uarcfs are in 9oocf post
twns 6efore you make your first move.

The on!y way out of tfus (eve[is up the stairs. If
tfu119s fooli. fwpefess, 9ive up ancf try C19atn.
Your posttton in the first room is mndomiwl on
endi repfay.

Tiy not to Ii.if[the 9®Tds in the first room.
½nit until they are out of your patli ancf then
run for the stairs. You can Caw return in uni
form ancf cook any chests.

-----------+----------J

m .
. .

••••••••••
: arastle ~olfenstein :
• escape route •

••••••••••

Tnm are two routes tn.r0u9n this f£wL. Tiy tftt.
fo119er route if tftt.re are avoufubfe SS on tftt.
main route.

Cfitst uperu.119 time can 6e spea up 6y feani119 on
tftt. Ile spacefiar or 6y u.st"9 tftt. II+ repeat uy .

Tiy not to 90 ~oruf this Ceve£ unuss you are
wmri119 a uniform muf a 6u!fetproof vest.

• •
Tfim is only one reasonabft way ~Ii tftis
fevef, &ut tfiat route is twelve rooms W1l9 .

• • •
Avoia side trips on your first pass tfirougfi,
unftss you are in c!tspemte nw! of somrtfu119. If
you must, you can return futer .

• • •
Guarc& normaffy wi[[not 6otlier you if you are
weari119 a uniform muf a 6u&tproof vest, muf
if you fiave not c!mwn your 9un. Neitfier
9UC1rcfs nor SS can normaffy see tfirougfi waffs

or partitwns.

....................
: Olastle ;l!iolf enstein :
.. escape route •

There are two routes thrml9h tfus Cevef. 'Ily the
Conger route if there are avoidaliie SS on the
main route.

Grenades are 6est usd to provide "sfiortruts"
thrml9h interior walls. You wiff new one 9re
nru!e thrown verticaf[y, OT two thrown lioriwn
taffy.

You can hofr{ up a 9uanf without hffing him to
mcrea.se your stoclt of 6u&ts OT 9renades. 'Ily
tfus only when SS are not present aruf when you
can easily e,ut the room.

~
~

,.,:, ;,.''./:.'.·.:
::::-::

){ ·--·--· 111

, . ·:·, c::-:::. :··. J:t . : : :,: . ; :. ' ,:¥:':·,. ":: . . , .. : .. , ... ,, ,, .. ,,,:!\

ftftftftftftftftftft
: Oiastle ~olfensiein :
ft escape route ft
ftftftftftftftftftft

Tfus f£vcl requires very ftttft tfuiuglit. A[[you
liave to cfo is "run tne 9auntfet" of a[[mil£
rooms m order.

Do not exit tne fast room without tne war
pfans, or you wiff forever fose tFte present castfe.

I ~scape! I

& sure to TURN POWER OFF after your fast
session. In tFte reaf woruf, Wo[fenstem SS liave
6rutaay murama many Visicafc fi[t.s!

••••••••••
: ©a:stle ;lliolf enstein :
• escape route •

Tfiae are two roU-tts throU9li this levef. Tiy tlie
Co119er TOU-U if tfiae are avoidabfe SS on the
main TOU-te.

Greruufes are &est u.sed to provufe "sliortruts"
tliro!Lgli interior waUs. Yoo wiff 11tt!f one gre
nade thrown verticaf[y, or two thrown lioriwn
taffy.

YoU- can fio[c{ U-p a 9oorcf withoU-t liiffi119 liim to

increase JOILT stocli of &U-ffets OT 9reruufes. Tiy
this onfy when SS are not present and when JOU
can easily exit tlie room.

II . .
••:;; u!liuria\

I Iitt · ii! 1:;i
·~?:··· ·~· .. :·:·.···=.c .·· .:· .·/ ·.::.··:;. ·:--:':'.·.·.·.·.:::::!.: ·::.:.:. "=- : .. . :~::·.=::.. : ... · .. . : .. .-........ ... :· :-:.~'.'..

................
: ©astle ~olfensiein :
• escape route ~

Tfus (eve(requiru very [ittfe. thoU9hL A[you
fiave to cfu is "run du 9auntfet" of a[nine
rooms in orcfer.

Do not exit du fast room without du war
pfnns, or you will forever Cose du present ca.sue.

I ~scape! I

Be sure to TURN POWER OFF aju.r your fast
sesswn. In du rea! worCtf, Wolfenstem SS fiave
6rutaay murcfem{ many Visicak filts'

Tfit. pfaying cfisl is VERY .fm9ife and VERY
easy to destt"<o/- Use only your second or third
6acfop copy. Backups can 6e made 6y any of I.fit.
usWU: metfwcfs.

AVOID WANTON KILLING! Tfit. faster you
tm.vef and I.fit.fewer troops you 6Cow away, I.fit.
6ettcr your oMs of StUVivaf.

Always BRIEFLY enter a new room and t.fit.n
ft.ave IMMEDIATELY. Tfus _gives you a quid
9Cana at wfutt to ~ witlwut arousing too
mudi. attention.

Tfit. outside wa[[.; of I.fit. castft. do not cftange
with a "new" castft. Cayout. Onfy I.fit. room con
tents and inside partitions change. As you 90
up in mnR, I.fit. number and speed of I.fit. SS wi£f
incruise.

ftftftftftftftftftft
: ®tstle ~olfcustciu :
ft pl~ing qints ft
ft ft ft ft ft ft ft ft ft ft

Tfit. 9uarcfs have snort mmwries. If you mise
havoc. in a room, ft.ave and t.fit.n return. ~ufar
9uarcfs slwula 90 6acl to routine patro(wfit.n
you do tfus.

Guards that swn to 6e 6CocRing your way can
6e enticed to a new position 6y firing your 9un
ona into I.fit. air. Wfit.n I.fit. 9uard 9ets to wnm
you want fiim, ft.ave I.fit. room to fruu fus new
routine.

If you are 6eside a 9enuufe wfit.n it 900 off, you
die. If you are within two steps, you WSf. your
uniform, vest, and pfans. Three or more sttps
away is safe.

Grenrufu can 6e used in pairs. Use I.fit. first one
to 6Cow a sma(((w[e in an inside wafL Tfit. sec
ond one can tfit.n 6e thrown thTOU91i. I.fit. new
(wfe.

If you can 9et tfit. drop on an SS, you can steal
fus vest. If you t.fit.n ft.ave tfit. room and return,
fit. 9ets demoted to an ordinary 9uard on routine
patroC. Vest stealing only worRS on an SS wlw
Ii.as not yet cfuufuf to cli.ase you.

If I.fit. SS are cli.asing you, stop immdia.tt!y at
I.fit. entm.na of I.fit. ntXt room and pfan afit.ad.
SS wi£f not enter a room unfess you are at feast
three sttps from I.fit. entm.nce.

A CocW door can sometimes 6e opened 6y
standing at I.fit. room entm.na and firing your
9= into I.fit. air. A 9uard wi£f open I.fit. door for
you as fit. invest½Jates. Leave and t.fit.n re=ter
I.fit. room.

Neither 9uarcfs nor SS wiCC step over dead
6odies.

This enhancement needs the 128K
Apple I le, but you can use the ideas
here to crack any machine language .
code on any Apple.

Enhancement

TEARING INTO APPLE WRITER l·le

The "tearing method" of Enhancement 3 is used to give a very detailed
and complete analysis of the single most significant Apple program of all
time. You can use the results to create your own custom word processor
that does exactly what you want.

107

108 Enhancement 12

TEARING INTO APPLE WRITER lie

There have been lots of helpline requests to apply the "tearing method" of Enhance
ment 3 to a really heavy program. As you should know by now, the "tearing method" is
an astonishingly fast way of breaking down, color coding, and then analyzing any
machine language computer program running on any Apple.

Ready? Here we go ...
The single most significant Apple lie program of all time is Apple Writer lie. This

numero uno program far outsells all other Apple word processors. AWlle even outsells
VisiCa/c® by a ridiculous margin.

The reasons are simple. Apple Writer lie is the first "no excuses, no apologies" word
processor available for the lie, and is one of very few word processing packages that is
genuinely fun to use and very easy to learn. It is also the only programmable,word
processor that I know of, which opens a mind-boggling array of largely unexplored
new applications.

It did take Apple Computer three tries to finally do it right. Butthe third time seems to
be a charm.

Very forthrightly, Apple elected to make Apple Writer lie more or less of an "open"
program. It is easily inspected and easily modified to suit your needs. Only the bare
minimum of "protection" essential to preventing blatant ripoffs is built into the booting
process.

Fortunately, after booting a legal copy of Apple Writer lie, there is a fairly simple way
to customize and modify the machine-resident program for your own special needs.
This also gives you a method to market your own commercial patches in ways that are
legal, professional, and practical.

Before you change anything, of course, you have to analyze it and see how it works.
Why would you want to tear into a major Apple program? Well, first and foremost,

because it is there. It is absolutely inexcusable to ever use any computer program
without doing a complete analysis of that program, and then capturing your own
source code for study and custom modification. To not do this is utterly unthinkable.

Dumb, even.
Secondly, you just might be interested in seeing how things are done. Things such as

managing both 64K banks of lie memory, ringing the cute ding-dong, moving DOS to
high RAM, understanding the WPL programmable interpreter, or just seeing how a
master programmer handles things.

Thirdly, you may want to get rid of the warts. Like the "short line" problem. Or the
"grungy underline" problem. Or the "old Epson" problem. Or the "HIRES dump"
problem.

Lastly, you might want to customize Apple Writer lie for your own needs. You might
want to use a faster version of DOS. Or you might want to speed up the boot process so
it exactly loads your machine without wasting time on configuration tests. Or maybe
you would like to minimize disk swapping on a single drive system.

Perhaps you'd like to add the sorely needed space-on-disk routine. Or do a HIRES
preview of nine pages ata time. Or add a printer buffer. Or you might just want to know
what space is left over where in your machine for custom support programs. Or want
to integrate spreadsheet or report code. You might want to know how to support an
oddball 80-column card, an unusual printer interface, or a non-Corvus hard disk.

Tearing Into Apple Writer lie 109

My own reasons for tearing into Apple Writer lie are to push the limits. This is a great
little word processor, but, would you believe it processes pictures even better than it
does words? But, that's another story for another time. One that has a great plot.

Many, in fact.
Apple Writer lie also interfaces beautifully with newly overhauled EDASM. This

converts an impressive upgrade of what was a rather dreary and dumpy, old assembler
into one of the finest macro assemblers avai I able anywhere. Full details on "new way"
editing appear in Don Lancaster's Assembly Cookbook for the Apple II/lie (Sams Cat.
No. 22331).

To push these limits, I want to modify WPL. I would like a single key WPL user input.
I need the ability to "put the cursed character into the D$ string." More variables
would be handy. So would be the ability to PEEK and POKE what you want where you
want, and to link machine language modules. Some older printer interface cards
demand this POKE capability. Tabbing in the EDASM "new way" editing could be
dramatically sped up with a link to a custom machine language module.

Or, to get really wild, I want WPL to directly control a plotter whose pen has been
replaced with a focusing photocell for fully automated picture-to-data conversions.

Font libraries anyone?
We will limit our analysis here to the "F" version of Apple Writer lie, intended for use

on a 128K Apple lie with an extended 64K memory card in slot 0, running under
slightly modified DOS 3.3e. The "F" version uses all 128K, while the "E" version uses
only the main 64K. The booting process tests your machine and then picks which one
you get.

If you are going to interface anything else to your word processor, the "F" version is
the best choice, since it has a reasonable amount of uncommitted RAM left over.
Should you not be using the "F" version, you can use the ideas here to analyze any
word processor or any other machine language program on any system you choose.

THE TEARING METHOD REVISITED

Several reviewers have complained that the tearing method of Enhancement 3 takes
some time and effort to master.

Gee.
Yes, your first two or three tearing ventures will take some time and effort. But once

you have the method mastered, you'll find the tearing method to be at least 10 times
faster than any other reasonable scheme for analyzing machine language programs.
Picking the right program for your first tearing can make a big difference. For most
people, either FID or BUGBYTER would be good choices.

Here are two key hints to improve your tearing attacks:
First, it often pays to work backwards from the end back to the beginning of a

module. Loops leap out at you this way, and the good stuff a module does often
happens fairly obviously and nearly at the end of the module. On the other hand, the
start of a module often does mysterious things to pointers and flags and may call other
unknown subroutines for setup.

Second, be sure to use several passes through the tearing method. Pass one should
deduce the structure and the overall use for each module in the code. Pass two should
show you in fair detail more or less how the module works. Pass three should resolve
any fine points or fuzzy details left over.

110 Enhancement 12

Here are some additional resources that make the tearing method even faster and
more powerfu I . . .

Additional Tearing Resources

Apple lie Reference Manual

Apple Computer
20525 Mariani Avenue
Cupertino CA 95014

(408) 966-1010

Beneath Apple DOS

Quality Software
6660 Reseda Blvd
Reseda CA 91355

(213) 344-6599

Copy II Plus

Central Point Software
Box 19730
Portland, OR 92719

(503) 244-5782

Disasm lie

Rak-Ware
41 Ralph Road
West Orange, NJ 07052

(201) 325-1885

I he Apple lie Reference Manual is, of course, the technical manual for the lie. This
manual is not normally included with your Apple purchase and has to be ordered
separately. It is extremely well written and well organized, and contains many details
essential to understanding your Apple.

The book Beneath Apple DOS is another "must-have" reference. This one is
especially important for tearing into programs that access DOS on the machine
language level. Apple Writer lie does this extensively for its file searches and super
fancy fast textfile manipulations.

There is also a sequel volume called Bag of Tricks which includes a diskette that is
most useful in repairing and restoring "blown" disks.

I first bought the Copy II Plus program to speed up producing the companion
diskettes for Enhance I. Besides being much faster than your usual copy programs, it
verifies the results and easily lets you check your drive speed before starting any copy
work. One most handy feature lets you rearrange files as you copy them.

Once I had this program in house, it became most useful for making backup copies
of just about everything. The direct disk sector editor turns out to be very useful to
solve all sorts of problems. We will use it later to let you add a POKE command to
WPL.

Tearing Into Apple Writer lie 111

The program DISASM lie is an intelligent disassembler. This is one of the best
available, although it is somewhat user vicious . In theory, you can pour object code
into the top of a disassembler program and have source code pour out the bottom. In
practice, there's lots of time and intervention involved, particularly with labels,
comments, and documentation.

The single most important and most powerful use of an intelligent disassembler,
though, lies in its cross reference abilities .. .

Cross Reference--

A detailed listing of each and every machine language
location that is referred to or otherwise used by a pro
gram.

Cross references often include separate listings of inter
nal, external, and page zero values.

A cross reference listing is an extremely powerful way to check your progress in
tearing apart any program. As three obvious examples, you can find out who uses
known monitor locations for such things as outputting characters, clearing screens, or
whacking the speaker.

Or, once you crack a subroutine, you can go back through the code and identify the
use of that newly cracked subroutine everywhere it is cal led. Once you understand the
use of a page zero pointer, flag, or stash, you can go back through the code and
identify each and every use of this value everywhere in the program.

I call this the avalanche effect ...

Avalanche Effect -

Using cross references to plug known results back into
unknown portions of the code yet to be analyzed.

The reason that the avalanche effect is so potent is that it has gain. Just like a tiny
snowball can totally destroy an entire mountain village.

For instance, five locations may call the Apple monitor COUT routine. Each of these
five service subs may get called by five higher level routines. Start with COUT and
avalanche it back to crack the service subs. Then avalanche the use of the service subs
back into the higher level routines. From one monitor hook, you find the use and
purpose of 30 different modules of your unknown code.

Say you are puzzling over a totally weird block of code that does heaven knows
what. It is so gratifying when the avalanche effect suddenly plops a "GLOSSARY
NESTING ERROR" screen message right onto one module exit. You now know the use
and purpose of your undecipherable code, without any analysis at all!

The gain of the avalanche effect makes cross referencing a very powerful weapon
for tearing into unknown code.

112 Enhancement 12

One important warning though. Be on the lookout for aliasing ...

Aliasing -

Fake cross references that get created when you attempt
to disassemble a file or some other nonworking part of
your code.

Aliasing also can happen if you begin disassembly in the
middle of an otherwise legal op code.

Remember that any disassembler, intelligent or not, always assumes that it is
working on legal code starting from the beginning of a legal 6502 instruction. If you try
to disassemble files, you will get fake cross references created that do not exist.

For instance, say you have a low ASCII character file with a space, followed by an
"A", followed by a " B" . The disassembler will say "Ah! A $20, then a $41, then a
$42 ." The disassembler wi II assume this is a legal 6502 instruction, and disassemble it
as a JSR $4241 . Naturally, the $4241 will show up on your cross reference list. The
$4241 is an alias, since the code has nothing at all to do with whatever the real $4241
location happens to be up to.

As a more subtle example, you often may end up missing the starting point of a string
of legal op codes. If this happens, the first few op codes will get messed up, but the
disassembly will eventually straighten itself out. Once again, some aliased and
nonexistent cross-references may get created.

Not to mention some really dumb instructions doing some really weird things.
The easiest way to avoid most aliasing is to never disassemble anything that you are

not certain is working code. Should a few aliases creep in, you can edit them by hand
to get rid of any remaining problem locations. Some special techniques, involving a
table called SNEAKYSTUFF, will help us avoid aliasing when we capture AWlle
source code later on.

ANALYZING APPLE WRITER lie

One or two warnings before we begin. Everything here is unofficial and unsanc
tioned . What you see here is just my use of my tearing method on my copy of my " F"
version of the program . I've avoided using labels here since they are certain to conflict
with the " real" labels on the " real " source code. In some cases, I've had to make a
guess or two in understanding fuzzy parts of the code. In other place I have missed
something obvious, and in yet others I could easily be just plain wrong.

Secondly, the tearing applies to the "F" version of Apple Writer lie, circa March of
1983. Any changes at all to the program, or any use of a different version will change
many of the program locations.

So, use what you see here as a guideline towards tearing apart your own version of
most any old word processor of your choosing. But, do not accept anything you see
here as gospel, because it is not. By all means, use the hotline to close the loop on any
updates and corrections.

There is one thing that leaps out at you when you tear into this program: Here is a
program with class, that was written by a master that knows and loves his Apple, and
who programs by one-on-one interacting with his machine on his own terms.

I've never seen, used, or torn apart any other program that exudes such great vibes.

Tearing Into Apple Writer lie 113

Another thing that becomes obvious when you tear into this program is seeing the
delicate balance involved in designing a major word processor. People want a word
processor that is cheap, has a large work space, is very fast, is powerful, is easy to
learn, and has many different features. All of these demands continually fight each
other six ways from Sunday.

How do you analyze a really big program?
Well, first you use the tearing method to find out everything you possibly can about

it, color coding with the high liters as you go along. Then you use a cross-reference and
the avalanche effect to nail down any loose ends. And finally, there it sits, a completely
documented and torn listing.

But you still may not understand it. Now what?
Here is one way to analyze a heavy program ...

(0) Use the program until you know it cold and have
completely mastered its operation.

(1) Tear the program apart.
(2) Study the memory map.
(3) Find out how each file works.
(4) Learn all uses of page zero.
(5) Master the low-level subs.
(6) Attack high-level entry points.
(7) Try simple mods.
(8) Capture the source code.

Step zero is far and away the most important. There is no possible way you can
understand any program if you do not use the program daily and continuously until
you completely understand what the program does and how it does it.

Omit step zero, and nothing that follows will make any sense at all.
The best way to understand the other steps is to do them in order. We'll only briefly

touch on the booting process here. As a reminder, we are assuming an Apple lie with
128K split as a main 64K RAM bank and an auxiliary 64K RAM bank plugged into slot
zero. We also assume you are under DOS 3.3e.

On a boot, a slightly modified version of DOS 3.3e is installed into high main RAM.
This DOS creates standard ASCII text files that are totally readable by normal DOS 3.3
or DOS 3.3e.

The DOS boot process loads and runs a machine language program called
OBJ.BOOT. OBJ.BOOT, in turn, analyzes the machine to see what is connected
where, and initializes a few locations and flags. If you do not have an Apple lie, an
error message program called OBJ .APWRT)[D is run that tells you the bad news,
hangs the machine, and then kicks sand in your face.

If you have no 64K memory card in slot zero, a machine language program called
OBJ.APWRT][E is then loaded and run. This "E" version gives you only 27K of main
text, besides cramming the machine to the gills.

Note that the 11£11 version is slightly shorter, and significantly different from the 11F11

version we are going to analyze here.
If you have the 64K extended memory card in slot zero, a different machine

language program called OBJ.APWRT] [F is booted, starting at location hex $2300.

114 Enhancement 12

This is the "F" version we will study. The "F" version gives you 48K worth of main text
file, and has lots of space left over for your customizing.

Both the ''F'' and "E'' versions are greatly improved offspring of the old Apple Writer
2.0, which in turn was a major overhaul of the original Apple Writer versions 1.0 and
1.1. If you have torn apart all of these, it sure is interesting seeing evolution in action.

The "E" or "F" modules are easily loaded and analyzed by ordinary DOS 3.3 or
3.3e. Everything is up front. No sneakiness or black magic is involved. If you want to
view, list, modify, or even capture the program under your own source code, a simple
BLOAD OBJ.APWRT] [F, A$2300 does the job. More details on this later.

THE MEMORY MAPS

The biggest step towards understanding heavy code is to find out what sits where in
the machine. One or more memory maps does the trick ...

Memory Map-

A picture or graph that shows you what portions of the
Apple lie address space are used for what purposes.

If you do not know where everything sits in the machine, or understand how the
various parts are intended to work together, then there is no hope of going any further.

Getting a memory map with exactly the right amount of detail is often a real hassle. I
like to use both simplified memory maps that show only the big picture, and separate
detailed memory maps or lists that give you all the gory details down to every use of
every last bit.

Fig. 12-1 shows us the simplified memory map for the "F" version of Apple Writer
lie. As a reminder, this is a 128K machine split into a main RAM bank of 64K and an
auxiliary RAM bank of 64K, and we are under a somewhat modified DOS 3.3e disk
operating system.

No use is made of any ROM in the machine, except during setup. A copy of the high
end of the monitor ROM gets moved to high main RAM from $F800 through $FFFF.

As we'll see later on, very few monitor routines are used at all. Those that are get
accessed from a clone in RAM. All of the 80-column screen routines are also built into
Apple Writer lie. These routines are faster and more powerful than the stock ones. No
"escape" cursor movements are needed since the program uses a continuously live
screen supported by full cursor control keys.

As is typical, 4K main memory bank "2" is used; bank "1" is not.
DOS 3.3e is loaded during the booting into high main RAM just below the monitor

clone. Note that this is a non standard location some $3800 bytes higher than usual.
One reason this relocation was done was to leave enough room on the " E" version for
a decent text file area.

The actual word processing program code is also loaded into main RAM. The
working code sits between $2300 and $4AF9. Some reference files that consist mainly
of screen messages and address pointer tables are towed along and fol low the working
code between $4AF9 and $53D0.

Many work files are needed by this program. To name a few, these include the
glossary buffer, two deletion buffers, and the WPL program storage area. There are
many others, as we will see later. The work files are stashed in main RAM from $0800
through $2300.

AUXILIARY
64K RAM

UNUSED
!BUT ACCESSABLE

ONLY WHEN
ALTZP SWITCH IS

FLIPPED)

1/0
$C000 - 1---------l

$BF00 - 1--RE_S_ER_VE_D----1

HIFILE
TEXT
FILE

A.A

HICURS -111:1:11
LOCURS - ...,...,.._.......,"'"'"'I

Ll;tLE
TEXT
FILE
AREA

$0800 - 1--------l
DISPLAY

RESERVED

Tearing Into Apple Writer lie 115

MAIN
64K RAM

..-------,- $FFFF
MONITOR COPY $F

800
MAIN
DOS
3.3C

1--------l- $D500
DOS BUFFERS $Deeo

1/0
1--------1 - $C000
....,,.,..,R.,,..ES ... ER_VE_D_...,~ _ $BF00

a-----=~~.._. - $53D0
REFERENCE FILES

APPLEWR ITER
lie

MAIN PROGRAM

$4AF9

1--------1 - $2300
WORK
FILES

1--------1- $0800
,___D_IS_PL_A_Y -•- $0400

__ w_o_RK_F_IL-Es ___ 0000

FIGURE 12-1. Simplified memory map of 128K Apple lie running
the "F" version of Apple Writer I le.

The main RAM area from $0000 through $0400 is also used as a work file area. This
includes the important pointers, counters, stashes, and flags on page zero; some
memory management and a stack on page one; and some additional work files and
links on pages two and three.

Most of the work files are not loaded into the machine. They are initialized and then
used as the program is run .

As usual, the even 80-column characters are stashed in main RAM from $0400
through $07FF, while the odd 80-column characters are stashed in auxiliary RAM in
the same address range. Also as usual, $C000 through $CFFF is reserved for I / 0
space uses.

A humongous chunk of unused RAM sits between $53D0 and $BEFF in main RAM.
It is very lonely and is crying for your attention and use. What can you cram into
27439 bytes these days?

Turning to the 64K auxiliary RAM, the auxiliary page zero and stack area are not
used. Since high auxiliary RAM is switched with page zero, all 16K of the high
auxiliary RAM is also unused .

Messing with the alternate page zero and alternate high RAM gets tricky fast. It turns
out that there is an attempt in this program to write an unneeded and unusable DOS
clone into high auxiliary RAM. The attempt fails. What really happens is that the DOS
in main high RAM gets copied back over itself.

No harm done.

116 Enhancement 12

The text file area that holds the words you want to process takes up the bulk of
auxiliary RAM. Your text file area goes from $0800 through $BEFF, and gives you
room for some 46,845 characters at once.

As with main RAM, auxiliary RAM locations $BFO0 through BFFF are reserved for
system globals, as might be needed for fancy memory management.

Generally what happens is this: The main program puts characters into or removes
them from the text file area, providing all the usual word processing functions as this
happens. It gets these characters from you at the keyboard, from DOS as text files, from
the text file itself for clones and copies, or out of special files such as the glossary, the
WPL program, or the deletion buffers . When finished, the main program saves what is
in text file area to disk or dumps it to a printer.

So much for the main memory map. We will be giving you two levels of additional
detail on most of these areas. In the text that follows, we will tell you generally what
each area is up to. In the various tables, you will find the extreme detail needed for a
complete analysis.

Time now to look at .. .

HOW EACH FILE WORKS

There are many different files used in this program. Dozens upon dozens of them.
Once you find where a file sits and what it does, you are well on your way to
understanding just how Apple Writer lie does its various tasks.

Let's break up the files into four areas, depending on what they do. These are the text
file area, the work file area , the internal file area, and the reference file area.

The text file holds the words to be processed. As we will shortly see, this is actually a
pair of files, done so to dramatically speed up character insertion and deletion . The
work files hold things outside of the program code that are fairly likely to be changed.
This includes all the page zero stuff, the glossary, print programming commands, the
tab file, top and bottom line buffers, and much more.

The internal file area is more or less an afterthought. These are files that are stuffed
inside the working code, or are otherwise "misplaced." Most often, these are involved
with an improvement or upgrade of the older Apple Writer programs. The TAB status
line display file is typical. Putting files any old place is admittedly a little sloppy. But,
its a great reminder that this was written by a person, rather than by a committee or a
machine.

You have to pay very close attention to these internal files since you will want to
bypass them when you capture your own source code. Otherwise, you will get
aliasing and " starting off on the wrong foot" problems.

The reference file area holds things that are unlikely to change. These include
screen prompts, address pointers, error messages, DOS commands, and so on.

Tearing Into Apple Writer lie 117

A summary ...

Apple Writer lie File Areas

Text File Area -

Holds the words to be processed.

Work File Area -

Holds things often changed.

Internal File Area -

Uh, whoops.

Reference File Area -

Holds things seldom changed.

Let's check into these file areas one at a time. The single largest and most important
file area is the ...

Text File Area

The text file area holds the words to be processed. This area lies in auxiliary RAM
from $0800 through $ BEFF, a total of 46,847 locations. Allowing for the two $FF end
markers leaves you with a remainder of 46,844 characters. This is the number you see
as the MEM prompt on program bootup.

Fig. 12-2 shows us how this text file area is managed .
One very sticky problem in word processing involves making your code run fast

enough that it never gets very far behind your typing. Say you have a single, long text
file and are sitting in the middle of it. On each key entry, you would have to move
everything from where you are sitting up or down a character in memory. This could
involve tens of thousands of characters and is bound to be ridiculously slow.

The trick to fast word processing programs is to not move any characters that are
already sitting in memory during any fast typing modes . . .

The secret to a fast word processing program -

NEVER move any character that is already sitting in mem
ory, during any fast typing mode.

Sounds fair enough.
But ignoring this key rule is what makes so many competing programs so abysmally

bad .
Now for the key secret to Apple Writer lie, and the brilliant way to avoid moving

things around all the time. The way around this problem is to use two separate text file
areas, keeping the available free space remaining between the two files!

118 Enhancement 12

On ce upon a tiwe , ---

-- wic kld witch - -- - --

-haPPilY euer after,

PERMANENT
START OF FIRST
LOFILE FF CHARACTER
MARKER IN TEXT

$080~) TEXT ABOVE CURSOR ON SCREEN (LOFILE)

~
FF O n c e u p o n t i m e

$BEFF

)) not yei used)i w i I c h i I y e v e r a f I

J\ TEXT BELOW CUR?R ON SCREEN (HIFILE) / l
TEMPORARY FIRST
START OF CHARACTER
HIFILE 1111 FOLLOWING
MARKER. CURSOR
(HICURS)

· e· =$E5. etc.
(usually)

LAST PERMANENT
CHARACTER ENO OF HIFILE
IN TEXT FF MARKER

FIGURE 12-2. The Apple Writer lie screen often displays two
files. The LOFILE in RAM holds the characters
above the cursor. The HIFILE in RAM holds the
characters below the cursor.

Turning to Fig. 12-2, we see that there is a file I call LOFILE that holds everything
above the cursor on the screen back to the beginning of the text. There is a file I call
HIFILE that holds everything below the cursor on the screen on out to the end of the
text.

During normal character entry or insertion, you simply add things to the end of
LOFILE. Since HIFILE is usually far above LOFILE in RAM, there is no difference
between insertion and entry. To delete, you simply knock characters off the top of
LOFILE, again without disturbing HIFILE. Nothing but a single character need be
entered or removed from the file for most fast typing needs.

The files do get back together every now and then. For instance, on an [El command
to go to the end of the text, everything gets moved back into LOFILE. Your entire file
now starts at the beginning of the file, and you are free to add to the end of LOFI LE with
new characters.

It does take the better part of a second to move everything in a long text file from
HIFP_E to LOFILE, but you do this only rarely. It's unlikely that you would want to
continuously type [El commands at a 100 word per minute rate. In fact, you are
usually ready for a brief psychic break when you do an [El . This is human engineering
at its very best.

Tearing Into Apple Writer lie 119

Similiarly, if you do a [Bl to get to the beginning of a file, everything gets moved to
HIFILE. If you add characters from here, they go into LOFILE. Once again, nothing
needs to be moved in memory during fast entry modes, even on an insertion or
deletion.

Meanwhile, back at the screen, fancy things are going on . The screen shows you
copies of pieces of HIFILE and LOFILE. It magically splices them together as needed to
con you into thinking you are looking at one continuous file. Only whole words are
shown in the wraparound mode.

The screen is usually updated on each character entry. But there are far fewer
characters on the screen than are usually stashed in the text file area. So this screen
updating can be done fairly fast. It does take somewhat longer to update insertions
than additions.

A few users complain that A WI le "misses" characters. Despite a 64-key type-ahead
buffer, a rare miss can happen when the slower insertion mode and a subtle bug in the
lie keyboard encoder scanning gang up on a sloppy typist. To get around this, do as
much typing in the entry mode as possible, and add some extra "snap" to the quick
release of all keys. It is important to "let go" of an old key as soon as you can.

The bottom of LOFI LE at $0800, and the top of HI Fl LE at$ BEFF are always identified
by $FF markers. These tell various service routines, such as the searches and finds,
when they get to the beginning or the end of either LOFILE or HIFILE. The "open" end
of each file is also marked with a $00 marker. This is done at the top of LOFILE and at
the bottom of HIFILE.

The cursed character on the screen sits at one less than LOFILE, and is just below the
LOFILE $00 marker.

The $FF "limit" markers and $00 "present end" markers are reserved characters.
You are not allowed to enter these characters into your text file. Characters of $7F and
$80 are also not permitted.

Note the extra zeros are allowed in the unused memory space before LOFILE and
HIFILE. It is only the first zero on the way up through LOFILE, or the first zero on the
way down through HIFILE that matters. If you want to eliminate a string of text you

· simply put a zero at one end. This saves having to "erase" lots of memory.
A cursor is produced by taking the top character in LOFILE and alterating its screen

display between normal and inverse, following a software loop that causes apparent
flashing. By the way, the "alternate" dual-case character set is used that does not have
a hardware flasher available.

Most of the characters in the file are standard high ASCII . To simplify screen updates
and word wraparound, the end of each screen line is set to a low ASCII character. This
unique approach does wraparound calculations only once, rather than needing
special treatment on every screen update. The low ASCII marker usually is a carriage
return or the space following the last whole word that will fit the screen line.

Note that low ASCII characters have their most significant bit, or MSB, cleared to
zero. High ASCII characters have their MSB set to one. High ASCII is used for most
Apple uses most of the time. As a reminder, characters $00, $7F, $80, and $FF are
reserved and must not be placed into a text file.

In certain ways, then, Apple Writer lie is a line oriented word processor, because it
remembers exactly what each screen display line should look like at all times.

When text files are saved to disk, all the saved characters are forced to high ASCII.
Thus, Apple Writer lie files are easily exchanged with any program on any computer
that can recognize a standard text file full of ASCII characters.

Which is crucial for typesetting, fancy print formatting, and for modem commu
nications.

Let's review.

120 Enhancement 12

The 47K text file area usually holds two files called LOFILE and HIFILE. LOFILE
holds everything above the screen cursor and HIFILE holds everything below the
screen cursor. These dual files are used to prevent having to move things around
during insertions and deletions, and are the keys to acceptable word processing
speed.

The beginning of your text at the bottom of LOFILE is marked with an$ FF marker.
The end of your text at the top of HIFILE is also marked with an $FF marker. The
"open" ends of LOFILE and HIFLE are identified with $00 markers. These two open
ends face each other, with all of the remaining memory space between them. The
cursed character is the last one at the top of LOFILE. Text is added to the top of LOFILE
during entry and insertion. During deletion, text at the top of LOFILE is replaced with
$00 markers.

Every now and then, LOFILE and HIFILE are merged back together, such as with a
[Bl that puts everything in HIFILE or an [El that puts everything back down in LOFILE.
As one fills, the other empties. More often than not, everything is in LOFILE and you
are adding to the open end of LOFILE during normal text entry.

Text is normally entered in high ASCII. All characters are allowed except for ASCII
codes $00, $7F, $80, and $FF. A possible conflict with the delete key is handled by
recording delete as $80, or as a NULL command in high ASCII. The end of each
display screen line is held as a low ASCII character. This low ASCII marker provides
automatic word wraparound and needs only a single calculation, rather than special
processing on each and every screen update.

Note that you cannot enter an ASCII "do-nothing" or NULL command into a stock
Apple Writer lie textfile, since the $00 coding is reserved.

Be sure you thoroughly understand how this LOFILE and HIFILE pair operate, for
they are the key to understanding the entire program and everything that follows here.

The next step in our file understanding involves ...

The Work File Area

The work file area holds nontext values that are likely to change as the program is
used. The work file area extends from $0000 through $22FF on the main page of RAM.

A detailed work file listing appears as Table 12-1.
Let's briefly see what these files are and what they do. Starting at the bottom, much of

page zero is reserved to hold pointers, counters, stashes, and flags. These are so
important and so crucial to your understanding how this program works, that we will
reserve the next section just for page zero.

The area from $0100 through $0155 holds the memory management code. Note
that main RAM page zero and page one are always used in this program. These do not
change on a switch between main and auxiliary RAM. Only RAM memory locations
from $0200-BFFF switch on a change from main to auxiliary RAM.

The memory management code lets you read the text file from a low cursor pointer I
call LOCURS, a high cursor pointer I call HICURS, a screen update pointer, a printer
pointer, or a general-use pointer.

The high end of page one holds the stack. As usual, the stack starts at $01 FF and
builds down. The stack is short enough that it never crashes down into the memory
management code. The stack is used to hold subroutine return addresses and as an
occasional temporary value stash.

Tearing Into Apple Writer lie 121

Table 12-1. Apple Writer lie Work File Details

The workfiles for Apple Writer lie sit in main RAM from $0000 through $22FF. These are storage areas that are likely to change as the program is
used.

Here are details on the work files:

$0000-00FF

$0100-0156

$01H-01FF

$0200-027F

$0280-02DF

$02E0-02FF

$0300-037F

$0380-03CF

$03D0-03FF

- PAGE ZERO WORK AREA

Page zero holds pointers, counters, stashes, and flags for program use. This area is so important that we have set aside Table
12-4 and Table 12-5 for full details.

- MEMORY MANAGEMENT CODE

Routines to manage auxiliary memory are put here since pages zero and one are never switched or made inactive in this
program .

There are eight management routines. These get installed during the cold start:

$0100----0108 - Handle a DOS error via main memory.
*$0109--0118 - Send a character to the DOS clone in auxiliary memory.
$0129--0131 - Read screen character from auxiliary memory.
$0132--01 JA Read cursed character from top of LOFILE.
$01 JB--0143 Read character from bottom of HIFILE
$0144--014C Read character to be printed from LOFILE.
$014D--0156 Read character pointed to by general use pointer.

(* doesn't really happen - see text)

- 6502 STACK

The 6502 stack in its to $01 FF and builds down. The stack is used to save the return address on subroutines and separately to
temporarily save and restore register values. Since the stack builds down, the area below the stack is risky to use, although
values between $0157 and 0180 are probably safe.

- KEYBUFFER

Keystrokes are read into this keybuffer, either directly from the keyboard or else from the type-ahead buffer during hectic
times. This is a major work area where such things as delimiters are processed . ASCII characters start at $0200 and build up
in memory, ending with an $8D carriage return.

- ACTIVE FILENAME BUFFER

This area holds the filename in active use for DOS access. The " =" filename is saved separately in the work file at
$1 A40-1 A7F. ASCII characters start at $0280 and build up in memory. A $00 value at $0280 means that a legal filename is
no longer there. The end of the file is also filled with zeros to prevent any mixups on slot or drive. The boot process in its this
file to a $00 at $0280, as does the DOS error handler.

- DOS INPUT/OUTPUT BLOCK

The DOS input-output block, or IOB, sits here. Complete use details appear in Beneath Apple DOS. On a machine
language call, DOS goes here to find out what it is supposed to do.

Important IOB locations include:

$02El - Slot number $01-02
$02E3 - Volume number
$02E4 - Track $00-23
$02E5 - Sector $00---0F
$02E8 - Buffer address low
$02E9 - Buffer address high
$02EC - Command 1 =READ, 2=WRITE

- CHARACTER SWALLOW BUFFER

Single characters being deleted get saved here by the open-apple, left arrow command. They are restored by the open
apple, right arrow command. The buffer is 128 characters long and works on a round-and-round basis. A pointer at $AC
decides where to put or get the next character. Each ASCII character is put one address higher than the previous one.

- APPARENTLY UNUSED LOCATIONS

- SYSTEM VECTORS

Addresses of key DOS, interrupt, control, and reset vectors normally sit in this area.

122 Enhancement 12

$0400---07FF

$0800---0BFF

$0C0O---OCFF

Table 12-1-cont. Apple Writer lie Work File Details

Of interest here are:

$03D2
$03D6
$03D9
$03E3
$03EA
$03F5

- TEXT SCREEN

- Starting page of resident DOS usually $D5 for DOS installed in high RAM $D500-F7FF.
- Jump code to the DOS File Manager subroutine.
- Jump code to the DOS RWTS sub for reading or writing to tracks and sectors per IOB instructions.
- A subroutine to find the DOS input parameter list for RWTS.
- Jump code to the subroutine that reconnects DOS to the 1/0 hooks.
- DOS error hook to get back to the main error processor at $480B.

Characters to appear on the screen are mapped into this memory area. The even characters go in main memory and the
odd characters go in auxiliary memory for the BO-column screen.

Note that all screen code is done inside Apple Writer lie. The usual monitor routines are not used since they are slow, have
memory conflicts, do not save keystrokes, and do not handle screen motions in the way needed.

- WORD AND PARAGRAPH DELETION BUFFER

Whole words and entire paragraphs are saved and restored to this area with the [W] and [X] commands. A pointer pair at
$94 and $95 continuously points to the next available location. This is done on a round and round basis, with the character
after $0BFF going into $0800. A separate counter pair of $EF and $FD keeps track of > 1024 overflows. A space ends [W],
while a carriage return ends [X). The boot process inits this work file to all carriage returns.

- DOS TRACK AND SECTOR BUFFER

This 256 byte buffer is used to hold a DOS TIS, or track and sector list for direct machine language loading of text files.
Direct access is both faster and lets you search for portions of a complete text file. A pointer at $Fl is used to access this
buffer, which is filled by DOS itself.

$0D0O---ODFF - DOS TEXT FILE BUFFER

$0E00-15FF

$1200-lSFF

$1600-16EF

This 256 byte buffer is used to hold part of a text file read by DOS under RWTS. Each piece of the text file can be searched as
needed for delimiters . A pointer at $FD is used to access this area, which is filled by DOS itself.

- WPL PROGRAM FILE

A WPL program to be run goes here. Each WPL command consists of a group of high ASCII characters ending with a
carriage return . A $00 value marks the end of the program in case the QT command is missed. The WPL program counter
$AO-A 1 reads this file, controlled by the WPL continue flag at $E7 and the WPL activity flag at $DF. In use, each WPL
statement is read, interpreted, and then carried out. The WPL program file can be 2048 characters long if no footnotes are
in use. With footnotes, the file can only be 1024 characters long and must end at $1 FFF.

- FOOTNOTE BUFFER or WPL PROGRAM FILE

If footnotes are in use, they are held here from the time the footnote occurs in the text until the bottom of the current page
being printed. The ASCII characters build up from $1200 with each separate footnote ending in a carriage return. A $00
marks the end of the last footnote. Flag $FE keeps track of footnote use, with pointer pair $00,01 locally used to load and
then read this file. If footnotes are not in use, then these 1024 locations can be used as additional WPL work file memory.

- LINE JUSTIFY BUFFER

These 240 locations are used to format a line being justified, as well as to hold the searching delimiters during [L]oad, and
to handle word wraparound during screen line formatting.

$16F0-$16F5 - DECIMAL STASH

$16F6-16FF

$1700-173F

$1740-177F

Holds a decimal number expressed in ASCII, along with a possible sign bit. Used for hex-to-decimal and decimal-to hex
conversion, with the corresponding hex value sitting in $CO and $Cl . This work area is inited to all zeros before use.

- APPARENTLY UNUSED LOCATIONS

- WPL STACK

These 64 locations hold the 32 possible subroutine return addresses for SR commands in WPL. Pointer $92 accesses these
locations a pair at a time, entering a new address pair on each SR and reading a pair on each RT return .

- TYPE-AHEAD CHARACTER BUFFER

The 64 locations here hold characters between the time they are typed and the time they can be used, allowing the user to
get as many as 64 keys ahead of the program without any errors. A filling pointer $F3 enters the characters as they are
typed. An emptying pointer $F2 gets the characters as they can be used. During nonhectic times, $F2 = $F3 and the buffer
is empty. The buffer goes round and round, with the next key after $177F going into $1740. Should an open-apple or a
closed-apple key be used with a normal key, these are separately saved in the apple key buffer at $1 AC0--1 AFF.

$1780-17BF

$17C0-17FF

$1800-183F

$1840-187F

$1880-18BF

$18C0-19FF

$18C0-193F

$1940-19BF

$19C0-19FF

$1A00-1AFF

Tearing Into Apple Writer lie 123

Table 12-1-cont. Apple Writer lie Work File Details

- WPL CHARACTER STRING $A

- WPL CHARACTER STRING $8

- WPL CHARACTER STRING $C

- WPL CHARACTER STRING $D

These four work files hold the WPL character strings $A-$ D. Each string consists of high ASCII characters building up from
the starting address and ending with a $00 marker. A $00 at the starting address means this string is not yet in use. All four
strings are inited to $00 during the boot process. Pointer $8E acts as a locator to read these strings.

- TAB FILE

These 64 locations hold up to 32 different tab values. Tabs past 256 characters into a paragraph or complicated form are
allowed. The pointer pair $96,97 keeps track of tab positions into a paragraph. On a tab purge, the entire file is filled with
zeros. On a tab set, the pointer value is stored in the first nonzero location. On a tab clear, one pair of locations is zeroed.

- PRINT PROGRAM FILE

The print program file holds the top line stash, the bottom line stash, and the individual print constants. These are loaded
on a[Q]-C and saved on a [Q]-D. Details follow below.

- TOP LINE STASH

- BOTTOM LINE STASH

The top line and bottom line are held here respectively in unformatted form, exactly as they appear on the PP screen. A $00
value goes at the end of the line. If no TL or BL is to be used, a $00 starts the respective file .

- INDIVIDUAL PRINT/PROGRAM VALUES

This stash holds all the individual print program values as needed by print formatting and WPL. Two bytes are reserved for
each value, even where small numbers are normally used. This simplifies entry and processing. When an 8-bit value is
expected, the first, or even byte is used and the second ignored. Here's a breakdown :

$1 9C0-1 9C 1 - Left margin LM
$19C2- 19C3 - Paragraph margin PM
$19C4-19C5 - Right margin RM
$19C6--19C7 - Top margin TM
$19C8-1 9C9 - Bottom margin BM

$19CA- 19CB - Page number PN
$19CC- 19CD - Printed l ines PL
$19CE- 19CF - Page interval Pl
$19D0-19Dl - Line interval LI
$19D2- 19D3 - Single spacing SP

$19D4- 19DS
$19D6--19D7
$19D8-19D9
$19DA-19DB
$19DC-19DD

$19DE- 19DF
$19E0-19El

$19E2-19FF

- Print destination PD
- WPL numeric (X)
- WPL numeric (Y)
- WPL numeric (Z)
- Carriage returns CR

- Underline token UT
- Justify mode:

$00 = FJ
$01 = LJ
$02 = RJ
$03 = CJ

- These 30 locations are unused but are conveniently loaded and saved as PP values. The PRT.SYS
seems to contain a fragment of some assembly code here.

- TOP AND BOTTOM LINE FORMATTER BUFFER

This page of memory has several separate and local uses. Since each use is temporary, several different tasks can be done
without conflict.

During print formatting, these 256 locations are used to expand the top display line or the bottom display line from its PP
form using delimiters to its "open" form with full space padding and a real page number.

124 Enhancement 12

Table 12-1-cont. Apple Writer lie Work File Details

$1A00-1A3F - MULTIPLE USE BUFFER

There are three local uses for this buffer area. It is used to create DOS filenames for the PRT and TAB files. It is used to
append slot and drive changes onto existing DOS files. It is used as a workbuffer when substituting for WPL (X), (Y), or (Z)
numeric values.

$1A40-1A7F - DOS FILENAME SAVE

The " =" filename gets saved here during DOS access that does not require the main filename. Used by [G)lossary, [L)oad
(while appending), [SJ ave, and [P)-DO. The"=" filename is replaced to the active filename buffer $0280--02DF after each
DOS access, freeing this area up for Tl/BL formatting.

$1A80-1ABF - FIND STRING SAVE

The"=" search and replace string gets saved here for possible reuse. Using [Fl = will repeat the previous search .

$1AC0-1AFF - APPLE KEY BUFFER

An auxiliary to the main type-ahead buffer at $1740-17FF. This area remembers whether an open-apple or a closed-apple
key was also pressed at the same time another key was pressed. Flag $FB holds this status on reading the type-ahead buffer
pair.

$1B00-23FF - GLOSSARY FILE

All of the glossary entries go into this file area . High ASCII characters build from the bottom up and each entry ends with a
carriage return. Fake carriage returns are stashed with a"]" character if they are needed inside a string. A $00 marks the end
of the last string. Both the boot process and the purge command "empty" this file by putting a $00 at $1 BOO.

The keybuffer extends from $0200 through $027F and holds string values and key
commands that are entered from the keyboard. The keybuffer is also sometimes used
as a temporary work area or to hold an old character string for later reuse.

An active filename hold sits just above the keyboard buffer. The DOS input-output
block, or IOB, follows, starting at $02EO. This block is used for machine language
access to the DOS code involved in RWTS, or reading and writing to individual tracks
and sectors. Full details on RWTS appear in Beneath Apple DOS.

Important locations in this IOB include the track number at $02E4, the sector
number at $02E5, and the read ($01) or write ($02) command at $02EC.

Continuing upwards through the work files in main RAM, the bottom half of page
three is used for the single character swallow buffer, controlled by the right or left
arrow key in combination with the open apple key. Note that the swallow buffer is
separate from the combined word and paragraph deletion buffer higher in the work
space.

The usual hooks appear on ·the top of page three, starting at $3D0. Most hooks
vector to a warm restart of the program. The ampersand hook is used for disk error
recovery and vectors to a DOS error or message handler.

We'll breeze on by pages four through seven, since these are the even characters of
the text screen. The companion odd characters of the text screen are stashed on pages
four through seven of the auxiliary memory.

There are 1024 locations ranging from $0800 through $0BFF that are set aside for
the word and paragraph deletion buffers, activated by [WI and [XI. On a deletion, the
stuff to be saved gets tacked onto the end of anything previously saved. On restoration,
the stuff gotten back gets read until a space or a carriage return is found. The pointers to
this deletion buffer go round and round. Overflow is kept track of by a separate counter
on page zero.

Two DOS buffers are provided. The first starts at $0C00 and usually holds a TIS track
and sector list. The text file read from disk is stashed, one page at a time, at $0D00.
Direct buffer access during text file reads lets you scan the file for starting and ending
delimiters, besides being much faster.

Tearing Into Apple Writer lie 125

The WPL program buffer starts at $0EOO and holds any program commands needed
when you are using WPL. You are allowed 1024 characters in the program if you are
using footnotes. If you are not using footnotes, you are instead allowed 2048 charac
ters in this file. A common area from $1200 through $1BFF holds your choice of
footnotes being processed, or else more WPL commands.

Most of the single page from $1600 through $16EF is set up as a line justify buffer.
This page is separately used to format the top and bottom lines as well as being useful
during search and replace activities. The area from $16FO through $16F4 is reserved as
a workspace for decimal-to-hex and hex-to-decimal conversions. The decimal ASCII
values are stashed in this work file area.

All of which brings us up to $1700.
Next is the WPL stack that resides between $1700 through $173F. This stack holds

return addresses for any WPL subroutines in use. A total of 32 subroutine ca,lls are
allowed.

The type-ahead buffer follows. This area saves up to 64 previous keystrokes when
the typist gets ahead of any processing. There are two pointers that access this file on a
round-and-round basis. One fills, the other empties. Any open-apple or closed-apple
key commands are separately saved in a separate 64 character buffer higher in the
work file area.

Note that you must save both the key pressed and the state of the "<open apple>"
and "<closed apple>" keys for a later recovery. Otherwise, certain key combinations
will do the wrong things.

The four WPL strings of $A through $ D are stashed next. Each can be up to 64
characters long.

The tab file is also 64 characters long and begins at $1880. Since tabs beyond 255
characters into a paragraph are allowed, each tab value takes two bytes. There is room
in this file for 32 active tabs.

The Print/Program file values are next in line, and take up the area from $18CO
through $1 BFF. First provided are two 128 character buffers for the top line and the
bottom line. The top and bottom line are held in their "compact" form here, with
delimiters and a 11# 11 for possible page numbers. When formatted, the top line or the
bottom line is expanded as needed into a multiple use buffer at $1AOO.

These compact line buffers are followed by individual stashes of all the print values
such as the page number, the justify mode, and so on.

Locations of the individual print/program values are detailed in Table 12-1. Our
intent here is to get a look at the big picture. The tables have more detail for you, if and
when you need it.

The area from $1A00-1AFF has several uses. Sharing is possible since each use is
temporary. The entire buffer is used to format the top or bottom line into its expanded
form with real page numbers and full space padding.

Other uses split this page into four temporary work files, starting with a short
multiple use buffer at $1A00-$1A3F. This one gets used in assembling PRT and TAB
filenames, to hold slot and drive values, and as a WPL substitution workbuffer.

An 11 =" filename buffer follows from $1A40-1A7F. This is used to hold the old text
filename while DOS is being temporarily used for something else. For instance, the
name of a glossary or a WPL file to be loaded may need the active filename buffer at
$0280. During such special use, the old filename is briefly saved here. Immediately
after special use, the old filename gets returned to the active buffer at $0280.

This is followed by an "=" buffer at $1A80-1ABF used for repeat searches and
replaces. Next is an open- or closed-apple stash at $1AC0-1AFF used as the second
half of the type-ahead buffer.

126 Enhancement 12

Finally, the area from $1C00 through $22FF is reserved for the glossary buffer. This
sets aside up to 2048 characters for user-defined keystrokes. Each glossary entry ends
with a carriage return. The final entry and return is followed by a $00 marker.

As you can see, there are lots of work files that are needed by Apple Writer lie. These
work files hold things likely to change during your use of the program. Much of the
power and uniqueness of Apple Writer lie comes about through extensive use of these
work files. (Fig. 12-3).

That just about completes our survey of the work files. Next, let's briefly look at ...

lie MAIN RAM

{ ... _

1

,..... ________ GL_o_ss_AR_Y __________ .. f } .. ___ G_Lo_s_sA-RY--1

$!COO ALSO TUBL FORMATTER S2300

SC

$1800

$1400

$1000

$0COO

$0800

$0400

$0000

SD
TAB
FILE

TOP
LINE

FOOTNOTE BUFFER OR
WPL PROGRAM FILE

WPL PROGRAM FILE

BOTTOM
LINE

PRT MULTI DOS FIND e
FILE USE SAVE GLOSSARY

BUF BUF BUF

SIAOO

$1600

$1200

LINE JUSTIFY
BUFFER

$!BOO $!COO

H WPL KEY
E STACK STROKE SA SB

SAVE

$1700 $1800

FOOTNOTE BUFFER OR
WPL PROGRAM FILE

$1400

DOS BUFFER
FOR T/S LIST

· DOS BUFFER
FOR DATA

WPL PROGRAM FILE

PAGE ZERO
POINTS, FLAGS
AND STASHES

SODOO

$0100

SOEOO

WORD & PARAGRAPH
DELETION BUFFER

VIDEO SCREEN
EVEN CHARACTERS

STACK

$0200

KEY
BUFFER

FILE
NAME
HOLD

$0300

I
$1000

socoo

$0800

$0400

FIGURE 12-3. Simplified memory map of Apple Writer lie work files.

Tearing Into Apple Writer lie 127

Table 12-2. Apple Writer lie Internal File Details

Internal files are "loose ends" that tend to accumulate where you don't want them to when you keep revising a program. These are stashes or
images ins.ide the main portion of the working code. These stashes and images must be patched around when you are capturing source code, or
aliasing is almost certain to result.

Here are the internal files:

$26FE - END OF LINE Y-SAVE STASH

A one-byte location used to preserve the Y-register during the clear-to-end-of-line service subroutine.

$2B92 - GLOSSARY NEST STACK POINTER

Holds a pointer that, when doubled, points to address pairs in the following table.

$2B93-2BA2 - GLOSSARY NEST STACK

$3045-3095

$3885-3886

Holds eight pairs of addresses pointing to the glossary work file. When one glossary entry calls another, the return address
is held here. This neat and very powerful code works just like a subroutine.

- TAB STATUS LINE IMAGE

This ASCII file holds the image of the tab status display and is used to remember set tab values.

WARNING : This stash will alias bady if you try to disassemble or cross-list it! It will also alias and louse up the next two
machine language instructions that follow it!

- FIND REGISTER STASH

These two bytes are used to save register values during [Fl ind. The X-register gets saved in $3885. The Y-Register is saved in
$3886.

$47E0 - PRINT MODE CHARACTER SAVE

Holds a character during printing for the underline check. If the underline symbol is present, substitutes a space.

NOTE: Another "misplaced" stash involves $5210-5213 in the reference file area. See Table 12-3 for details.

The Internal File Area

The internal file area holds a few oddball things stuffed into the working code. This
was done to handle updates and improvements without causing reassembly hassles.
Table 12-2 shows us all the internal work files.

There are some X and Y register temporary stashes, the glossary nest, and the tab
status line display. The glossary nest holds the addresses to I inked parts of the glossary.
More details appear in Table 12-3 and in the upcoming Table 12-7 script.

Our main interest in the internal file area is to let us bypass these locations when
capturing your own source code. In particular, the disassembly process gets messed up
coming out of the tab status display. What is aliased as "LOX $FF20, ROL $20, and
$27" is correctly disassembled as "JSR $26FF, JSR $2725" .

A lot of aliased references to $AEAE, $AEB3, etc., are also created if you try to
disassemble the tab status file as legal op codes.

The final area we are interested in is .. .

The Reference File Area

The reference files hold things that are more or less permanent and that do not
normally change much during program use. The reference files are stashed in main
RAM from $4AF9 through $53CF.

Table 12-3 gives you more detail on these reference files.
We start with a screen base address table. Because of some hardware considera

tions, there is no obvious relation between where a character goes on the Apple

128 Enhancement 12

Table 12-3. Apple Writer lie Reference File Details

The reference file area holds va lues that are seldom, if ever, changed . This file area sits above the main program from $4AF9 through $5400. See
Table 12-6 for specific address location vectors.

Here are details:
$4AF9-4828 - SCREEN BASE ADDRESS TABLE

Holds pairs of addresses corresponding to the leftmost base address of each screen character line. Thus, top line zero has a
base address of $0400 and l ine one an address of $0480. Table lookup of screen base va lues is much faster than
ca lculation.

$4829-4C12 - FUNCTION LIST

An ASCII list of all avai lable control commands, along w ith any bottom line prompts needed for those commands. Note
that [@] is the delete key and that [Al is reserved, presumably for modem use. [M l is a carriage return . This table is scanned
for a match character between the"[" and "] ". If a match is found, a bottom line prompt is included on certain commands.

$4C13-4C44 - FUNCTION ADDRESS LIST

Holds the module addresses fo r the contro l commands (@] through [Z] . Thus, the (@] for delete module starts at $2AD0,
[BJ for move cursor to beginn ing modu le starts at $28DC, and so on down the list.

$4C45-4C6C - PRINT CONSTANTS MATCH FILE

A file of pairs of ASCII characters from LM, PM, ... through RJ, and finally CJ. O n a match to a character pair, the entered
va lue is saved to the proper PP slot.

$4C6D-4C91 - WPL COMMAND MATCH FILE

A file of pairs of ASCI I characters from GO, DO, ... th rough SI, and finally EP. O n a match to a character pair, a jump is done
to the module that handles that WPL command.

$4C92-4CB5 - WPL COMMAND ADDRESS FILE

These address pai rs ho ld the start ing point of the WPL modules DO through EP. For instance, the GO module starts at
$4225, DO begins at $40D6, and EP starts at $43Cl.

$4CB6-4E3B - ASCII PROMPTS AND DOS COMMANDS

These ASCII messages range from " Insert sheet, press return" through "Proceed / Y = Replace" . They are selected as
needed to prompt the user or to activate DOS.

$4E3C-4EC9 - WPL ERROR MESSAGE FILE

Th is stash ho lds all the WPL error messages, starting with a prompt of "WPL Error :" and ending with "G lossary nesting."
When an error happens, the prompt is put down, and is then fo llowed by one of the error messages.

$4ECA-4F84 - DOS FUNCTIONS MENU

$4F85-4FE8

$4FE9-5087

$5088-5088

$508C-51F9

$51FA-520F

$5210-5211

This stash holds all the ASCII characters needed for the [OJ DOS access command menu.

- VARIOUS ASCII STASHES

Holds " loose end" ASCII prompts and messages including the help DOS fil ename, the STARTUP file name, and two user
prompts.

- FIRST SCREEN

Conta ins an ASCII image of the fi rst screen displayed on a cold start.

- APPARENTLY UNUSED

These fou r $00 bytes are apparent ly unused in this particular version.

- ADDITIONAL FUNCTIONS MENU

Contains an ASCII image of the additional functions menu and selection prompt.

- ADDITIONAL FUNCTION ADDRESSES

Holds the address pai rs needed to enter each additional function routine, ranging from $2EC1 to load the tab fil e, through
$2CA4 to quit.

- EXPRESS CURSOR MOTION WORK FILE

This misplaced work file ho lds two stashes used by the express cursor motions. $52 10 is a line counter, usually set to 12
lines. $52 11 is an abort file, ho lding an $AO for stop on space, or $00 for stop on fi le end.

Tearing Into Apple Writer lie 129

Table 12-3-cont. Apple Writer lie Reference File Details

$5212-5213 - PRINTING WORK FILE

This misplaced work file holds two stashes used by the [P]rint routines. $5212 holds a copy of the left margin LM value,
while $5213 keeps the right margin RM value. These two are subtracted to find the default line length for the top and
bottom header margins.

$5214-53CF - PRINT/PROGRAM FUNCTIONS MENU

Contains the ASCII image of the print/program functions screen. Values are added to this background display during the PP
"?" command .

screen and its address in memory. Any program has a choice of calculating the
leftmost screen line base address, or else looking that value up in a table. Table lookup
is much faster. The process is called BASHing. The BASH address for the top line is
$0400. The next one down is $0480, and so on down the list.

The next reference file is both a menu and a prompting list of available functions.
There are 32 possible control command functions. Those used range from [@), which
is really the delete key, on up through [Z], the wraparound toggle.

Some of the control commands are missing and some are "hidden" as dedicated
keys. Here is a summary of the ...

Ru:ny" Control ~:rnan~s -------7
F----------------~-·-1 I Dedicated use-- i
I [@) - is the delete key
1 [HI - is the left arrow I [II is the tab key
I [JI - is the down arrow

I [Kl - is the up arrow
[U) - is the right arrow

I Not available for use -

I [Al - is saved for a modem
[Ml - is a carriage return

The DELETE key is recoded as a $80 because its $FF value is reserved as a text file
marker. The arrow keys are really the control functions [HI, [JI, [Kl, and [Ul as shown.
[11 is the tab key that does the actual tabs.

We will be using the WPL way of showing control commands in this enhancement.
Thus, "[Tl" means "press and hold down the control key. Then press and release the T
key. Then release the control key."

[Al is not used at all, since many modems need this command for telecommunica
tions. And, finally, [Ml is really a carriage return. Since a carriage return signifies the
end of any user response, it is not normally available for anything else. If you must
imbed an unusual carriage return into your text, you can do so with the "]" in the
glossary. You could also use one of the special delimiters available for the [Fl replace
option.

The function list is used two ways. It is first scanned to try and find a match on a
control key. If a match is found, the action is done. If no match is found, any action is

130 Enhancement 12

ignored. Secondly, some functions need a user prompt, such as when "[Slave:" asks
you for a filename. These prompts are placed on screen when and as needed.

A list of function addresses follows the function list. These are detailed in Table
12-6. When a match is found between a control key and the function list, the function
address is jumped to. This carries out the requested action.

Next in the reference file is a pair of back-to-back matching files. The first of these
holds two letter pairs of print constants, while the second holds two letter WPL
commands. On a print constants match, the value is taken, converted to hexadecimal,
and stored as.needed in the print constants work file. On a WPL command, the needed
action is carried out.

A list of WPL addresses follows the WPL command list. As before, on a two-letter
match, that action is done. Table 12-6 shows you which action goes where.

The reference file continues with some ASCII coded prompts and DOS commands,
followed by the WPL error messages. These characters are grabbed when needed,
either for a user prompt, or to issue a DOS command. The DOS function menu needed
by [OJ follows, along with some more ASCII stashes.

All of which brings us up to the startup screen at $4FE9. This holds the first screen
image you see on bootup. four unused bytes follow the image.

The Additional Functions menu needed by [QI is next, followed by the address list
of each additional function routine. These are followed by a short pair of misplaced
work files.

Ending the reference files, the Print/Program menu starts at $5214. This image is
used to put down the fixed portions of the Print/Program menu. The changing portions
are read as needed from the Print/Program work file.

As we have just seen, the reference files hold things that seldom if ever change
during program use. The reference files are loaded into the machine, following the
main word processing code.

Note how you can use your cross-reference and the avalanche effect on these work
files. Knowing what each file is used for lets the cross-reference list nail down which
module uses which reference file for what purpose.

Remember that the reference files and internal files are loaded off disk, while most
of the work files are created, initialized, and then used by the running program.

That just about completes our look into the various file areas. Reviewing, there is a
text file area that holds the actual words being processed. There is a work file area that
keeps things that are likely to change. There is the internal file area, and finally, there is
the reference file area that holds things that are rarely changed during the program use.

The next big question is .. .

HOW DO YOU CRACK PAGE ZERO?

Many of the great mysteries to be solved by the tearing method involve strange and
wondrous uses of page zero.

Page zero addresses on any 6502 system are very handy, since they are easy to
access and use. More importantly, certain address pairs that let you do 16-bit
" anywhere in memory" access positively must sit on the zero page.

In short, there is no way to understand any Apple program if you do not thoroughly
understand what is on page zero, how it gets there, and how it is used .

Tearing Into Apple Writer lie 131

Important uses of page zero include pointers, counters, stashes, and flags ...

Important Uses of Page Zero

Pointers -

A pointer holds an address or an address pair that is
used to find some other memory location.

Counters -

A counter is used to remember positions or trips
needed. Very often, these start at some value and are
decremented down to zero.

Stashes-

A stash is used to temporarily hold some value that is
likely to be changed.

Flags-

Flags remember conditions and operating modes. A
flag often has only two or three possible values.

Pointers are used to hold addresses. A single pointer can only address 256 different
places in memory. A dual pointer can address 65,536 places in memory. Dual
pointers are most often used with the 6502's very powerful indirect indexed address
ing mode.

Indirect indexed addressing lets the computer reach anywhere in memory without
worrying about page breaks or 256 byte limits. For instance, in Apple Writer lie, there
is a LOCURS pointer that points to the current cursor position in the LOFILE half of the
text file.

By the way, if you are rusty on addressing modes and machine code in general,
check into Don Lancaster's Micro Cookbooks (Sams Cat. Nos. 21828 and 21829).
Volume 2 on machine language programming should be of special interest to you.

Counters are used to hold something that is being incremented or decremented until
some magic value occurs. Most often, a counter is initialized to its maximum value
and then decremented to zero. This is done since zero is testable "free" with the BNE
command. In Apple Writer lie, there is a deletion counter that makes sure you do not
delete words or paragraphs that are longer than 1024 characters.

Stashes hold values that may or may not change. The advantage of keeping values
on page zero, rather than elsewhere in memory, is that you can reach these values
faster with fewer bytes of code. In Apple Writer lie, there is a read-only stash that
remembers whether you have a 40 or an 80 column screen width.

Flags remember conditions for you. Usually, a flag will only have a few possible
values, with a "don't" value of $00 and a "do" value of$ FF common. In Apple Writer
lie, there is a "R" flag that remembers whether or not you are in the replace mode.

The big question is "How do you find out what the flags do?"

132 Enhancement 12

This is one route to . . .

Cracking Page Zero Locations

(1) Create a notebook of all used locations as listed on
the cross-reference for the study program.

(2) Do the tearing method, putting all known informa
tion about all flag uses into the notebook.

(3) Go back to the cross-reference and color code each
page zero use, red for writes and green for reads .
Correct any errors or omissions in the notebook.

(4) Write a complete script of page zero use. Use both a
summary list and a detailed script.

As with most other tearing method actions, it takes a few passes to get it right. The
first pass finds out if something is used. The second pass finds out roughly who uses
that location for what. The final pass nails down the exact use details.

I like to take a small old notebook, and put two or three page zero addresses on each
sheet. You get these uses from your page zero cross reference.

As you go through the tearing method, some page zero uses w ill immediately leap
out at you. For instance, in Apple Writer lie, the [VJ command vectors to $32 74 which
changes the state of the$ DO flag from $00 to$ FF or vice versa. Obviously$ DO is our
[V)erbatim flag, and we are home free on this one.

Record everything of interest you find in the notebook. Even if you don't have the
foggiest what the location is up to, knowing that [L)oad and [S)ave need it and that it
gets inited to some value will help bunches later.

The notebook should completely crack about one-third of the page zero locations.
Another third should be "pretty nigh, but not plumb." And the final third will still have
some mystery surrounding them. Regardless of how far you get, complete the main
tearing process as far as you possibly can.

Pay particular attention to whether a page zero location is global or local ...

Global Value -

Something that has only one possible meaning or use
during the entire program.

Local Value -

Something that can have many different meanings at
different times in different points in the program.

Global page zero locations have only one single use or meaning. Local page zero
locations can have different uses at different times, when referenced by different
places in the program. Globals are obviously simpler to handle. If you find the same
location being used by two or more wildly different portions of the code, assume it is a
local value. Then prove yourself right or wrong.

Tearing Into Apple Writer lie 133

As Apple Writer lie use examples, the [R] flag at $ FS is used everywhere in the
program to pick inserting versus replacing. The Y-register stash at $CS is used many
different places in the program for many different things.

Note that the second page zero location in a pointer pair often goes along free for the
ride. Thus, you might initialize both $80 low and $81 high as a pointer pair, but you
would only refer to the $80 in a LDA (80),Y command. The use of $81 as a page
location or "high address" is inferred in the LDA (80),Y command. This is true for most
double wide pointer uses.

O.K.
At this point, your page zero should be around half cracked. Less than a third white

margin should remain in your main tearing attack.
Next, go back to your cross-reference listing, and start color coding each page zero

use. Do this one location at a time. Red for writes, green for reads. As you color each
location, update the notebook with who uses what how.

Pay particular attention to what sets up the location, who changes the location, and
which code tests that location. This should make the use of each flag obvious. Correct
and expand your notebook comments as you crack each location.

Remember that any booting or setup code can init certain locations to certain
values. Most of the Apple Writer lie page zero locations above $80 init to $00. If you
have a "read-only" or "all green" location, always go back to the booting and setup
code to see what got stashed where . If some location seems always to be "stuck" in a
certain value, make sure there is no branching or indirect stores that change it in a
subtle way. Also, find out if different or older versions of the program might have
needed this location for obsolete uses.

We won't be looking at the booting code much here, because of the abuse potential
of this information. If you go through the tearing process for this program, finding out
how the boot works ends up both trivial and simple.

A joke, even.
At any rate, the way you crack page zero is to first record the obvious and make

some guesses, and then go back and study each page zero location one on one.
Let's do it ...

APPLE WRITER lie PAGE ZERO USES

Table 12-4 gives you a summary of the page zero uses of Apple Writer lie, broken
down into pointers, counters, stashes, and flags. Each listing is then shown in order of
increasing address.

More detail appears in Table 12-5, which gives you a complete scriptofall the page
zero uses.

I guess a program counter is really a pointer, so there is some overlap between the
pointers and the counters. And the line between a multivalue flag and a few-valued
stash also gets a mite thin at times .

Whatever.
Probably the single most important page zero locations are $84 and $85, the

LOCURS pointer. This pointer pair points to the address in the text file in auxiliary
memory where the next character is to be entered or removed.

As is customary in the 6502 world, the "low," or "position" address appears first in
$80 and the "high" or "page" address is stashed in $81. For a use example, if $80
holds a $46, and $81 holds a $35, and the Y register holds an $00, the command LDA
(80),Y goes to address $3546 and puts a copy of what it finds in the accumulator.
Should the Y register have been holding an $02 instead, the same command would go

134 Enhancement 12

Table 12-4. Apple Writer lie Page Zero Use Summary

A summary of page zero use follows, with much more detail on each location provided in Table 12-5, 12-7, and in your own cross reference
listings. Locations marked with an "*'" have more than one use and should be approached with caution.

Here goes:

-pointers-

*$00,01 - General use local pointer
$05 - WPL label pointer
$26,27 - Screen scrolling pointer
$28,29 - Screen base address pointer
$36,37 - COUT monitor destination

$38,39 - KEVIN monitor source
*$80,81 - General use local pointer
*$82,83 - General use local pointer
$84,85 - LOCURS text file pointer
$86,87 - HICURS text file pointer

$88,89 - Screen text file pointer
$8E - String $A-$D pointer
$90,91 - Printer text file pointer
$92 - WPL subroutine stack pointer
$94,95 - Word deletion buffer pointer

$9E,9F - Print destination pointer
$A2 - First delimiter pointer
$A3 - Second delimiter pointer
$A4 - Third delimiter pointer
$A6,A7 - Text file HIMEM pointer

$AA,AB - User prompting pointer
$AC - Character deletion pointer
$B1 ,B2 - Text file LOMEM pointer
$BA,BB - DOS utility pointer
$E9 - Last character pointer

$F0 - DOS pointer to loaded file
$Fl - DOS pointer to TIS file
$F2 - Type-ahead emptier pointer
$F3 - Type-ahead filler pointer

*$F9,FA - General use local pointer

-counters-

$06 - TL,BL character counter
$96,97 - Tab position counter
$AO-Al - WPL Program counter
$BE,BF - Page number counter
$C8 - Screen line counter

$DA - Printed line counter
$EF,F0 - Deletion overload counter

-stashes-

*$00 - Multiuse local stash
*$01 - Multiuse local stash
*$02 - Multiuse local stash
$22 - Screen window top stash
$23 - Screen window bottom stash

$24 - Cursor horizontal position
$25 - Cursor vertical position

*$34 - Y-Save stash
*$35 - X-Save stash
*$80 - Disk volume save

*$82 - Multiuse local stash

Tearing Into Apple Writer lie 135

Table 12-4-cont. Apple Writer lie Page Zero Use Summary

$BA - Screen HPOSN save
$8B - Screen VPOSN save
$BC - WPL current character save

*$98,99 - End address stash

$9A,9B - Memory left stash
$BS - Cursor symbol stash
$B6 - Screen width stash
$B7 - Left margin padding stash
$B9 - Screen cursor position save

$C0,C1 - Hexadecimal stash
*$C2 - General use local stash
*$CS - Y-Register stash
*$C6 - X-Register stash
*$C7 - Accumulator stash

*$D3 - General use local stash
$DB - Last printed line stash
$DC - Line length stash
$E6 - Delimiter stash
$EA - Wildcard stash

$EB - Fake carriage return stash
$EC - Any length stash
$F4 - Busy prompt symbol stash
$FB - Open/Solid Apple save

-flags-

*$03 - Local use flag
$7F - DOS clone flag (see text)

*$80 - Catalog to text file flag
$AB - Arithmetic mode flag
$AD - String source flag

$B3 - System configuration flag
$B4 - DOS version flag
$BB - Printer enable flag
$C4 - Case flag
$C9 - Any length work flag

$CE - Screen source flag
$CF - Data direction flag
$DO - Verbatim flag
$D2 - Carriage return display flag
$D4 - Cease printing flag

$OS - Load from memory flag
$D7 - String $A-$D load flag
$DD - First paragraph line flag
$OF - WPUglossary active flag
$EO - Underline flag

$El - Wraparound flag
*$E2 - Append or All flag
$ES - Data line display flag
$E7 - WPL continue flag
$EB - Case change flag

$ED - Mystery flag
$EE - Deletion overload flag
$FS - Replace mode flag
$F6 - String AaD active flag
$F7 - Screen display flag

136 Enhancement 12

$F8
$FD
$FE
$FF

Table 12-4-cont. Apple Writer lie Page Zero Use Summary

- Split screen flag
- Screen destination flag
- Footnote buffer flag
- Bottom of page flag

Table 12-5. Detailed Script of Apple Writer lie Page Zero Use

Page zero is used for pointers that hold address values, counters that keep track of positions, stashes that hold constants or characters, and flags
that remember conditions and modes. Single page zero locations are used for eight or fewer bits of information. Double page zero locations are
used to hold 9 to 16 bits of information.

Most of these locations above $80 are inited to $00 during the boot process. A $00 on a flag usually means "don't."

Here is a rundown:

$00

$01

$00--01

$02

$03

$05

$06

$00

$22

$23

$24

$25

- MULTIUSE LOCAL STASH

Local stash when used by itself. Line counter for glossary display. [Slave character stash . Character stash for OPEN and
APPEND. Force case inhibitor. [L)oad character stash . Header space formatting. PP value hold. IN string address
calculator. AS string length. Position counter for center and right of TL or BL. Menu selection save for DOS [OJ.

- MULTIUSE LOCAL STASH

Local stash when used by itself. Row counter on title border. Tab position compare. Status line position counter.

- MULTIUSE LOCAL POINTER

A 16-bit wide pointer when used as a pair. [QI pointer prompt. Memory destruct pointer. DOS file manager pointer. WPL
or glossary disk load destination address. Footnote buffer pointer.

- MULTIUSE LOCAL STASH

Holds the quit cha rater on [WI and [XI. A slot and drive prompt flag for [OJ. Tab position for [I) . Keybuffer pointer in [Fl.
WPL string offset address stash.

- DUAL USE TAB/STRING FLAG

On an [I] tab, a $00 value means no tab value available. A $FF means tab can be completed. On the IN and AS commands,
the $FF value means to read the string from the WPL file. A $00 value means normal string access from the keyboard buffer.

- WPL LABEL POINTER

Points to the first character in the label of a WPL command. Used by SR subroutine search and for the LABEL NOT FOUND
error message.

- TL/BL CHARACTER COUNTER

Used in formatting the top and bottom line messages for left, center, and right positions.

- INCLUDE DELIMITER FLAG

On a (L]oad, a $00 value here means to load including delimiters. A $FF value means to omit delimiters from the load .

- SCREEN WINDOW TOP STASH

Holds the top of the screen window. lnits to $00 and is modified by [YI for split screen display.

- SCREEN WINDOW BOTTOM STASH

Used as a compare value to stop screen entry. An $18 for full screen or bottom of split screen. An $18 or a $QC for split
screen, corresponding to 12 or 24 display lines.

- CURSOR HORIZONTAL POSITION STASH

Holds the current screen horizontal position, ranging from $00 extreme left through $4F for 80-character extreme right.
Altered by nearly all screen entries and cursor motions.

- CURSOR VERTICAL POSITION STASH

Holds the current screen vertical position, ranging from $00 at top through $17 at full screen bottom. Altered by many
screen entries and cursor motions.

$26,27

$28,29

$34

$35

$36-37

$38-39

$7F

$80

$80-81

$82

$82,83

$84,85

$86,87

$88,89

$8A

$88

Tearing Into Apple Writer lie 137

Table 12-5-cont. Detailed Script of Apple Writer lie Page Zero Use

- SCREEN SCROLL POINTER

Holds the destination address during screen scrolling. lnits to present line position . Line below is mapped up one,
repeating as needed to complete scrolling.

- SCREEN BASE ADDRESS POINTER

Holds the memory address of the leftmost position on the current screen line. Found by table lookup from the BASH table
at $4AF8-4B28. Used to enter characters, read from screen, flash cursor, and in screen scrolling.

- Y-SAVE STASH

Used to save the contents of the Y register during access to the type-ahead buffer, KSWL entry, and character-to-screen
entry.

- X-SAVE STASH

Used to save the contents of the X register during access to the type-ahead buffer, KSWL entry, and character-to-screen
entry.

- COUT MONITOR DESTINATION POINTER

Decides where characters are to go when using the monitor COUT routine at $FDED. Normally points to an immediate
RTS at $FDFF for access to DOS only. Changes to $260B for display to screen, to $274B for a CATALOG display, and to
$Cl 00 for a printer in slot 1 for the keyboard direct to printer option.

- KEVIN MONITOR SOURCE POINTER

lnits to $2565, the KSWL routine in Apple Writer lie. Not otherwise referenced, since this program uses its own internal
KEYIN routine with an internal type-ahead buffer.

- DOS CLONE FLAG

The intended use of this flag was to pick which DOS image to use. A $00 value uses the DOS image in main memory for
most DOS access. A $FF value was supposed to use the DOS image clone in auxiliary memory for a text file [Slave.

Actually, there is no auxiliary DOS image, so this flag does nothing at all . See text.

- DUAL USE STASH or FLAG

When used by itself, is a catalog flag, with $00 being a normal catalog, while $FF also catalogs to the text file. Separately,
this location holds a disk volume number during [L].

- GENERAL USE POINTER

Used any time a temporary 16-bit pointer is locally needed. In its to $1 BOO for glossary access. Does the forced jump in
[Ql . Clones memory for 1.1 updates. Handles <ctrl > matches and screen prompts. Tab file limit check. Cursor eraser to
force high ASCII. File to screen pointer. Load file pointer. PP menu pointer. IOB printer.

- DUAL USE LOCAL STASH

When used by itself, locally holds the DOS error message number. Also used as a volume hold and compare in the volume
verify routine.

- GENERAL USE POINTER

Used as a local pointer. Picks the <ctrl> or PP address selected as a forced jump. A pointer for DOS access of the text file.

- LOCURS TEXT FILE POINTER

Points to the top of LOFILE, which is the currently cursed character. Used for every major access to LOFILE, all entries, to
the text file, and all cursor motions.

- HICURS TEXT FILE POINTER

Points to the bottom of HIFILE, which is one past the currently cursed character. Used for insertions, deletions, and any
other time the cursed location is not at the end of the text file.

- SCREEN TEXT FILE POINTER

Points to the location in the text file about to be put on the screen. lnits to 6 or 12 lines before LOCURS, depending on
screen split. Keys on low-ASCII markers at the end of each screen line in the LOCURS and HICURS text files . Maps LOFILE
up to the center of the screen and the cursed location. Then switches to HIFILE and maps the rest of the screen.

- SCREEN HORIZONTAL POSITION STASH

Holds save of cursor horizontal position during screen update.

- SCREEN VERTICAL POSITION STASH

Holds save of cursor vertical position during screen update.

138 Enhancement 12

$8C

$8E

$90,91

$92

$94,95

$96,97

$98,99

$9A,9B

$9E,9F

$AO-Al

$A2

$A3

$A4

$A6,A7

$AS

$AA,AB

$AC

Table 12-5-cont. Detailed Script of Apple Writer lie Page Zero Use

- WPL CURRENT CHARACTER STASH

Remembers the current WPL character being evaluated . Used to search for a "= $" string assignment and to end on a
carriage return .

- STRING $A-$D POINTER

Points first to the starting point of each string in the $A-$ D buffer work file $1780-187F. Then acts as a character pointer as
that string is used . lnits to $00 for a string $A, $40 for string $8, $80 for string $C and $CO for $D.

- PRINTER POINTER TO TEXT FILE

Points to the character to be printed in the text file. lnits to LOFILE start at $0801.

- WPL SUBROUTINE STACK POINTER

Points to address pairs in the WPL stack work file at $1700-1740. Zeros on init. A 6 bit pointer, limited to 64 values, and
pointing to 32 possible pairs of WPL return addresses.

- WORD DELETION POINTER

This round-and-round pointer always stays in the word deletion work file $0800-QBFF. Advances each time a character is
added to the deletion buffer and backs up each time one is removed .

- TAB COUNTER

Holds the character position since the last carriage return . Used by the tab routines and by the tab display. Updated on
each character entry or deletion. Note that a pair of counter values is used so you can tab past 255 into a long paragraph or
complicated form.

- ENDPOINT ADDRESS STASH

Used to hold the endpoint address needed by [Fl, [SJ, and [Y]. I nits to the $F9 pointer for split screen use, and to the present
cursor position for find and save.

- MEMORY LEFT STASH

Subtracts HICURS-LOCURS to find out how much memory is left. Used by the status line.

- PRINT DESTINATION POINTER

Holds the starting address of a printer routine. Normally $Cl 00 for most printers, $FDED for the print-to-disk option, and
$269F for the print-to-screen option. Set by PD.

- WPL PROGRAM COUNTER

Points to the next character in the WPL work file starting at $0EO0. lnits to $0EO0 and is saved to the WPL stack on a
subroutine call. Also is restored from the WPL stack on a sub return. Changed on the GO command.

- FIRST DELIMITER POINTER

Used to find the first delimiter and to scan between thefirstand second delimiters in the keybufferduring [F]ind and [L]oad .
Also used locally as a PP first letter command stash .

- SECOND DELIMITER POINTER

Used to find the second delimiter and to scan between the second and third delimiters in the keybuffer during [F]ind and
[L]oad . Also used locally as a PP second letter command stash.

- THIRD DELIMITER POINTER

Used to find and hold the third delimiter during [L]oad.

- HIMEM POINTER

lnited to $BEFF by the boot process to set the HIFILE upper limit. This location is read only.

- ARITHMETIC MODE FLAG

Remembers whether a numeric value is absolute or relative. A $00 means an absolute value. A $AB for"+" or a $AD for
" - " handle relative values. Note that either of these sets the N flag. Negative values are automatically twos comple
mented during entry so that a simple add-only routine can handle both "+" and " - ".

- PROMPT POINTER

Points to the text prompts needed by the bottom window on [] commands.

- SWALLOW BUFFER POINTER

Points to last used location in the single character swallow buffer at $0300-$037F. MSB is ignored, forcing pointer round
and round in the buffer. This pointer gets incremented on single-character deletions and gets decremented on single
character insertions.

$AD

$81,82

$83

$84

$85

$86

$87

$88

$89

$BA,BB

$BE,BF

$CO,C1

$C2

$C4

$CS

$C6

$C7

$C8

Tearing Into Apple Writer lie 139

Table 12-5-cont. Detailed Script of Apple Writer lie Page Zero Use

- STRING SOURCE FLAG

A $00 value gets a new string from the user. A $FF value uses the old string already sitting in the $0200 keybuffer.

- LOMEM POINTER

Boot process inits this address pair to $0800, the start of LOFILE in auxiliary memory. These values are read only.

- SYSTEM CONFIGURATION FLAG

Boot process inits this flag to $CO for a 128K, 80-column Apple lie. Used in other versions for screen formatting and
memory management. Read only.

- DOS VERSION FLAG

Stays at $40 under DOS 3.3e. In other versions, a cleared V flag will run the ProDOS program named STARTUP. Also used
by DOS error processor to properly link the chosen DOS in use.

- CURSOR SYMBOL ST ASH

A $20 value here means to use a software flashable white box cursor. A value of $00 means to not alter or change the
cursed location.

- SCREEN WIDTH ST ASH

I nits by boot process to $50 for an 80-character wide screen. Other versions use a $28 value for 40 columns. This location
is read only.

- LEFT MARGIN PADDING STASH

Holds the number of print spaces needed at the left margin . lnits to LM. Modified by PM and CJ .

- PRINTER ENABLE FLAG

A $00 value means the printer is off or thatthe screen is to be the print destination. A value of $FF means the printer is active
and pointed to by $9E,9F.

- SCREEN CURSOR POSITION STASH

Holds the point in the cursed line where a switch from LOFILE to HIFILE is needed.

- LOAD POINTER or DOS POINTER

Dual-use pointer pair. Used to move copy of DOS to auxiliary RAM. Separately used as a searching pointer when loading
from memory.

- PAGE NUMBER COUNTER

This pair inits to PN and is incremented automatically on each new page printed.

- HEXADECIMAL ST ASH

Holds a 16-bit hex input for hex-decimal conversion. Receives a 16-bit hex result for decimal-hex conversion. Related
decimal values sit in $17EO--l 7E4.

- KEYSAVE or LOCAL ST ASH

General use local stash used as a command or character local hold, sort of as an auxil iary accumulator.

- CASE FLAG

Picks case in use. $00 is normal mixed upper and lower. $80 is uppercase only. $CO is lowercase only.

- ¥-REGISTER STASH

General use local stash, most often used to preserve old contents of Y-register. Also a width-of screeen counter used during
screen wraparound formatting.

- X-REGISTER STASH

General use local stash, most often used to preserve old contents of X-register. Also used to hold a previous character
during screen wraparound formatting.

- ACCUMULATOR STASH

General use local stash, most often used to preserve old contents of accumulator. Also used as a padding flag in FJ .

- SCREEN LINE COUNTER

I nits to $18 lines forfull display, or $0C lines for split. Loses one count if data display is on. Decremented to zero as lines
are added to the screen.

140 Enhancement 12

$C9

$CE

$CF

$DO

$D2

$D3

$D4

$D5

$D7

$DA

$DB

$DC

$DD

$DF

$EO

$El

Table 12-5-cont. Detailed Script of Apple Writer lie Page Zero Use

- ANY LENGTH WORK FLAG

An $FF value means that an any length search is in progress. A $00 value stops the any length search .

- SCREEN SOURCE FLAG

A $00 value uses the LOFILE to get screen characters up to and including the cursed position . A $FF value uses the HIFILE
to get screen characters from just past the cursor to the end of the screen .

- DATA DIRECTION FLAG

A$ FF value sets the arrow to the right for forward searches and to retrieve text from the word and paragraph buffer. A $00
value sets the arrow to the left for backwards searches and word or paragraph text deletion.

- VERBATIM DISPLAY FLAG

A $00 here allows normal use of control characters as commands. A $FF puts any control characters directly into the text,
exactly as entered. Used to imbed special printer and typesetting commands.

- CARRIAGE RETURN DISPLAY FLAG

A $00 value here displays text normally on the screen, without showing carriage returns. A $FF here shows all carriage
returns as ")" symbol. Used to resolve wraparound and tabbing problems.

- DUAL-USE STASH

This byte has two separate uses. It is a string length counter for [F]ind, and a line counter used by [P)rint. Each use is local.

- CEASE-PRINTING FLAG

A $00 value here allows printing to continue. A value of $FF stops printing, usually because no text is left or the escape key
has been hit.

- LOAD FROM MEMORY FLAG

A $00 value here does a normal load from disk, while a $FF value loads from the text file. Used to copy text without moving
the original.

- STRING $A-$D LOAD FLAG

A $00 value here gets string values from the keyboard as usual. The $FF value loads the string from the WPL program file.
Used to assign values to the $A through $0 strings.

- LINE COUNTER

Keeps track of the current vertical position on a page being printed . lnits to $00 and is incremented each line. Compared
against the last-line stash to end a page.

- LAST-LINE STASH

Holds the bottom printed line position . One line is substracted if BL is in use. Two lines are subtracted for the first footnote
and one extra line for each additional footnote. Decides how many text lines go on the page.

- LINE LENGTH STASH

lnits to the number of characters per line, by subtracting RM-LM. Used by the line justify routines.

- FIRST LINE IN PARAGRAPH FLAG

I nits to $FF at the start of each paragraph . Returns to $00 after the first line. This flag is used to set paragraph margins and to
test for imbedded print commands.

- WPL or GLOSSARY ACTIVITY FLAG

A $00 value means that neither WPL nor the glossary is active or in use. The $80 value means WPL is active and is usually
used to bypass screen prompts . The $40 value means that the glossary is active and that it is to be the source for any needed
characters.

- UNDERLINE FLAG

A $00 value means no underlining is in use, while a $FF value activates the underline mode. Underlining is done by
individually backspacing and underlining each character. The UT value toggles this flag. Present flag value is held during
TL, BL, or a footnote.

- WRAPAROUND FLAG

A $00 value gives you a normal display of whole words only. A $FF value breaks the words as needed at the right margin .

$E2

$ES

$E6

$E7

$EB

$E9

$EA

$EB

$EC

$ED

$EE

$EF-FO

$FO

$Fl

$F2

$F3

Tearing Into Apple Writer lie 141

Table 12-5-cont. Detailed Script of Apple Writer lie Page Zero Use

- DUAL-USE APPEND or ALL FLAG

This flag has two separate uses. On [S]ave a $00 value means to save to a new file, while the $FF value means to append an
existing file. On both [L]oad and [F]ind, a $00 value means to handle one occurrence only. The set of $FF value means to
handle all occurrences. Both uses are local and independent.

- DATA LINE DISPLAY FLAG

This three-state flag decides which data line is to be displ~yed at the top of the screen. A $00 value displays nothing. A $80
value shows the usual "Mem-Len-Pos File" header, while the $CO value shows the tab position display.

- DELIMITER STASH

Used to hold the delimiter match character. A $00 value means no delimiter. The ASCII value of the delimiter is held when
used.

- WPL CONTINUE FLAG

This flag is set to zero on the DO and GO commands. It clears WPL if it ever gets into the $FF state. Apparently not used.

- CASE CHANGE FLAG

A $FF value here means to change the case per the case flag at $C4. A $00 value means to use normal, mixed upper and
lowercases. This seems to be a leftover from an earlier version as this flag is never read.

- FILENAME LAST CHARACTER POINTER

Points to the final character in the keybuffer. Used in [S]ave to test for the"+" for append, and in [L] to test for the"/" to do a
load using the screen as a source.

- WILDCARD STASH

Holds the match character for a legal wildcard "any character" search . Holds a $03 when using the"/" standard delimiter
that does not allow w i ldcards.

- FAKE CARRIAGE RETURN STASH

Holds the match character for a legal substitute carriage return. Holds a $02 when using the "/" standard delimiter that
does not allow carriage return substitution.

- ANY LENGTH STASH

Holds the match character for any length of text screen . Holds a $01 when using the "/" standard delimiter that does not
allow any length searching.

- MYSTERY FLAG

Zeroed at entry into word processing code. Not otherwise referenced in this version . Was the screen mode case flag in an
earlier version that did not have a totally live screen.

- DELETION OVERLOAD FLAG

lnits to $00. Goes to $FF if a paragraph or a word deletion> 1024 characters is attempted .

- DELETION OVERLOAD COUNTER

These two locations init to 1024 and count down. If a word or a paragraph deletion > 1024 characters is attempted, the
deletion overload flag is set. A separate counter is needed since the actual deletion process goes round and round in the
deletion buffer. Note that $F0 has a second and separate use as a DOS pointer.

- DUAL-USE DELETION COUNTER or DOS POINTER

This location has two separate and local uses. During [WI or [XI paragraph deletions, it forms the high byte of a 1024
counter, working with $EF. During RWTS access, this pointer points to a character in the DOS text file buffer sitting at
$0D0O---ODFF.

- DOS T/S LIST POINTER

Points to address pairs on the DOS track and sector list image at $0C0O---OCFF. lnits to $0A and is incremented twice per
track and sector entry, starting at $0C. Used to load one page of a DOS text file during [LI.

- TYPE-AHEAD BUFFER EMPTIER

Points to the last used character in the type-ahead buffer at $1740-177F. Limited to 6 bits for 64 possible round-and-round
locations. Gets "behind" $F3 when busy. Increments on each use of a character.

- TYPE-AHEAD BUFFER FILLER

Points to the next available character location in the type-ahead buffer. Six bits for 64 round-and-round file values at
$1740-177F. Increments on each keystroke that cannot be immediately used.

142 Enhancement 12 .

$F4

$F5

$F6

$F7

$F8

$F9,FA

$FB

$FD

$FE

$FF

Table 12-5-cont. Detailed Script of Apple Writer lie Page Zero Use

- BUSY PROMPT

Holds an ASCII space or $AO when not busy and the type-ahead buffer is not in use. Holds an ASCII"*" or $AA when busy
and the type-ahead buffer is being emptied.

- REPLACE MODE FLAG

A $00 value here does normal character entry by insertion. A $FF value enters characters by writing over, or replacing, the
existing character. Toggled by [R] and reset by just about all cursor commands.

- STRING $A-$D ACTIVITY FLAG

Inhibits WPL interpreter when $A-$D strings are being processed . A $00 means normal WPL use; a $FF here means a
string is being processed.

- SCREEN DISPLAY FLAG

A $00 value here means to not display to screen.$ FF means to do the normal screen display. Involved with the YD and ND
commands .

- SPLIT-SCREEN FLAG

A three-valued flag that sets the screen display mode. A $00 means a normal full screen . A $FF means a split screen with
the bottom half active. A $7F value means a split screen with the top half active.

- DELETION or SPLIT-SCREEN POINTER

A general use 16-bit address pointer used in several different and local ways. Used as a deletion pointer for character,
paragraph, and word removal. Also used as a split-screen pointer to hold the starting address of the inactive halfof the split
screen .

- APPLE KEY STASH

Used to hold open-apple/solid-apple keystrokes when the type-ahead buffer is needed . A $00 means no key depressed. A
$40 value means the open-apple key is down . A value of $80 means the closed-apple key is down . Open apple is used to
get help, to swallow and retrieve single characters, or to activate the glossary. The closed-apple key is used to tab over text
and to copy text, as well as for express cursor movements. ·

- SCREEN-ONLY FLAG

Used to load only to the screen under the [L]oad command with a"/" prefix. A $00 value does a normal load into the text
file . A $FF command loads only to the screen.

- FOOTNOTE BUFFER FLAG

A $00 value means no footnotes are needed. A value of $FF or lower means the footnote buffer is in use. Footnotes are held
in the footnote buffer from the time they appear in the text until the bottom of the current page. This flag is decremented
once for each footnote.

- BOTTOM OF PAGE FLAG

This flag inits to $00 and goes to a $FF when the body is completely printed or on a form feed . Footnotes and the bottom
line can then be entered.

to address $3548. Note that this command can reach any location in the entire 64K
address space, just by changing the values in $80, $81, and the Y register.

Other double wide pointers are used to access HIFILE, to print characters in order,
to display to the screen, and for various other uses that need to access lots of characters
in sequence. Be sure you understand exactly how these work. Understanding
LOCURS is first and foremost in this quest.

You should now be halfway into your understanding process of this program. We
now know how the text file area works. We have studied uses of the work file area, the
internal file area, the reference file area, and found out about the many uses of page
zero.

Next on the agenda are the . ..

Tearing Into Apple Writer lie 143

ENTRY POINTS

Entry points are those locations in the code where you go to do something .. .

Entry Point -

Some location in a block of code that you go to in order
to start something happening.

Depending on what you need to get done, there are several possible entry-point
levels .. .

Entry Levels

High Level -

Points entered into the whole code by another system
to run, rerun or process errors.

Command Level -

Points entered in response to a main menu selection.

Module Level -

Points entered to handle specific tasks or sub-menu
selections.

Service Level -

Important subroutines that do all major housekeeping
and handle any often-needed utility functions.

Table 12-6 summarizes the important entry points. A complete and detailed dis
assembly script appears in Table 12-7, which will tell you more than you could
possibly want to know about every module in the working code.

There is no single answer to the obvious question, "How does Apple Writer work?"
It all depends on what you think is important and where your interests lie . And any
attempt to go through the code in numeric order is pretty much fruitless, because you
lose track of who is doing what to whom.

Let's instead see if we can't thread together some of the important working concepts
of this program. Our first concern should be .. .

DOS

We might start by grabbing the bull by the horns. The DOS 3.3e used in the "F"
version of Apple Writer lie is modified; it is installed in an unusual place; and it is used
four different major ways.

144 Enhancement 12

Table 12-6. Apple Writer lie Important Entry Points

Important "F" version entry points include system-level entry that accesses the entire program; command-level entry that does control
commands; WPL module entry that handles individual WPL commands; the auxiliary function access; and finally the often-used service
subroutines.

Here they are

- system-level entry -

$2300 - Cold-start entry routine
$2303 - Warm-start entry routine
$2306 - DOS error recovery reentry

- command-level entry -

$2AD0 - [@l Unconditional delete
$28DC - [Bl Cursor to start
$3942 - [Cl Case changer
$3953 - [Dl Data direction change
$2903 - [El Cursor to end

$3717 - [Fl Find, search and replace
$2AEO - [GI Glossary
$27EC - [HJ Backspace left arrow
$2FAA - [I] Do actual tab
$280E - Ul Down arrow

$2816 [Kl Up arrow
$35A0 - [LI Load
$3903 - [NJ New
$4A67 - [OJ DOS access
$3DC9 - [Pl Print/Program main entry

$2C25 - [Ql Auxiliary functions entry
$395A [RI Replace mode toggle
$32FC - [SI Save
$2F2A - [Tl Tab set, clear, or purge
$27F0 - [U] Frontspace, right arrow

$3274 - [VJ Verbatim mode toggle
$2A00 - [WI Delete word
$2A00 - [XI Delete paragraph
$31C3 - [YI Split screen
$3266 - [Z] Wraparound toggle

- WPL modules -

$42DB - AS Assign string
$41CC - BL Bottom line
$4414 - CP Continue printing
$4006 - DO Run WPL program
$43C1 - EP Enable printer

$41 FE - FF Form feed
$4225 - GO Unconditional WPL jump
$4290 - IN User keyboard response
$3F69 - ND Screen display off
$43F7 - NP Begin printing

$41B3 - QT End WPL program
$4274 - PR Prompt to screen
$3F51 - RT WPL subroutine return
$3F06 - SC String compare
$3F6O - SL String load

$3F33 - SR WPL subroutine jump
$4100 - TL Top display line
$3F6A - YD Screen display on

$2EC1
$2EA5
$2EFB
$2EDF
$2E2A

$2DB2
$3260
$325B
$2C75
$2D0F
$2CA4

$2400
$24AC
$24CO
$24E3
$251A

$2565
$260B
$26B2
$26B4
$26FF

$2725
$2757
$279D
$27BC
$27CA

$297C
$2B86
$2Cl3
$2E3C
$2E46

$2E8E
$30D8
$320B
$32CO
$32ED

$38E2
$392C
$3ABB
$3ACC
$3B7E

$3B45
$3D93
$400E
$40B5
$40C2

$41B3
$421B
$4783
$47El
$47F3

$4951
$49FD
$49FF

Tearing Into Apple Writer lie 145

Table 12-6-cont. Apple Writer lie Important Entry Points

- auxiliarycfunctions -

- "A" Load tab file
- "B" Save tab file
- "C" Load print file
- "D" Save print file
- "E" Load glossary

- "F" Save glossary
- "G" Toggle CR display
- "H" Toggle data display
- "I" Keyboard direct to printer
- "J" Convert old 1 .1 files
- "K" Quit everything

- often-used service subroutines -

- Print character to screen link
- Ring the ding dong
- Grab 1/0 hooks
- Pick string source
- Get key from type-ahead buffer

- KSWL entry point
- Screen store entry point
- BASH calculator from CV
- BASH immediate
- lnit LOFILE

- lnit HIFILE
- Enter character to LOFILE
- Move character LOFILE-+HIFILE
- Zero mark LOFILE end and HIFILE start
- Move character LOFILE+-HIFILE

- Increment printer pointer
- Turn glossary off
- Return prompt
- Get filename, no slot or drive
- Get filename, slot, and drive

- Send filename to DOS
- Reenter main processor loop
- Turn split screen off
- Prompt screen bottom
- Clear bottom of screen

- Adjust replace pointer
- Force uppercase
- Display decimal value
- Store inverse to screen
- Format screen lines

- Print WPL error message
- Get string for WPL
- Set print destination to screen
- Save old filename to = buffer
- Restore old filename

- Quit WPL
- Print space and return
- Prepare one character for printing
- Send character to printer
- Close open files

- Hex-to-decimal conversion
- Clear screen
- Print normal to screen

146 Enhancement 12

Table 12-7. Detailed Script of Apple Writer lie Main Program

The "F" version of the Apple Writer lie main program sits between $2300 and $4AF8. The script that follows assumes an BO-column, 128K Apple
lie under relocated DOS 3.3e.

Here is a module-by-module breakdown of the code:

$2300-2302

$2303-2305

$2306--2308

$2309-234F

$235~234F

$235~2398

$2399-23EE

$23EF-23FF

$240~2410

$2411-2422

$2423-2441

$2442-2466

$2467-2A46

- COLD-START ENTRY POINT

Jumps to actual cold-start code at $2309.

- WARM-RESTART ENTRY POINT

Jumps to actual warm-restart code at $2350. Warm resets reenter here.

- DOS ERROR RETURN POINT

Jumps to DOS error processing code at $4808.

- COLD-START MODULE

lnit stack pointer. Move memory management code to $0100. I nit HICURS and LOCURS cursor pointers. Copy LOCURS
to multiple-use pointer. Link DOS vectors and hooks. Verify volume. Clear screen. Grab input and output hooks. lnit
cursor to flashing box. Put down first screen and prompt for disk change. Load SYS. and TAB. files . Fall through to warm
start module.

- WARM-RESTART MODULE

Flip soft switches to write and read RAM. Reset stack pointer. Install memory management code at $0100. Grab input and
output hooks. Close open files . Set flashing cursor box. Clear WPL. Close glossary nest. Set screen as printer destination .
Jump to main word processing code at $30AB.

- INSTALL MEMORY MANAGEMENT CODE

Move management code block from $2399-23EE in main memory to main page one $0100--0156. Clear the DOS hooks
in auxiliary memory, replacing them with a hook to the main DOS error processor. Switch back to writing main memory
and return .

- MEMORY MANAGEMENT CODE IMAGE

Gets moved to page one and remains active regardless of whether main or auxiliary RAM is in use. Here are the key access
points:

$0100
$0109

* $0119
$0129

$0132
$0138
$0144
$014D

- DOS Error recovery
- DOS File manager access
- Send character to DOS clone
- Read text file byte for screen

- Read cursed LOFILE value
- Read cursed HIFILE value
- Read value for print pointer
- Read value for general-use pointer

(* - there is no DOS clone - see text)

- IS TUTORIAL HELP NEEDED?

Ignore if glossary is active. Test for a "?" or its lowercase "/" equivalent. See if open-apple key is also down. If help is
needed, get it via $2423.

- PRINT CHARACTER TO SCREEN LINK

Get character from type-ahead buffer. If it is a $00, ignore and get another one. If WPL is not active, print character to
screen.

- TRY AND RUN STARTUP

See if a file named STARTUP is on the diskette. Run it if present. Generate no error message if not, and try only once.

- GET HELP

Zero keysave stash. Force feed "8" to help string for BO-column format. Put "HELP8E,S6,Dl " into keybuffer. Call DOS.

- PRINT FIRST SCREEN

Print title border. Home cursor. Print first Apple Writer screen. Change format to suit 80-column display.

- DRAW TITLE BORDER

Draw a fancy border box on the first screen, changing format to suit 80 columns.

Tearing Into Apple Writer lie 147

Table 12-7-cont. Detailed Script of Apple Writer lie Main Program

$24A7-24AB - PRINT CURSOR BOX TO SCREEN

Get an ASCII $20 and print it to screen. This low ASCII space prints in inverse as an Apple alternate character.

$24AC-24BF - DING DONG

$24C0-24E2

$24E3-24F4

$24F5-2519

$251A-2564

$2565-2573

$2574-25BC

Sound the error alarm. Plays two plain, old squarewave bursts back to back, the second lower in pitch . Calls itself for the
first note.

- GRAB 1/0 HOOKS

Turn the alternate character set (no-flash ASCII) on and test for 128K and 80 columns. Activate same. ConnectCOUT hooks
to a brick wall RTS to output FDFO only to DOS. Connect KSWL,H to point to built-in GETKEY routine.

- PICK STRING SOURCE

If WPL is active and the $A-$D string load flag is set, get string from WPL file . If not, get string from user at keyboard.

- GET AND SAVE KEY

Save old cursor symbol. Stop cursor flash. Turn on busy flag. Get key via KSWL. Add one count to type-ahead filler. Store
character in type-ahead buffer. Store open-apple or closed-apple key in apple buffer.

- GET KEY FROM TYPE-AHEAD BUFFER

Save registers. See if buffer is behind . If buffer is behind, add one count to type-ahead emptier; then get the next character
from the type-ahead buffer, and fill the apple save flag from the apple buffer. Then restore registers. If buffer is caught up, get
the key via KSWL. Turn off the busy flag after checking whether an up-screen or [Y] down-screen status line is active.

- KSWL ENTRY POINT

Save the X and Y registers. Get key via internal GETKEY sub. Restore registers. Affirm even character.

- KEYIN KEY GETTER

Check to see if glossary is active. If so, get key from glossary file. Check to see if WPL is active. If so, get key from WPL
program file. Otherwise, scan keyboard for a key down, flashing the cursor during the waiting process. Read the open
apple and solid-apple keys, and save them in flag $FB. Read the key and reset the key strobe. If the delete $FF key was
pressed, change it to $80. Exit with key value in accumulator.

$25BD-25DB - CHANGE CURSOR

Ignore if WPL is active. Divide CH by two to pick even or odd character. If even character, use the main memory. If odd, use
auxiliary memory. Read the character, change it from or to inverse, and replace the character on the screen. Note that high
ASCII is normal and low ASCII is inverse.

$25DC-25F4 - PUT CHARACTER DIRECTLY ON SCREEN

$25F5-260A

$2608-2618

$261C-266B

$266C-267B

$267C-26B1

$2682-26C0

Get horizontal position and verify 128K. Divide position by two to pick even or odd character. If even, store in main screen
memory. If odd, store in auxiliary screen memory using BASH screen address plus Y register position offset.

- READ CHARACTER DIRECTLY FROM SCREEN

Get horizontal position and verify 128K. Divide position by two to pick even or odd character. If even, load accumulator
from main screen memory. If odd, load accumulator from auxiliary screen memory.

- SCREEN STORE ENTRY POINT

Save registers. Call screen store logic below. Restore registers.

- SCREEN STORE FILTER

If a form feed, clear the screen. If a bell, ring the ding dong. If a carriage return, process unless scrolling is on hold. If a
backspace, back up one, fixing the BASH address on underflow. If a printable noncontrol character, put the character on
the screen and advance CH. If screen line overflows, do a carriage return.

- SCREEN CARRIAGE RETURN

Reset CH and increment CV to get to start of next line. If screen overflows, fall through to scrolling routine below.

- SCROLL SCREEN UP

Calculate screen position and save to screen scroll pointer. Affirm 128K. Move screen up a line at a time, alternating even
characters in main memory and odd characters in aux memory, continuing until full screen or [Y] split screen is completely
scrolled . Clear bottom line by jumping to the EOL subroutine.

- BASH CALCULATOR

Convert CV into screen base address by table lookup, saving leftmost screen address to the screen base address pointer.

148 Enhancement 12

Table 12-7-cont. Detailed Script of Apple Writer lie Main Program

$26C1-26DF - CLEAR SCREEN WINDOW

$26E0-26EA

$26EB-26FE

$26FF-270D

$270E-2724

$2725-2733

$2734-274A

$2748-2756

Cal I the clear EOL routine as often as needed to clear whole I ines from the present CV position til I the lower screen window
limit.

- HOME SCREEN CURSOR

Move screen cursor to upper left of screen window. Then BASH the CV base address.

- CLEAR SCREEN TO END OF LINE

Starting with the present screen position, write $AO spaces to the end of the current screen line.

- INIT LOFILE

Set the LOFILE pointer to the first character at $0801. Write a " lower file limit" $FF to $0800 and an "end of LOFILE" $00to
$0801.

- INIT LOFILE POINTER

Set the LO FILE pointer to LOMEM at $0800 and put a "bottom of file" $ FF there . Increment the pointer to point to the first
LOFILE character at $0801 .

- INIT HIFILE

Set the HIFILE pointer to the last character at $BEFE. Write an "upper file limit" $ FF to$ BEFF and a "start of HIFILE" $00 to
$BEFE.

- INIT HIFILE POINTER

Set the HIFILE pointer to HIMEM at $BEFF and put a " top of file" $FF there. Decrement the pointer to point to the last
possible HIFILE character at $BEFE.

- CHARACTER TO FILE ACCESS LINK

Save registers. Put character in file with subroutine below. Restore registers. Does not seem to be used in this version .

$2757-279C - PUT CHARACTER IN LOFILE TEXT FILE

Save character. Test for display to screen only. If screen only, do so. If not, test for some remaining memory, sounding alarm
and clearing if no room remains. Test for replace mode. If in replace mode, move the character beyond the cursor down to
the top of LOFILE. This way, the next character gets overwritten, rather than bumped up. Get the SAVED character back,
force high ASCII and make sure it is not the delete key. Then, switch to aux memory and store the character to the top of
HIFILE. Increment [W) pointer and LOCURS. Store a $00 to the top of LOFILE.

$279D-27C9 - MOVE CHARACTER FROM LOFILE TO HIFILE

Decrement LOCURS. If LOFILE is empty, then re-in it LOFILE and quit. Read character from LOFILE. Test for a case change
and do one if needed . Store character to HIFILE in aux memory. Decrement HICURS and store a $00 marker to the bottom
of HIFILE.

$27CA-27EB - MOVE CHARACTER FROM HIFILE TO LOFILE

$27EC-27FC

Increment HICURS. If HIFILE is empty, then re-in it HIFILE and quit. Read character from HIFILE. Test for a case change and
do one if needed . Store character to LOFILE in aux memory. Increment LOCURS and store a $00 marker to the bottom of
HIFILE.

- TEST BACKSPACE COMMAND

If a backspace command and no apple key, do a backspace once. If a backspace and an open apple, go delete one
character. If a backspace and a solid apple, do an express backspace.

$27FD-280D - TEST FRONTSPACE COMMAND

$280E-2815

$2816-281E

If a frontspace command and no apple key, reset the case flag and do one frontspace. If a frontspace and an open apple, go
insert one character. If a frontspace and a solid apple, do an express frontspace.

- TEST VTAB DOWN COMMAND

If a downtab command and no closed-apple key is pressed , do the downtab once. If the closed-apple key is pressed, try to
downtab 12 lines .

- TEST VTAB UP COMMAND

If an uptab command and no closed-apple key is pressed, do the uptab once. If the closed-apple key is pressed, try to uptab
12 lines.

$281F-2840

$2841-2867

$2868-2886

$2887-28A1

Tearing Into Apple Writer lie 149

Table 12-7-cont. Detailed Script of Apple Writer lie Main Program

- EXPRESS MOTIONS COMMON CODE

This common code is used four ways, force feeding the correct subroutine address for cursor motions in each direction.
The open-solid flag is tested . If no solid apple, then each cursor motion is done once. If a solid-apple key is down, then
each cursor motion is done many times, with the vertical tabs trying for 12 lines, and the horizontal tabs trying for a full
word. Location $5210 holds the trip count while $5211 holds a $00 for "stop at end of file" or a $AO for " stop at end of
word."

Here are the "do it once" subroutines that are called via a force-fed address :

$279D
$27CA
$2841
$2868

- Backspace
- Frontspace
- Tab up
- Tab down

Note that the trap at $283E is overwritten by these service subroutine addresses.

- MOVE CURSOR UP

Reset the case changer. If wraparound is not in use, transfer one line of characters from LOFILE TO HIFILE. If wraparound is
in use, adjust screen line length for correct number of characters to be moved; then do transfer.

- MOVE CURSOR DOWN

Reset the case changer. If wraparound is not in use, transfer one line of characters from HIFILE to LOFILE. If wraparound is
in use, adjust screen line length for correct number of characters to be moved; then do transfer.

- TRANSFER ONE LINE OF CHARACTERS

Test for forward or backward motion. If forward, try to move 80 characters from HIFILE to LOFILE, aborting on the first
carriage return. If backwards, try to move 80 characters from LOFILE to HIFILE, aborting on first carriage return .

$28A2-28BD - UPDATE LOCURS POINTER

I nit LOFILE pointer. Read LOFILE value. Search up through LOFILE till the $00 end of file marker is reached. Transfer any
count residue from Y to the low byte of LOCURS. When finished, LOCURS will point to the present cursed position.

$28BE-28DB - UPDATE HICURS POINTER

lnit HIFILE pointer. Read HIFILE value. Search down through HIFILE till the $00 start-of-HIFILE marker is reached. Transfer
any count residue from Y to the low byte of HICURS. When finished, HICURS will point to the present start of the HICURS
file, one character beyond the cursed character.

$28DC-28FF - MOVE CURSOR TO BEGINNING OF TEXT FILE

$2900-2922

$2923-2937

$2938-2940

$2941-2947

$2948-2953

Set the data direction $CF flag to">". Decrement LOCURS. Read the LOFILE value and move it to HIFILE. Continue this
until you get to the beginning of LOFILE with its $FF marker. Then update both LOCURS and HICURS to their current
positions. When finished, all of the characters will be in HIFILE, and LOFILE will be empty.

- MOVE CURSOR TO END OF TEXT FILE

Set the data direction $CF flag to "<". Increment HICURS. Read the HIFILE value and move it to LOFILE. Continue this
until you get to the end of HIFILE with its $FF marker. Then update both LOCURS and HICURS to their current positions.
When finished, all of the characters will be in LOFILE, and HIFILE will be empty.

- COMMON ENDING CODE FOR [Bl AND [El

Add the residue from the Y register to both HICURS and LOCURS pointers. Then put a $00 marker at the top of LOFILE and
the bottom of HIFILE.

- INCREMENT WORD DELETION POINTERS

Add one to the word deletion pointer, and subtract one from the deletion overload counter.

- INCREMENT WPL PROGRAM COUNTER

Adds one to the WPL program counter pair $AO-A 1 .

- TEST SPLIT-SCREEN POINTER

Tests the split-screen pointer and sets the carry flag if this pointer> LOCURS.

$2954--295A - INCREMENT LOCURS POINTER

$2958-2966

Increments the low cursor pointer by adding one to $84 and, if an overflow, adding one to $85 .

- INCREMENT SPLIT-SCREEN POINTER

Increment the split-screen pointer only if it is less than LOCURS.

150 Enhancement 12

Table 12-7-cont. Detailed Script of Apple Writer lie Main Program

$2967-296D - INCREMENT HICURS POINTER

Increments the high cursor pointer by adding one to $86 and, if an overflow, adding one to $87.

$296E-2974 - INCREMENT SCREEN CURSOR POINTER

Increments the screen cursor pointer by adding one to $88 and, if an overflow, adding one to $89.

$2975-2978 - INCREMENT LOCAL USE POINTER

Adds one to $80 and, on overflow, adds one to $81.

$297C-2982 - INCREMENT PRINTER POINTER

Adds one to $90 and, on overflow, adds one to $91.

$2983-299D - DECREMENT WORD DELETION POINTERS

$299E-29A8

$29A9-2988

$29B9-29C3

$29C4-29CE

Subtract one from the word deletion pointer, and subtract one from the deletion overload counter. If the word deletion
pointer underflows, force it to stay on pages $08--0B.

- DECREMENT LOCURS POINTER

Decrements the low cursor pointer by subtracting one from $84 and, if an underflow, subtracting one from $85.

- DECREMENT SPLIT-SCREEN POINTER

Decrement the split-screen cursor only if it is less than LOCURS.

- DECREMENT HICURS POINTER

Decrements the high cursor pointer by subtracting one from $86 and, if an underflow, subtracting one from $87.

- DECREMENT SCREEN CURSOR POINTER

Decrements the screen cursor pointer by subtracting one from $88 and, if an underflow, subtracting one from $89 .

$29CF-29D9 - DECREMENT LOCAL USE POINTER

Subtracts one from $80 and, on underflow, also subtracts one from $81.

$29DA-29FF - INIT SCREEN START POINTER

Tries to initialize the screen start pointer to 12 lines behind the current cursor position on full screen, and 6 l ines behind on
split screen . Stops at the beginning of LOFILE if too near the start.

$2A00-2A0C - FIX ERROR BUFFER POINTER

The word and paragraph error buffer must always point somewhere on pages $08-0B. On an out-of-range underflow or
overflow, this module forces the pointer round and round.

$2A0D-2A5C - DELETE WORD OR PARAGRAPH

Set the deletion overload counter to 1024. Pick an endpoint character of $AO space for word deletion or an $8D carriage
return for paragraph deletion. Test the data direction flag for insertion or deletion . If an insertion, get the characters and
enter them. If a deletion, save the characters, deleting them from LOFILE only if not in copy mode. Continue entering or
removing characters in a loop until the $AO or $8D match character, an end-of-previous-line $8D carriage return, a start
of-LOFILE $FF, or 1024 characters. If >1024 characters, ring the ding dong. When done, update the screen.

$2A5D-2A64 - READ CHARACTER FROM WORD/PARAGRAPH BUFFER

Get a character from the buffer, increment the buffer pointer, and put that character into LOFILE.

$2A65-2A7C - COPY MODE FILTER

Testto see if closed-apple key is down. If so, load the word/paragraph buffer without deleting the existing text. Abort on the
$FF start of LOFILE marker. If not copy mode, save character to buffer and delete the character from its present LOFILE
position .

$2A7D-2A90 - SAVE CHARACTER TO WORD/PARAGRAPH BUFFER

Back LOCURS up one character. Read that character. Back up word deletion buffer pointer one slot. Save read character to
the word deletion buffer. Abort if start of LOFILE. Restore cursors.

$2A91-2AA0 - RESTORE CHARACTER FROM SWALLOW BUFFER

Decrementthe single character deletion pointer, forcing itto $7F on $00 underflow. Get character from swallow buffer and
store it to LOFILE. Then update the screen.

Tearing Into Apple Writer lie 151

Table 12-7-cont. Detailed Script of Apple Writer lie Main Program

$2AA1-2AC3 - SAVE CHARACTER TO SWALLOW BUFFER

Decrement LOCURS and the split-screen cursor. Get cursed character. Force single-character deletion pointer to $00--7F
range. Save character to swallow buffer at $0300--03 FF. Increment swallow pointer. Abort if at start of LOFILE. Then update
the screen .

$2AC4-2ACF - UNDERFLOW ADJUST

Common code area when deletion attempted beyond start of LOFILE. I nit LOFILE. Advance split-screen pointer. Update
screen.

$2AD0-2ADF - DELETE CHARACTER FOREVER

If not at start of screen, replace the cursed LOFILE character with a $00 and decrement LOCURS. Then update the screen.

$2AE0-2AFD - PROCESS GLOSSARY COMMAND

Clear and prompt the screen bottom. Get user command. Abort on $8D carriage return . If a $BF question mark, go and
define new entry. If a $AA purge star, store $00 to start of glossary file at $1 BOO. If any other character, go and read glossary.

$2AFE-282D - FIND GLOSSARY MATCH

$282E-2853

Save the glossary match character, aborting on carriage return . Set local pointer to $1 BOO, the start of the glossary file. Go
through the glossary, looking for each character just past a carriage return. Compare that character against the match
character. If a match is found, fall through to the glossary reading code. Quit when you getto a $00 end-of-glossary marker.

- MANAGE GLOSSARY STACK

If a match is found, increment the glossary stack pointer $2B92 by two and then set the glossary flag to read characters
directly from the glossary rather than from the keyboard. If an attempt was made to nest the glossary entries more than eight
deep, ring the ding dong and generate an error message. If the nesting depth is legal, save the present glossary pointer to the
glossary stack as a lo-hi pair.

$2854-287 A - READ CHARACTER FROM GLOSSARY

$2878-2891

$2892

Read the glossary stack pointer to find the current position in the glossary. Then increment the position pointer and force
feed it into a command to getthat character from the glossary file . Get and testthat character. If a $00 (end of glossary) or an
$8D (end of entry), then pop glossary stack. If a $ DD or "]" fake carriage return, substitute a real $8D return. Exit with
glossary character in accumulator.

- POP GLOSSARY STACK

Decrement the glossary stack pointer by two, and test the result. If you are >$00, this means you have nested glossary
references, and are ready to return from callee to the caller. If <$00, you are done using the glossary and wish to return to
normal text entry. To do this, cancel the glossary active flag and reset the nest pointer to $00.

- GLOSSARY NEST POINTER

Points to an address pair in the glossary stack up to eight deep. Increments by twos each time an entry is nested; decrements
by twos each time an entry is completely read.

$2893-2BA2 - GLOSSARY NEST STACK

Holds up to eight pairs of pointers that show current "open" positions in the glossary.

$2BA3-2BCE - FILL GLOSSARY PROMPTER

Clear the screen. Set local pointer to start of glossary file at $1 BOO. Test for split screen and pick 8 or 16 lines for glossary
display. Display the existing glossary selections. If not enough room, wait for user keypress. Repeat until all selections are
shown. Then prompt for new entry and get user response.

$2BCF-2C12 - FILL GLOSSARY
Read user entry, aborting on $8D carriage return. If valid, replace the last $00 in the glossary with a $8D. Enter user string to
glossary. Check remaining space in glossary, exiting with an error message if the glossary is fu 11. Store a $00 atthe end of the
final glossary entry.

$2C13-2C24 - RETURN PROMPT

Displays screen message "Press return to exit."

$2C25-2C74 - AUXILIARY FUNCTION PROMPTER
Skip display if WPL is on. Turn off split screen and clear screen. Set local pointer pair $00--01 to point to the auxiliary
functions menu. Put down the menu until the ending marker. Then put down the return exit prompt. Then display the
selection prompt. Get user selection, force uppercase and range check A-K. Convert selection to a numeric, and double it
to point to an address pair. Get the address pair wanted and put that pair into local pointer $80-81 . Then do an indirect
jump to the selected routine. Abort on any key except A-K.

152 Enhancement 12

Table 12-7-cont. Detailed Script of Apple Writer lie Main Program

$2C75-2CA3 - CONNECT KEYBOARD DIRECTLY TO PRINTER

Print [Q] exit prompt to screen. Find and set print destination to printer. Get one key and test for [Q] exit. If not, print
character directly to printer. Also show on screen, flashing next cursed location. Continue until [Ql is pressed . On IQ],
reconnect keyboard to word processing code and close any open files.

$2CA4-2CBE - QUIT APPLE WRITER

Put down quitting message and prompt. Get user key. If a " Y", destroy everything in sight and then some. Abort on any
other key.

$2CBF-2D0E - PLOW THE SOUTH FORTY

A classic example of code with absolutely no redeeming social value. Fill the entire machine w ith zeros from $0300-FFFF
except for the 1/0 space. Flip all soft switches to their normal positions. Then enter Applesoft without having any DOS
available.

$2D0F-2D32 - CONVERT 1.1 FILE PROMPTER

Get user filename of Apple Writer 1.1 file. Splice together a DOS instruction of BLOAD TEXT.FILENAME, A$0800 and send
this out, but hold off on the final $8D.

$2D33-2D61 - CONVERT 1.1. FILE SETUP

Try to move a copy of DOS to alternate memory, along with a DOS hook copy. Both of these attempts fa i l since alternate
high memory is never accessed (see text). Send the spliced filename to alternate DOS, which BLOADS the 1.1 file into the
usual LOFILE area. Note that this is a BLOADed binary file, rather than a standard DOS text file. Note also that both the
DOS used and the results go into auxiliary RAM. At this point, the old 1.1 file is sitting in the right place, but still is coded
wrong.

$2D62-2DB1 - CONVERT 1.1 CODE TO STANDARD ASCII CODE

lnit the LOCURS pointer. lnit HIFILE. Read the 1.1 file one character at a time, starting at $0801 and ending on a $60
marker. Recode each character to a standard ASCII text file character. Specifically :

$00 - 1 F - $CO - OF capital letters
$20- 7F - $AO- FF not used by 1.1
$80 - BF - $80 - BF control characters
$CO- D F - $ E0 - FF lowercase letters
$EO - FF - $AO- BF numerals & punctuation

When finished, replace the end $60 with a $00. Update the screen and send cursor to beginning. Note that this conversion
does not change imbedded commands. A separate WPL program called CONVERT is used for this.

$2DB2-2DE1 - SAVE GLOSSARY FILE

Reset append flag. Get filename, aborting on $8D carriage return. Set local pointer pair $80,81 to pointto glossary file start
at $1 BOO. Find glossary length and set LOCURS pointer to end of glossary. Save the old filename to the = buffer. Move
present filename to DOS filename buffer. Close all open files. Open glossary save file . Save glossary. Close. Restore =
filename. Update LOCURS.

$2DE3-2DF8 - FIND LENGTH OF GLOSSARY

Move up through the glossary at $1 BOO one character at a time until the $00 end marker is found . Remember this address
with a temporarily diverted LOCURS pointer.

$2DF9-2E29 - PRINT ONLY TO SCREEN DOS ACCESS

$2E2A-2E3B

Clear the screen and reset the append flag. Get new filename and save old filename to = file. Move new filename to
filename buffer. Open file. Read file to screen . Close file. Get old filename back from = file .

- LOAD GLOSSARY FILE

Get filename without slot and drive prompt. Abort on $8D carriage return . Close glossary nest. Trick DO routine into
loading into the glossary at $1 BOO rather than to the WPL program file. Load the file . Test for 2048 or fewer characters while
moving file from DOS buffer to the glossary. Sound ding dong on overflow.

$2E3C-2E8D - GET FILENAME FROM USER

Update slot and drive prompt. Bypass screen prompts if WPL is active. Prompt screen for filename, then slot and drive if
called for. Catalog disk on"?" filename, then try again . If an $8D carriage return, pop the stack twice to cancel both this sub
and the calling sub. If a valid filename, force uppercase and save the filename to the local use buffer at $1 A00 .

$2E8E-2EA4

$2EA5-2EC0

$2EC1-2EDE

$2EDF-2EFA

$2EFB-2F16

$2F17-2F29

$2F2A-2F4E

$2F4F-2F6B

$2F6C-2F76

$2F77-2FA9

$2FAA-2FE9

$2FEA-3019

$301A-3045

$3046-3095

Tearing Into Apple Writer Ile 153

Table 12-7-cont. Detailed Script of Apple Writer lie Main Program

- PRINT FILENAME TO DOS

Read the filename from the local use buffer at $1 A00. Force all uppercase. O utput to COUT at $ FDF0. Exit on carriage
return, but do not output the carriage return.

- SAVE TAB FILE

Get filename from user. Splice together filename from BSAVE TAB.USERNAME, A$1880, L$40 <er>, and send command
to DOS. Note that two passes through the reference file are used, keying on the $BF marker. Note also that the tab va lues
are saved as a binary file and not as a text file .

- LOAD TAB FILE

Get filename from user. Splice together filename from BLOAD TAB.USERNAME, A$1880<cr>, and send command to
DOS. Note that two passes through the reference file are used, keying on the$ BF marker. Note also that the tab values are
loaded from a binary file and not from a text file.

- SAVE PRINT/PROGRAM FILE

Get filename from user. Splice together filename from BSAVE PRT.USERNAME, A$18C0, L$140 < er>, and send
command to DOS. Note that two passes through the reference file are used, keying on the $BF marker. Note also that the
print/program values are loaded from a binary file and not from a text file.

- LOAD PRINT/PROGRAM FILE

Get filename from user. Splice together filename from BLOAD PRT.USERNAME, $A 18CO<cr>, and send command to
DOS. Note that two passes are used through the reference file, keying on the$ BF marker. Note also that the print/program
values are loaded from a binary file and not from a text file .

- CREATE SYSTEM FILENAME

Generates the print/program fi lename SYS and puts it in the local filename save. Then gets that print/program file. Used
during init process to boot default PRT.SYS.

- TAB PROMPTER

Calculate present tab position. Clear and prompt screen bottom. Get user key. Force uppercase. If an S, set tabs. If a C,
clear tabs . If a P, purge tabs. Abort on any other key. Update tab displ ay.

- CLEAR ONE TAB

Scan through the tab fil e, looking for a position match on one of 32 tab pairs. If a tab has been set to thi s position , zero both
parts of address pair.

- PURGE ALL TABS

Zero all 32 locations in the tab file.

- SETONETAB

Scan the tab file backward to see if this tab is already set. If the tab needs to be set find the lowest $00 pai r in the tab file, and
then set that pair to the present tab position. Should all 32 tab pairs already be in use, ring the ding dong.

- SEE IF TAB IS POSSIBLE

Calcu late the present tab position. Scan through the tab file, fi nding the next highest tab location if one exists . If no tab
exists, update the screen and exit.

- TAB TEXT FILE

Test solid-apple key for skip over. If no skip over, calculate how many spaces are needed between present position and tab
position. Then enter those spaces to LOFILE. If skip over, calculate how many characters are to be skipped over, and move
those characters from HIFILE to LOFILE, one at a time as needed.

- UPDATE TAB STATUS DISPLAY

Clear each character in the tab status display by forci ng itto normal , high ASCII. Go through the tab file and inverse all live
tabs found, but ignore any tabs beyond 80 characters.

- TAB STATUS DISPLAY

A file of 80 characters used for the tab di splay. Untabbed locations are normal text. Tabbed locations are inverse text. Note
that this is a file that aliases badly if you try to disassemble it.

154 Enhancement 72

Table 12-7-cont. Detailed Script of Apple Writer lie Main Program

$3096-30AA - INIT PROCESSING FLAGS

$30AB-3111

$3112-3136

$3137-315F

I nit LOFILE. I nit HIFILE. Use normal data line display. Use normal wraparound. Turn data direction to">". Turn off case
changer. Turn off verbatim flag. Note that this code aliases easily. The correct disassembly should read:

$3096- 20 FF 26 JSR $26FF
$3099- 20 25 27 JSR $2725
$309C- A9 80 LDA #$80

Be sure to correct this detail before attempting to capture source code.

- MAIN PROCESSOR SERVICE ROUTINE

I nit the stack pointer to $01 FF. I nit processing flags. Turn off busy prompt. Reset keyboard strobe. Turn display off. Update
HICURS and LOCURS pointers. Write file to screen. Set data direction to">" . Unsplit screen. Verify DOS. If DOS 3.3e, do
nothing. If ProDOS, do STARTUP. Turn display on. Test for prinVprogram command and process if found. Turn off the flags
that load only to screen, copy from memory, load from $A-$ D flags. Use main DOS. If type-ahead buffer is empty and
WPL is not active, update the screen. If WPL is active, use WPL file as $A-$ D string source. If WPL is not active, get user
input. If an escape, stop WPL. If no subroutine ca ll also stop WPL.

- PROCESS USER INPUT

Get user key from type-ahead buffer. Test for tutorial help needed, and provide if called for. If glossary is sti ll active,
continue getting characters from glossary till finished. Filter user response. Do user action . Repeat main service loop.

- FILTER KEYSTROKES

Test for a printing character. If real, put that character into LOFILE and update the screen. If a control character, process
further.

$3160-31C2 - FILTER CONTROL COMMANDS

$31C3-31F0

$31F1-31FB

If an escape, toggle the data line display. Turn replace flag and mystery flag off. Set local pointer to point at I] prompt list.
Scan the list for a bracketed letter. Quit if no match found. Shut off the case changer unless a case command . On a match,
get the address pair from the function address list, put that pair into the local pointer and do a forced jump to the selected
control routine.

- SPLIT SCREEN PROMPTER

Clear and prompt bottom of the screen if WPL is not active. Get user response and force uppercase. lfa Y, then split screen .
If an N, then stop screen split. If a carriage return, then move live cursor to the other half of the split screen display. Ignore
al I other characters.

- CHANGE TO OTHER SPLIT SCREEN

If the screen is split, change the split screen flag to allow live entry on the other half of the display. Then update split-screen
display values.

$31FC-320A - TURN SPLIT SCREEN ON

$3208-3216

$3217-3244

Activate split-screen flag. lnit the split-screen pointer to LOCURS. Then update the split-screen display values.

- TURN SPLIT SCREEN OFF

If WPL is not active, reset the split-screen flag by zeroi ng $F8. Then update cursors for full screen display.

- UPDATE SPLIT-SCREEN VALUES

Update screen . Exit if not split screen . If split screen, calcu late screen window. Save inactive split-screen pointer to address
stash. Transfer LOCURS to active screen pointer.

$3245-325A - CALCULATE SCREEN WINDOW

If upper split screen, set window top at $00 and window bottom at $0C. If lower split screen, use $QC and $18. lffull
screen , use $00 and $18. Set cursor horizontal to extreme left. BASH the vertical address.

$3258-3265 - TOGGLE DATA LINE DISPLAY

Advance the$ ES data display flag to its next of three possible values, with $00 being no display, $80 being the usual MEM
LEN-POS display, and $CO being the tab display.

$3266-326C - TOGGLE WRAPAROUND MODE

Change the $El wraparound flag either from or to its $00 broken-word or its $FF whole-word value.

$326D-3273 - TOGGLE CARRIAGE RETURN DISPLAY

Change the $D2 carriage return flag either from or to its $00 normal display or its $FF show returns as"]" display.

$3274-327A

$3278-3280

$3281-32BF

Tearing Into Apple Writer lie 155

Table 12-7-cont. Detailed Script of Apple Writer lie Main Program

- TOGGLE VERBATIM MODE

Change the$ DO verbatim flag either from or to its $00 normal use of control characters or the$ FF imbed control characters
in text mode.

- PROMPT SCREEN BOTTOM AND GET RESPONSE

Clear screen bottom, then prompt user. Get user response. Used when a filename is not involved.

- PROMPT SCREEN BOTTOM AND GET FILENAME

Clear screen bottom, then prompt user for filename. Get filename. Abort on "?" or carriage return . If an "=" filename,
append only slot and drive to old name, keying on $AC comma. If a new filename, transfer entire name to filename buffer
at $0280. Find length of filename and save length to stash $E9. Clear remainder of filename buffer to all zeros.

$32C0-32D8 - PROMPT SCREEN BOTTOM

Clear bottom of screen. Print any user prompt found in the function list. Then print an ending colon . For instance, on a [SJ
command, the prompt " [Slave:" is printed to screen.

$32D9-32EC - CALCULATE SCREEN PROMPT POSITION

$32ED-32FB

$32FC-3313

$3314-3359

$335A-3373

$3374-33D5

Set horizontal position to extreme left. Change vertical position to line decimal 9 for a prompt on the upper split screen, or
line 21 on the full screen or the bottom split screen . Then BASH this screen address.

- CLEAR BOTTOM OF SCREEN

Calculate screen prompt position. If WPL is not active, clear bottom of screen window. Advance vertical position for one
blank line before prompt. Then BASH this screen address.

- SAVE PROMPTER

Set DOS clone flag to use auxiliary DOS in auxiliary memory. (This does not happen-see text.) Move old filename to"="
filename. Clear and prompt screen bottom and get a new filename. If a"?", then catalog the disk. When finished try again.
If a carriage return, abort. If a legal filename, then fall through to the save filter.

- SAVE FILTER

Set string source flag to use already entered filename. Turn off append flag. Read last character of filename for an $AB or
"+" for append. If append, then set append flag$ E2 and replace $AB with $00. Move LOCURS into the endpoint stash
$98-99. Scan the filename for delimiters. If none are found, save entire text file. If delimiters are present, process them
further.

- SAVE ENTIRE TEXT FILE

Move cursor to end, putting everything into LOFILE. Set local pointer to LOFILE start at $0801 . Send OPEN or APPEND
command to DOS as needed. Save text file bytes to disk. Update screen. Reset string source flag to new entry by zeroing
$AD.

- INTERPRET SAVE DELIMITERS

Set up special delimiters . Zero final delimiter. Set local pointer to LOFILE start. Begin moving characters from HIFILE to
LOFILE, searching for the starting match string. Replace fake carriage returns with real ones in the search string and ignore
wildcards. If no match is found , close open files, update screen, and replace " =" filename. If match is found, save the text
file bytes to disk, using auxiliary DOS for auxiliary memory. Reset string source flag to new entry by zeroing $AD. Close
any open files. Update screen.

$33D6--3455 - SAVE BYTES TO DISK VIA RWTS

$3456--3462

$3463-3480

Close open files. Clear bottom of screen . Open or append per state of $E2. Output filename, all capitals. Find the address
of the DOS file manager parameter list and save as local pointer $00,01 . Move DOS buffer addresses to file manager. Issue
write and range-of-bytes commands to the file manager. Calculate the number of bytes to be written by subtracting local
pointer from LOCURS. Feed this to the file manager. Feed the starting address to the file manager. Access DOS via RWTS. If
no DOS errors, close open file. If an error, exit via error message routine.

- ACCESS DOS VIA RWTS

Close open files. Test DOS flag. If $7F is a $00, then access main DOS in main memory. If $7F is a $FF, then try to clone a
copy of DOS to auxiliary memory and access it. (The cloning fails - see text.)

- CLONE DOS TO AUX MEMORY (does NOT work!)

Try to copy the image of DOS and the high monitor from $D00O-FFFF in main memory into the same range in auxiliary
memory. The attempt fails, since auxiliary high memory only switches on an alternate page zero switch . All attempts at
accessing " main" or "auxi liary" DOS end up reaching the DOS in main high RAM. This module may be replaced with a
single RTS.

156 Enhancement 12

$3481-3499

$349A-34BF

Table 12-7-cont. Detailed Script of Apple Writer lie Main Program

- PRINT FILENAME AS ALL CAPS

Read the active filename from the $0280 filename buffer, convert it to all capital letters, and send it to DOS. Include any
ending trailers or carriage returns, but stop on a $00 end marker.

- GET CHARACTER FOR MEMORY TO MEMORY LOAD

Increment $80 pointer. If $80 local pointer gets to LOCURS, change to HICURS and continue, scanning the entire file as
needed. Read file value from either LOFILE or HIFILE. Force high ASCII. If at end of HIFILE, replace $FF marker with $00.

$34C0-34D0 - SET POINTERS FOR MEMORY TO MEMORY LOAD

Set $80 local pointer to LOFILE start at $0801. Set $82 local pointer to LOCURS.

$34D1-3506 - OPEN AND READ DOS FILE

$3507-351F

$3520-359F

$35A0-35E0

$35E1-3663

$3664-367A

$3678-36F1

$36F2-36FD

If a memory-to-memory load, set pointers instead and exit. If a DOS load, close open files and clear bottom of screen. Alter
the OPEN command so it does not create a nonexistent filename. Print the OPEN command to DOS, followed by the
filename in all capitals, followed by a $8D carriage return. Unalter the OPEN command so it does create a nonexistent
filename. Set up IOB. Read DOS file to buffer. Close file.

- SETUP SPECIAL DELIMITERS

If the usual "/" delimiter that does not allow fancy stuff, put a $01 into $EC, the "any length" stash, a $02 into $EB, the " fake
carriage return" stash, and a $03 into $EA, the "wildcard" stash. If a special delimiter is in use, put the next higher ASCII
character into $EC, the next one after that into $EB, and the one following into $EA. For instance, a "<" delimiter will have
an "any length" symbol of"=", a "fake carriage return" symbol of">", and a "wildcard" symbol of"?" . Note that these
four ASCII characters follow each other in sequential numeric order.

- CATALOG DISK

Replace"?" with space in filename. Change output hooks to display to the screen . Reconnect DOS hooks. Read keybuffer
to see if a "# " command is present. If so, set local flag $80 to enter the catalog to the text file instead of showing it on the
screen . Replace"#" with space if used . Unsplit and clear screen if not WPL. Put down prompt if catalog to text file. Save
any slot and drive trailer to $1A00. Send all of a catalog command except the final carriage return to DOS, getting the
command from the reference files and the slot and drive from $ 1 A00. Test the catalog-to-text file flag. If to text file only,
grab the screen hooks. If to screen, leave the hooks the way they were. Catalog the disk by sending out the final carriage
return . Prompt the screen. Reconnect the hooks. Get user keypress. Update the screen .

- LOAD PROMPTER

Set the load pointer to LOCURS. Set string flag to use old string. Save old filename to " = " file. Set normal case, load instead
of append , and include delimiters. Get filename. Test for a"\" for screen-only load. If screen only, set $FD flag and erase
the reverse slash to a $00. Test first letter in filename for a "?" . Catalog disk and try again if catalog is needed. Abort on a
carriage return. On a good filename, fall through to load interpreter.

- INTERPRET LOAD DELIMITERS

Zero the three delimiter stashes and test for the copy-from-memory"#", setting $D5 if present. Search through filename
for any punctuation except for comma, period, or semicolon. If special delimiter punctuation is found, then setup special
delimiters. Then test and set the all-occurrence $E2 flag and then test and set the omit-delimiters $OD flag. Open and read
the DOS file, moving the first 256 characters into the DOS buffer at $0D00.

- SCAN DOS FILE FOR MATCH

Read one character at a time from the DOS buffer to the line buffer at $1600. Read the first character beyond the first load
delimiter in the $0280 command file. If a wildcard, ignore and get the next DOS character. If a carriage return prompt,
substitute for the carriage return. Compare the characters for a match. If a match, continue matching characters in the
string against the DOS file until the second delimiter. If no match, keep searching.

- LOAD DELIMITED FILE PORTION

Test $OD to see whether delimiters are to be included. Begin transferring characters from the $1600 line buffer into the
main text file, entering just above LOCURS. Include or exclude the delimiters per the $OD flag. Continue entering and
transferring characters until a matching end string arrives. Cease entry either on a string match or the end of the DOS file .
Note that additional DOS characters are read as needed to the $1 D00 DOS buffer in blocks of 256.

- All OCCURRENCES LOAD PROCESSOR

If all occurrence flag is set, output a carriage return and continue the search and match process. If not set, fall through to
next module.

$36FE-3714

$3717-3751

$3752-378E

$378F-3835

Tearing Into Apple Writer lie 157

Table 12-7-cont. Detailed Script of Apple Writer lie Main Program

- END OF LOAD CLEANUP

If load was to screen only, enter a press return prompt. lffilename was notthe "=" filename, getthe old filename back from
the $1 A40 "=" file and put it in the active filename file at $0280. Then update the screen.

- FIND PROMPTER

Clear the case flag $C4 and the all flag $E2 . Set use old string flag $AD. Clear and prompt the screen bottom. Read first
character in keybuffer, aborting on a carriage return . If an "=",get the old find string from the find save stash $1 ABO, and
move it to the keybuffer. Move a copy of the keybuffer back into $1 ABO, saving what you now have as a future"=" string
for future finds. Read the first delimiter and process special delimiters.

- INTERPRET FIND DELIMITERS

Zero the second and third delimiter stashes $A2 and $A3. Scan the find string in the keybuffer for delimiters. Put the
position of the second delimiter into $A2. If there, put the position of the third delimiter into $A3. Read the character
beyond the last delimiter. If an uppercase or lowercase "A" and if we are to replace, then set the all occurrence flag$ E2 .

- SEARCH TEXT FOR FIND MATCH

Set the $98,99 search pointer pair to the present cursor position. Begin searching. Check keybufferfor an escape and quit if
present. Zero the any length flag $C9. Read and hold the match character, setting the any length flag $C9 on an any length
delimiter. If a wildcard, skip the match for this character. If a fake carriage return, replace with a real $8D. Compare the
match character against the cursed character in the text file. If a match, then continue trying for a match on successive
characters. If no match, continue the search, going in the direction set by the data direction stash $CF.

$3836-385D - FIND FOUND PROCESSOR

$385E-3884

$3885-3886

$3887-38E1

$38E2-3902

$3903-3928

$392C-3932

$3933-3941

$3942-3952

$3953-3959

$395A-3960

Get user instructions. If search only and a carriage return, continue the search. If any other character, abort. If search and
replace as set by a nonzero $A3, then do the replacement on a "Y" or [Y] command, continue the search on a $8D carriage
return, or abort on any other character.

- PROMPT USER ON FIND

Update the screen. If not WPL, then clear screen bottom and put down the find prompt. If replace, then put down the"/ Y
= Replace" trailer as well. Get user response and convert it to a low ASCII control character. Note that this gives both the
user and WPL identical access to the find-and-replace code.

- FIND REGISTER STASH

The Y register gets stashed to $3885, and the X register is held in $3886 during find matching.

- DO REPLACEMENTS

Move the characters to be replaced from HIFILE to the line justify buffer $1600. Test for a replace with nothing. If a
replacement is needed, go through the replace string in the keybuffer and enter the needed characters to the text file. If a
fake carriage return, substitute a real $8D. Update screen when replacement is complete.

- ADJUST REPLACE POINTER

If the find pointer is pointing to LOFILE, enter character to LOFILE. If the find pointer is pointing to HIFILE, then move a
character from HIFILE to LOFILE. Used to allow replacement in either direction.

- NEW PROMPTER

Bypass screen prompting if WPL is active. Prompt screen and get user response. Force uppercase. If a "Y", re-in it all word
processing pointers, and reset HICURS and LOCURS. Zero the old filename. If not a "Y", abort.

- FORCE UPPERCASE

Verify that the character is lowercase. Then subtract $20 to convert to uppercase ASCII. Abort on non lowercase characters.

- MEMORY FULL ERROR RECOVERY

If WPL was active, re-init the WPL flags. Set flag to reuse old string. Ring the ding dong. Delete last character.

- CASE CHANGER

Set the case change flag $EB. Read the case flag $C4. If mixed case $00 then force uppercase $CO. If uppercase, then
switch to lowercase $80. If lowercase, then switch to uppercase only.

- DATA DIRECTION TOGGLE

Read the data direction flag $CF and change it, either to or from the $00 "<" or the $FF">" state.

- REPLACE MODE TOGGLE

Read the replace mode flag $FS and change it, either to or from the $00 normal-entry or the $FF type-over mode.

158 Enhancement 12

$3961-398F

$3990-39F2

$39F3-3A05

Table 12-7-cont. Detailed Script of Apple Writer lie Main Program

- CALCULATE CURRENT TAB POSITION

Set the $80 local pointer to LOCURS and search backwards through the file for the next previous carriage return or else the
start of the file . Count characters into $80,81 as you do so. Then subtract the last carriage return position from the LOCURS
position, and save this to the tab pointer pair $96,97.

- STATUS LINE SETUP

Test status line flag $ES to see which status line to use. If normal, verify BO-character line and put down fixed parts of "Mem
Len-Pos-Tab" header all on top line in inverse. Home the cursor to top of screen for normal and upper split displays, to 12
lines down for the lower split display option. Check the data direction in $CF and the status of case flag $C4. Put a"<" or a
">" in the first display slot if the case flag is not active, a "U" or an "L" if it is. Note that this first display location is the same
on both normal and tab status lines.

- DISPLAY TAB STATUS LINE

Test the status line flag $ES. If a tab display is needed, then move the tab status display to the correct line, knock a line off
the available display space, and BASH the address. Skip for normal status line display.

$3A0~3A45 - DISPLAY NORMAL STATUS LINE

Put a space after the data direction slot. Test the verbatim flag $DO and the replace flag $FS and put an inverse space for
nothing, an inverse "V" for verbatim, and an inverse"R" for replace. Note that you cannot get into both the V and R modes
at the same time. Test the busy stash at $F4, and enter an inverse space if not busy and an inverse"*" if busy. Test the
wraparound flag and enter an inverse space if words are broken or a "Z" if they are not. Calculate the memory remaining by
subtracting LOCURS from HICURS, and save to the $9A,9B memory left stash . Tab over the "MEM:" display. Convert the
memory remaining from hex to decimal, and display it.

$3A4~3ABA - CONTINUE DISPLAY OF NORMAL STATUS LINE

Find total available text file memory size and subtract two, allowing for the $FF starting and ending markers. Subtract
remaining memory, convert to decimal, and display as length of current text file. Subtract LOMEM from LOCURS and
knock two off for start and end markers. Convert this to decimal and display as position. Get the tab value, convert to
decimal , and display as tab. Note that the Y register sets the horizontal position and that each prompt is skipped over so that
each numeric fits where it belongs. Skip over the file prompt. Get the filename, force uppercase, and display the first 22
filename characters in inverse. Pad inverse spaces to the end of the screen . Decrement the available number of display
lines by one and move down one line so that the screen update does not overwrite the status line. BASH the address.

$3ABB-3ACB - DISPLAY DECIMAL VALUE

For up to five digits, read the already converted decimal value in the $16F0 file . Replace any leading zeros with inverse
spaces, thus right justifying.

$3ACC-3AD5 - STORE TO SCREEN IN INVERSE

Force the character in the accumulator to inverse by AN Ding to low ASCII. Put on screen.

$3AD~3841 - NO COMMENT

$3842-3866

$3867-3876

Use and purpose of this code block is left as an exercise for the dedicated student. Many volumes could be written on this.

- FORCE FILE TO HIGH ASCII

Scan LOFILE or a portion of LOFILE. Force all characters to high ASCII. Clears any end-of-screen line markers that may be
present.

- FIND START OF SCREEN LINE

Scan backward through the text file until the first low ASCII character, designating the end of the previous screen line, is
found . Abort on $FF start of file.

$3877-387D - FORMAT SCREEN LINES LINK

$387E-3899

Format screen lines starting with load pointer instead of LOCURS. Fall through to next module.

- FORMAT SCREEN LINES SETUP

The end of each screen line to be displayed is marked in the text file with a low ASCII character, providing whole word
breaks and giving the screen update code a way of knowing how far back in the text file to go to begin display, such that the
cursor usually stays on the center screen line. Starting with the LOCURS pointer, back up two existing screen lines. Then
reformat all lines to the end of the file, removing any previous low ASCII characters and putting new ones only atthe end of
each line to be displayed.

Tearing Into Apple Writer lie 159

Table 12-7-cont. Detailed Script of Apple Writer lie Main Program

$389A-3C3C - FORMAT SCREEN LINES

Save present start of screen line to $BA,BB local pointer. Allow 79 characters per line, saving room for a possible "]"
carriage return display. Scan the text file for characters. If you run out of LOFILE, then switch to HIFILE and keep scanning.
Find out how many whole words will fit on a line, including multiple spaces and stopping on 79 characters, a carriage
return, or an $ FF end of HIFILE. Save the actual line length to stash $CS. Using this value, scan the line in the text file once
again, and replace all low ASCII characters that may be left over from a previous formatting into high ASCII. When you get
to the end of the line, force the last character to low ASCII , marking the end of the line. Repeat for as many lines as are left in
the text file.

$3C3D-3C5E - CASE CHANGER

$3C5F-3CFE

Force low ASCII , saving MSB. Ignore if a numeric, a punctuation mark, or a control command. If a lowercase letter from
a-z and if in "U" mode, subtract $20 forcing uppercase. If an uppercase letter from A-Z and if in "L" mode, add $20
forcing lowercase. Restore MSB.

- UPDATE SCREEN

Abort if no screen display flag $ F7 is set. Set the screen start pointer to a point in LOFILE some 12 lines previous for full
screen and 6 lines previous for split screen . Set bottom of screen limit to $C8. Home the cursor and test data line flag $ES.
Put down normal or tab data line as needed. Begin getting file values from LOFILE and putting them on the screen. If the
wraparound toggle is set, break on whole words. Note that the final character in each screen line is a low ASCII value in the
text file. Use this coding to force whole word breaks, or ignore it for continuous display. If the carriage return display flag is
set, show each carriage return as a")". Continue through LOCURS until its end. Then switch to HICURS and keep entering
characters until the screen limit is reached .

$3CFF-3D13 - SWITCH SCREEN POINTER TO HIFILE

Save the horizontal and vertical screen changeover positions to $BA and $8B. Then update the screen pointer to the start of
HIFILE. Note that LO FILE holds everything up to and including the cursor, while HIFILE holds everything beyond the cursor
to the end of the file.

$3D14-3D44 - STORE ONE CHARACTER TO 80-COLUMN SCREEN

Force low ASCII if a control command. If a key is pressed and if WPL is not active, get the key. Verify 80 columns. Divide
horizontal position by two, picking an even or odd location . If even, store character to even screen in main memory. lfodd,
store character to odd screen in auxiliary memory.

$3D45-3DA8 - PRINT WPL ERROR MESSAGE TO SCREEN

Save error number now in accumulator. Clear bottom of screen . Print error prompt to screen . Get error number back. Scan
through the error message file, counting carriage returns. Stop when you get to the correct message. Printthe error found . If
error zero, LABEL NOT FOUND, go back to the WPL line being parsed in the keybuffer and print the label, stopping on the
first space or control character. Print return prompt. Wait for user response.

$3DA9-3DC8 - GET PRINT/PROGRAM VALUE FROM USER

Show the print/program display values. Clear and prompt screen bottom. Get user string. If a $8D carriage return, abort.
Save prompt pointer. Try to enter new print/program value. Ignore invalid user responses. Restore prompt pointer. Repeat
until user enters a carriage return instead of a new print/program value. Note that this code is reentrant, calling its own
callee. This allows prompting only when requested.

$3DC9-3DF4 - PRINT/PROGRAM PROMPTER

$3DF5-3E02

Clear and prompt screen bottom. Get user response. If"?", display current values and get new values from user. Save first
two characters of user response and force both to uppercase. Usually, these will match a print/program value command .
Save these characters to stashes $A2 and $A3 . If the first keybuffer value is either a carriage return (user entry stop) or a $00
(comment line in WPL) then pop stack twice to undo re-entrant call to itself. Otherwise, back keybuffer up two characters
to leave only the value or string following the print/program command . Then interpret and update the print/program
command.

- REMOVE PREFIX FROM KEYBUFFER

Back each character in the keybuffer up by two, stopping on a carriage return . Used to eliminate a print/program prefix,
leaving only the string or value to be entered .

160 Enhancement 12

$3E03-3E64

$3E65-3E85

$3E86-3EF1

$3ED0-3EE4

$3EE5-3EF1

$3EF2-3F05

$3F06-3F32

$3F33-3F50

$3F51-3F68

$3F69-3F6C

$3F6D-3FA2

$3FA3-3FD1

Table 12-7-cont. Detailed Script of Apple Writer lie Main Program

- SUBSTITUTE (X), (Y), OR (Z) VALUES

Move the keybuffer to the work buffer at $1 A00, stopping on a carriage return. Scan the workbuffer for an "(X)", a "(Y)", or
a "(Z)", carefully checking for lead ing and trailing parentheses as well as for range. Do this while moving characters back
to the keybuffer so that, when substitution is needed, everything up to the (X) is back in the keybuffer. Take the letter found,
subtract and then double so that X = $00, Y = $02, or Z = $04. Get the hexadecimal X, Y, or Z value from the print/
program file and convert to decimal. Move up to five decimal digits to the keybuffer, ignoring leading zeros and left
justify ing. Continuing scanning the $1A00 work buffer, beginning one past the previous")". Abort on carriage return.

- TEST FOR LEGAL WPL COMMAND

If WPL is active, substitute for any (X), (Y), or (Z) va lues in the keybuffer. If the keybuffer holds a decimal val ue, convert it to
hex. Scan the print constants match file and the W PL constants match file fo r a match against the two command letters in
$A2 and $A3. If a match is found, go enter print/program va lue. Abort on no match.

- ENTER PRINT/PROGRAM VALUES TO FILE

Save the match command. Test command . If UT, a justify, or a WPL command, use next modules. Test the arithmetic mode
on all commands except PM, which is always relative. If absolute, zero the old print/program value. Either way, add the old
va lue to the new va lue and save. On absolute, the new va lue gets added to zero. On relative positive, the new va lue gets
added to the old . On relative negative, the previously twos-complemented new value is added to the old va lue. If an SX,
SY, or SZ relative command, set string source flag $AD. If a PN, move a copy of the PN va lue to the running page counter.

- CHANGE UNDERLINE TOKEN

If the underline token is a space or a carriage return , zero the token. If any other character, save it to $19DE as the current
token.

- PROCESS JUSTIFY FLAG

Convert the match counter value such that FJ = $00; LJ = $01; RJ = $02; and CJ = $03. Save the justify mode to $19EO.

- EXECUTE A WPL COMMAND

Change the match command so that it points to a WPL command address by subtracti ng $28. Get the WPL command
address pair and stash it in local pointer $82 ,83 . Then jump indi rectly to the command and execute it.

- WPL COMPARE STRING

Remove any lead ing spaces from the keybuffer. Save the first delimiter to local stash $00. Find the second delimiter.
Compare the characters one at a time until the thiid delimiter. If a perfect match, or if no string at all , set fl ag $AD to $FF.

- WPL SUBROUTINE CALL

Test for a nesting of less than 32 subs, exiting via an error message if exceeded. Save the WPL program counter to the WPL
stack and increment the WPL stack pointer by two. Then GO and execute at the point in the WPL program w here you have
a label match. ·,

- WPL SUBROUTINE RETURN

Test the WPL stack pointer to make sure a return address exists. If not, exit w ith error message "RT WITHOUT SR" . Knock
one count off the WPL stack pointer and then put the return address pair from the WPL stack into the WPL program counter.

- TURN VIDEO DISPLAY ON OR OFF

On a YD command, store a $00 to fl ag $F7 turn ing the v ideo display on. On an ND command, store a $FF to flag $F7,
turning the video display off. WPL programs run much faster with the display off.

- WPL LOAD STRING

Identify WPL string $A-$D to be used. Using the [L] command, move a copy of what is to be loaded above LOCURS in
LOFILE. Then move the copy to the keybuffer, forcing high ASCII and providing an ending carriage return. Erase the copy
above LOCU RS to all zeros, and restore LOCURS. One more time: The "empty area" between LOFILE and HIFILE is
temporarily borrowed to ease memory management on a WPL str ing load, letting you load from disk or memory.

- WPL STRING IDENTIFIER

Scan the keybuffer for an " = $A" through " = $ D" command, verifying both prefix and range. Convert the A-D ASCII
character to a 0-3 by subtraction, and then multiply by $40. Note that it is faster to right shift on a six-b it multiply. Save the
resu lt to local stash $02 such that string $A = $00, $B = $40, $C = $80, and $D = $CO. Erase the command by
replacing the equals w ith a carriage return .

Tearing Into Apple Writer lie 161

Table 12-7-cont. Detailed Script of Apple Writer lie Main Program

$3FD2-4016 - SET PRINT DESTINATION

If PD = $08, then print to disk by getting the filename and storing $FDED to the print destination pointer $9E,9F. If PD =
$00 then print to screen by setting the print destination pointer to $260B. If PD = $01 through $07, then send a NUL
command to activate the printer card, and save the destination to $9E,9F. With a normal printer in slot one, the destination
is $C100.

$4017-409A - DISPLAY PRINT/PROGRAM VALUES TO SCREEN

$409B-409F

Unsplit and clear the screen. Set local pointer pair $80,81 to the print/program display image. Note that each prompt ends
with a $BD marker. Print the first 11 print/program values using the subroutine below. Next, get the needed print/program
value from the $19C0 file, changing first to decimal and then printing the decimal value to the screen. After doing 11
values, advance the pointer to the $19C0 print/program value file by 6 to skip over the WPL numeric values. Note that
adding five with a set carry adds six. Then print the UT value. Then use the justify value of $00-03 to pick a letter pair of FJ
through CJ, and print that letter pair. Print the top line TL from its $1 BCO file, followed by a carriage return. Do the same for
the BL file at $1940. Put down a return-exit prompt.

- PRINT A CARRIAGE RETURN TO THE SCREEN

Get an $8D carriage return and send to screen, moving you to the start of the next display line.

$40A0-40B4 - PRINT ONE PRINT/PROGRAM PROMPT TO SCREEN

$40B5-40C1

Printthe next portion of the print/program display image to the screen, stopping on a $BD marker. This puts down the fixed
part of each message. Add a space to the end of each message.

- SAVE OLD FILENAME TO = BUFFER

Getthe old filename from the active filename buffer at $0280 and save itto the $1 A40 "=" filename buffer. Note thatthis is
always a temporary and local save.

$40C2-40CE - RESTORE OLD FILENAME FROM = BUFFER

Get old filename from the "=" buffer at $1 A40 and put it back into the active filename buffer at $0280.

$40CF-40D5 - LOAD GLOSSARY FILE

Clear the glossary nest. Then trick the WPL file loader below into loading to the glossary at $1 BOO instead. Bypass any WPL
setup as you do this.

$40D6-412D - ACTIVATE WPL AND LOAD DO FILE

$412E-4143

$4144-4172

$4173-4195

Set the WPL flag$ DF to activate WPL. Set the WPL program counter to $0E00. If really WPL and not a glossary load, zero
the WPL continue flag $E7, the string $A-$ D activity flag $F6, the WPL subroutine stack pointer $92, and the string source
flag $AD. Save old filename. Get DO filename. Open DO file. Verify DOS 3.3e. Get old filename back. Set destination
address offile to $0EO0 for WPL or to $1 BOO for glossary file. Read the DOS buffer and load a maximum of 2048 characters
into the selected file. Exit with an error message if too many characters are read. Put a carriage return both at the end of the
file and into the WPL current character stash $BC. Add a zero ending marker to the selected file.

- MOVE FILENAME TO ACTIVE FILENAME BUFFER

Move the filename in the $0200 keybuffer into the active filename buffer at $0280, forcing uppercase and exiting on a
carriage return . Replace the carriage return with a $00 marker at the end of the filename.

- INTERPRET WPL COMMAND

Check keybuffer for ESC key. If present, quit WPL. If string flag is active, get string character from $A-$D string file. Clear
apple key stash. Test for end of WPL command carriage return. If not, read next WPL character. If it was the end of a
command, skip over any possible label on the next WPL line. Remove all padding spaces as well, aborting on an $FF
ending. This leaves the WPL program counter pointing to the first command character in the next WPL line.

- READ ONE WPL CHARACTER

Read the next WPL character. If a $00, then quit WPL. Increment the WPL program counter and save the read character to
$BC. If the previous character was an"=" and this character is a"$" and if the next character is a $A-$D, then initialize a
string read.

$4196-41A3 - INITIALIZE STRING $A-$D READ

Convert the $A-$ D string character into a pointer by subtracting $ C 1 and multiplying by $40. Note that a six-bit multi ply is
faster when right rotating. Save the result to string pointer $BE so that it points to the start of the correct string, with the $A
offset of $00, $ B offset of $40, $C offset of $80, and $ D offset of $CO. lncrementthe WPL program counter and activate the
$A-$D string activity flag $F6. Fall through and read the first string character.

162 Enhancement 12

Table 12-7-cont. Detailed Script of Apple Writer lie Main Program

$41A4-4182 - READ CHARACTER FROM $A-$D STRING

Read the current character in the open $A- $D string, and hold in accumulator. If a $00, turn off the string activity flag $F6.
Advance the $BE string pointer.

$4183-41CB - QUIT WPL

Put a $00 in the firstWPL program slotto kill old program. Turn WPL off by clearing MSB of $OF. Reset the key strobe. Turn
the display on . Empty the type-ahead buffer by forcing the $F3 emptier to match the $F2 filler.

$41CC-41CF - ENTER BOTTOM LINE

Trick the top-line entry code to use the bottom line by adding $80 to the pointer.

$41D0-41EF - ENTER TOP LINE

Move the keybuffer to either the top-line buffer beginning at $1 BCO or to the bottom-line buffer starting at $1940. Zero the
end of the string. Count characters as you go along, sounding ding dong, and outputting an error message if >128
characters. Note that these Tl and Bl buffers hold their line in "compact" form with delimiters instead of spaces and with a
"#" instead of the page number.

$41F0-41FD - PAD BOTTOM SPACES

$41FE-4208

Compare the printed line counter against the page interval Pl. Output a space and a carriage return as often as needed to
reach the bottom of the page.

- TEST CONDITIONAL FORM FEED

If a zero value in the hexadecimal stash, do unconditional form feed. If a nonzero value, find out how many lines are left on
the page by subtracting the line counter from the last line stash. If a form feed is needed, fall through and do it.

$420C-421A - DO UNCONDITIONAL FORM FEED

$4218-4224

$4225-4273

$4274-4278

Print repeated spaces and carriage returns until the line counter matches the last line stash. Set form feed flag $FF.

- PRINT SPACE AND CARRIAGE RETURN
Print one space followed by one carriage return, first using the print subroutine as a sub for the space and then jumping to it
for the carriage return. NOTE: Introduces a possible "page creep" bug on top and bottom headers if both Apple Writer lie
and the printer card are set to 80 columns.

- WPL JUMP OR GO

Abort if WPL is not active. Find actual start of label in keybuffer, ignoring leading spaces. Save start pointer to $05. Start at
the beginning of the WPL program file, and look just beyond each carriage return for a match to the first label character. On
a first character match, continue matching until a space or else a control character marking the label end. If no complete
match, scan WPL program file some more. If no match at all, exit with LABEL NOT FOUND error message. If match found,
exit with WPL program counter pointing to labeled line and with an $80 in the WPL current character save.

- WPL PRINT TO SCREEN

Print keybuffer to screen until either a carriage return or a "=$". Then print an ending carriage return to the screen .

$427C-4299 - PRINT KEYBUFFER TO SCREEN

Scan the keybuffer, printing one character at a time to the screen . Abort on either a carriage return or on the " =$" that is
needed by the IN command.

$429A-42DA - WPL PROMPT AND GET STRING

Clear bottom of screen. Put down WPL prompting message in keybuffer, up to the " =$". Verify the " =", then run an $A- D
range check. If a valid command, decrement the string assignment flag $03 and convert the A-D into an offset of A = $00,
B = $40, C = $80, D = $CO. Save offset in local stash $02. Then getthe user response, carefully isolating that response
from WPL and glossary processing by temporarily disabling the $OF flag. At this point, the user response will be in the
keybuffer, but the assign string flag will only be activated on a legal string assignment. Test the assign string flag. If set, fall
through to string assignment. If cleared, ignore.

$42DB-4304 - WPL ASSIGN STRING

$4305-4313

If a new string assignment, use the WPL string identifier subroutine to calculate offset and verify legality. Calcu·late the
address of the 64-character-length limit for the string in use, saving to local counter $00. Read the string in the keybuffer
and transfer to the correct string file with $A starting at $1780, $8 at $17C0, $C starting at $1800, and $D starting at
$1840. Do this until a carriage return . Replace the end of string carriage return with a $00 marker. If string is too long, exit
via a STRING OVERFLOW error message.

- PROMPT FOR SINGLE PAGE

Turn off the string assigner flag $03. Put the " INSERT SHEET, PRESS RETURN " prompt onto the screen.

$4314-433F

$4340-438F

$4390-43A6

Tearing Into Apple Writer lie 163

Table 12-7-cont. Detailed Script of Apple Writer lie Main Program

- SETUP TL OR BL PRINTING

For BL, use an offset of $80 and the $1940 file . For TL, use an offset of $00 and the $18C0 file. Calculate the line length RM
- LM and save to $D3. Save the old underline status. Force no underline. Fill the formatting buffer at $1A00with spaces up
to the required line length. Mark end of line with a $00 marker. Read firstcharacterofTLor BL file. If a $00, no TL or BL is in
use, so restore underline mode and exit. If any other character, save as delimiter to $E6 and then fall through to the
formatter.

- FORMAT TOP OR BOTTOM LINE

Note that the TL or BL is read from its compact form (delimiters and "#") buffer at $18C0 or $1940 and is then expanded
(spaces and full page number) into the formatting buffer at $1 A00-'-1 AFF. The $0200 keybuffer is used as a temporary work
area, to simplify entry of page numbers and the center and right-justification process. The keybuffer works in a "batch"
mode where it first does the left justify text and moves it to the formatting buffer, followed by the center, and finally the right
justified text. Should a"#" crop up at any time, it is replaced with the decimal page number. Switching from left to center
to right takes place when the corresponding delimiter crops up. Pointer $00 keeps track of repeat trips through the same
code, with $00 = left, $01 = centered, and $02 = right. Entry of the left string starts at the left margin. The center string
starts half the number of center characters short of center. The right string starts the number of right characters short of
extreme right.

- PRINT FORMATTED TOP OR BOTTOM LINE

Pad the left margin with the needed number of spaces. Then print the top or bottom line as previously formatted in the
$1A00 buffer. Continue until a $00 marker and then print a space and a carriage return. Restore the underline mode.

$43A7-43C0 - GET DECIMAL PAGE COUNT

Read the hex value of the running page counter $BE,BF and convert it to decimal. Put the decimal result in the current
position in the keybuffer, left justifying and dropping any leading zeros.

$43C1-43CA - WPL PRINTER ENABLE

Decrement the $B8 printer flag if not in the print-to-screen mode. Apparently undocumented and not used in this version.

$43CB-43D5 - INIT PAGE NUMBER

$43D6-43E4

$43E5-43F6

$43F7-4413

$4414-4419

$441A-4435

$4436-448A

$4488-4480

Move a copy of the starting page number in $19CA and $19CB into the running page number counter $ BE,BF.

- PRINT TOP MARGIN

Get top margin value from $ l 9CA. Abort if zero. Print space and carriage return for each top margin line needed.

- PRINT BOTTOM MARGIN

Compare line counter against last line stash. Print space and carriage return for each line until they match. Then get top
margin value from $19C8, and print a space and carriage return for each bottom margin line needed. Do this by moving
"up" to the previous module.

- SETUP NEW PRINTING

I nit the running page number counter from the page number stash. I nit page printing. Save LM and RM to temporary stash
at $5212 and $5213. Turn off the underline mode. Then enable the printer. Fall through to page printer, but do not
increment the page number.

- SETUP CONTINUE PRINTING

lnit page printing. Then jump to the page printer, entering where the printing can continue on the middle of a page.

- INIT PAGE PRINTING

Set the first line in paragraph flag$ DD. Reset the keystrobe. Update the print destination. Move cursor to end, thus putting
entire text into LOFILE. Set printer pointer $90,91 to LOFILE start at $0801. Clear the cease-printing flag $D4.

- PRINT ONE PAGE

Add one to the running page number. If single page, prompt user and await reply. Zero the line counter $DA, the footnote
buffer flag $FE, and the form feed flag $FF. Save the left margin to the left margin padding stash $B7. Get the number of
printed lines and subtractthe bottom margin . Knock another count off if there is an active bottom line. Save to the last line
stash$ DB. Format and print the top line. VTAB the top margin by printing spaces and carriage returns. Printthe body of the
page. If not to end of file and if not a conditional form feed, print the footnotes, the bottom margin, the bottom line entry,
and the final bottom padding. If not to end of file, repeat for another page. If at end of file, fall through to cleanup.

- END OF PRINTING CLEANUP

If WPL is not active am;! print is to the screen only, then put down return prompt. Send null $00 to printer. Display full
screen. Move cursor to beginning. Connect screen as print destination. Close open files.

164 Enhancement 12

$44B1--44C1

Table 12-7-cont. Detailed Script of Apple Writer lie Main Program

- PRINT BODY OF PAGE

Test to see if the bottom of the page or the end of the file has been reached . If not, print another justified line. Repeat ti II page
is full or file is empty.

$44C2--44CF - FIX PARAGRAPH START

If this is the first line of a paragraph, add the paragraph margin to the left margin padding stash $87. Note that this is always
a relative addition, with negative page margins having been previously twos-complemented.

$44D0-44EC - PRINT ONE JUSTIFIED LINE

$44ED-44F6

$44F7-452B

$452C-4550

$4551-456A

$4568-4594

$4595-45C8

$45C9-4605

$4606-461F

$4620-4632

$4633-4635

Read the keyboard . If an escape, decrement the cease printing flag and clear WPL. If not, fix paragraph start. Test line for
footnotes, underline, or imbedded printing commands. Abort if form feed flag is set. Format the line to be printed. Print that
line.

- GET ONE CHARACTER FROM LOFILE

Get one character from LOFILE and convert it to high ASCII. If not zero, save the character to the accumulator and exit. If
$00, then set the cease printing flag $D4 and exit with an $8D carriage return in the accumulator.

- UNDERLINE DETECTOR

Calculate remaining line length RM- HPOS, saving to $D3 . Get next character from file . Test for the underline token. If UT,
then toggle underline mode. If end of line, then exit to footnote capturer. If a space, repeat until the first nonspace
character.

- FOOTNOTE DETECTOR

Save present line horizontal position . Get next character, exiting and setting the cease printing flag if end of file. Test for the
"(< " start of footnote prefix. If found, save to keybuffer. If absent, fall through to imbedded command detector.

- IMBEDDED COMMAND DETECTOR

If a"." and if the first character on the line, go process imbedded command . Reset the left margin. If form feed flag inactive,
get another character via the underline detector.

- SAVE FILTERED CHARACTER TO LINE BUFFER

At this point, any remaining characters are real and not part of a footnote or an imbedded printing command·. Save the
active character to the line buffer at $1600. If a carriage return, save the line length and set the first line in paragraph flag.
Then go and justify line. If an underline token, adjust line length . If a space and the first character on the line, swallow the
space. Advance the printer pointer $90,91.

- PRINT FOOTNOTE

Save underline status. Begin footnote with no underline. Test the footnote flag and abort if none in use. Set local pointer
$00,01 to start of footnote buffer at $1200. Print space and carriage return. Pad left margin with spaces. Get the current
footnote character. Exit on a $00 end marker. If not end, then print the character. If a carriage return, then pad left margin .
Continue for all footnote characters. Restore underline status on exit.

- SAVE SINGLE FOOTNOTE TO KEYBUFFER

If the first footnote for this page, set footnote buffer flag $FE and knock two counts off the number of printed lines. If a
second or higher footnote for this page, decrement the footnote buffer flag and knock one count off the number of printed
lines. Save the footnote to the keybuffer, sounding the FOOTNOTE OVERFLOW error if > 128 characters in the footnote.
Continue entry of the footnote to the keybuffer until the ">)" end marker. End the footnote with a $00 marker in the
keybuffer. Advance the print pointer by three to bypass footnote.

- FIND END OF FOOTNOTE BUFFER

Set local-use pointer pair $00,01 to start of footnote buffer at $1200. Scan buffer until the $00 end marker, which is where
the current footnote is to begin . If no $00 end marker within 2048 characters, then exit with FOOTNOTE OVERFLOW error
message.

- FOOTNOTE ERROR PROCESSOR

Clear WPL. Move cursor to beginning of full screen. Set print destination to screen. Close open files . Exit to WPL error
message printer.

- WARM RESTART LINK

Apparently unreferenced and unused in this version .

$4636-464C

Tearing Into Apple Writer lie 165

Table 12-7- cont. Detailed Script of Apple Writer lie Main Program

- MOVE SINGLE FOOTNOTE TO FOOTNOTE BUFFER

Begin moving characters from the keybuffer to the open end of the footnote buffer. If an $8D carriage return, then make
room for the extra line by decrementing the last line stash $ DB. Exit on a $00 end marker. If > 128 characters with no end
marker, then exit via a FOOTNOTE OVERFLOW error.

$4640--4678 - PROCESS IMBEDDED PRINTING COMMAND

$4679-4681

$4682-4688

Get the first character of the printing command . If a $00 end of file, set the cease-printing flag. Save the character to the
keybuffer. Repeat until a carriage return. This moves all of the imbedded command, except the leading period, into the
keybuffer. If not at end of file, advance the printer pointer by one. Then do the imbedded print/program command .

- CALCULATE ROOM LEFT ON LINE

Subtract the current line position $B7 from the right margin stash $19C4 and save as room remaining stash $D3.

- CALCULATE LINE LENGTH

Subtract left-margin stash $5213 from the right-margin stash $5214, and save as room remaining stash $D3. Note that
these saved values cause all top and bottom lines to have constant widths, regardless of margin changes imbedded in the
text.

$468C-46BC - PRINT FORMATTED LINE

Dump the formatted line in $1600 to the printer, quitting when you get to a $00 marker, a carriage return, or if the line
length stash $DC is exceeded. Quit if the line interval is zero. If spaces are to be added between lines, add them, but not
beyond the bottom of the page.

$46BD--46C2 - PAD LEFT MARGIN TO DEFAULT VALUE

Print as many spaces as are needed to create a left margin using the default left-margin position set up at start of printing.

$46C3-46D0 - PAD LEFT MARGIN TO CURRENT VALUE

Print as many spaces as are needed to create a left margin using the current left-margin value as modified by PM or
imbedded LM commands.

$46D1-46DA - PICK JUSTIFY MODE

If left justify, do nothing. If full justify, go and do full justify module. If RJ or CJ, fall through to the next module.

$46DB-4710 - CENTER OR RIGHT JUSTIFY

$4711-4774

$4775-4782

$4783-47E0

$47E1-47E8

Save justify mode to the Y register with $02 for right and $03 for center. Subtract the number of characters in the line from
the line width. If center justify, divide by two to split the difference. Move the characters in the line buffer $1600 either to
the extreme right or to the center, starting at the highest character and working backward. Then add spaces to every
location before the formatted string. Note that spaces are not needed beyond the string, since a carriage return stops
printing.

- FILL JUSTIFY

The fill justify mode works by adding extra spaces as needed to each existing space, always starting at the left, thus
"expanding" the line to fit the available space. Reset the padding counter $C7. Skip adjusting first spaces if this is the first
line in the paragraph. Count the number of nonspace characters in the line. Abort if no padding is needed. Add one space
per space starting at the right by moving the text beyond the space one slot to the right in the $1600 line buffer. If an
underline, then adjust for underline mode. Repeat padding until line is fully justified. Quit when padded line length equals
available line length.

- ADVANCE PRINTER POINTER TO NEXT LINE

Add the length of the characters actually used during the last printed line to the printer pointer $90,91. This sets the pointer
to the start of the next line, bypassing everything printed or used as footnotes or imbedded commands so far.

- PREPARE ONE CHARACTER FOR PRINTING

Save registers. If a space, and in underline mode, save"-" underline symbol to $4802; otherwise save character to $4802
stash . Test for underline token UT. If present, toggle the underline flag and replace with a space. If a carriage return,
increment the line counter $DA and output the carriage return . Also test CR stash and issue as many line feeds as needed
for correct vertical spacing. Also restore registers and exit. If not a carriage return, check the underline flag. If underline is
needed and if not a space, print"-" symbol, followed by a backspace, followed by the next character. Restore registers
and exit.

- SEND CHARACTER TO PRINTER

If the continue printing flat $B8 is enabled, send the character out through the printer pointer $9E,9F. This pointer may
point to a printer, DOS, or the screen as previously set uo.

166 Enhancement 12

$47E9--47F2

$47F3~801

$4802~805

Table 12-7- cont. Detailed Script of Apple Writer lie Main Program

- ISSUE DOS PREFIX

Send an $8D carriage return followed by an $84 DOS attention "ctrl-D" to the $FDED output character hooks for DOS
3.3e access.

- CLOSE OPEN FILES

Print the DOS prefix, followed by CLOSE to the $FDED character hooks for DOS 3.3e access.

- ALTER DOS VALID OPEN KEYWORD

Store the accumulator to the OPEN keyword for DOS 3.3e. This will activate the creation of a new file during the OPEN
command if a $23 and will stop creation of a new file if a $22. Note that the real DOS address has been modified to $El 23
since the DOS used is $3800 locations higher than stock. More details in Beneath Apple DOS.

$4806-480A - DOS 110 ERROR HANDLER

$4808-4833

$4834--4863

Force 110 error #8 and fall through to the error handler.

- DOS ERROR HANDLER

Reset OPEN keyword to allow creation of a new file. Find the DOS error number from DOS itself. Note the correct address
is $E25C since DOS is installed $3800 higher in memory than stock. Clear WPL. Close glossary nest. Grab 110 hooks and
verify 80 columns. Close open files . Clear bottom of screen . Cancel old file name. Verify DOS 3.3e. Clear to EOL. Fall
through to error message printer.

- PRINT DOS ERROR MESSAGE TO SCREEN

Clear screen to EOL. Put down the " DOS:" prompt. Go into DOS 3.3e with the error number and get the error pointer.
Note the correct force-fed addresses of $E23F and $El 71 , since DOS is $3800 higher than usual. Printthe error message to
the screen, followed by a space. Ring the ding dong. Get user response. Re-enter to the word processing main service loop.

$4864--488D - SETUP DOS 108

Clone a copy of the existing DOS input-output block, or IOB, and move to $02EO. Zero the volume slot to accept any
volume. Also zero the pointer to the DOS read buffer and set the pointer to the DOS TIS buffer to $FE. Move the current
track and sector to the TIS buffer.

$488E~8A7 - READ CHARACTER FROM FILE

Save registers. Test the$ DS memory source flag. If character is to be read from memory, do it. If character is to be read from
DOS, do so. Set the carry flag if a $00 character, resetting it otherwise. Force high ASCII. Restore registers. Exit with
character in accumulator and carry cleared for nonzero character.

$48AB-48CE - SETUP DOS TEXT FILE READ

$48CF~900

$4901~919

A previous OPEN command will leave the address of the first track and sector list in the IOB. Get these addresses, check
them for legal track and sector values, and load the track and sector list to the $0C00 buffer by using RWTS and the IOB.
Then read the first track and sector off the TS list, storing to DOS buffer at $0D00, again using RWTS and the IOB. Set the
DOS TIS pointer to the first entry on the list.

- READ A TEXT FILE SECTOR

Increment to the next TIS pair. Abort if zero. Range check for legal track and sector, putting them into the IOB. Read text file
using RWTS and IOB, storing to DOS buffer at $1 D00. Then fall through to the DOS character read module.

- READ CHARACTER FROM DOS TEXT FILE

Test $F0 text file pointer. If $00, the old text file has been completely used, so go read another sector. Test keyboard,
aborting on escape and clearing WPL. Read the text file character and advance the text file pointer.

$491A~928 - READ SECTOR VIA RWTS

Force an $01 read command into the IOB. Load registers with IOB address. Do read via RWTS using IOB values. Test carry
flag. If clear, no error and the read was done into the selected buffer. If carry set, an 110 ERROR results, so vector to DOS
error processing.

$492C~950 - PRINT DECIMAL VALUE TO SCREEN

If accumulator holds a negative value, print a minus and twos complement the number. For either sign, convert value to
decimal and then print to screen . Note that the X register holds the number of digits, thus blanking any leading zeros and
doing a left justify.

$4951-496E

$4984-49C0

$49C1-49E7

$49E8-49EC

Tearing Into Apple Writer lie 167

Table 12-7- cont. Detailed Script of Apple Writer lie Main Program

- HEX-TO-DECIMAL CONVERSION

Store the hexadecimal value to the hex stash $C0,Cl with the low byte in $CO. Clear the decimal workspace $16F0-16F4
to all zeros. Start shifting and adding the hex value until equal or greater than 10. Then subtract 10 to get the decimal digit
for that decade. Change this digit to ASCII by ORing with $BO. Store the decimal digits to the file, with the units at $16F0,
the tens at $16Fl, etc. Repeat the shift-add-test-remove-ten until nothing is left in the hex stash . Note that the X register
holds the number of digits converted, thus automatically eliminating any leading zeros.

- DECIMAL-TO-HEX CONVERSION

Empty the hexadecimal stash $CO-Cl to zero. Clear the arithmetie mode flag $AB to $00 absolute. Read the keybuffer and
test for a "+" or a " - " , saving either to the mode flag. Get the first decimal digit and convert from ASCII to decimal.
Multiply the old hex result by 10 and add the new decimal number to it. Repeat until you run out of decimal digits. When
finished, check the mode flag. If relative minus, twos complement the hex result by subtracting it from zero. Note that a
twos-complement number can be added to perform relative subtraction.

- HEXADECIMAL MULTIPLY BY 10

Take the value in the hexadecimal stash and double it. Then "octuple" it. Then add twice the value to eight times the value
to get a 10 times result.

- HEXADECIMAL MULTIPLY BY TWO

Take the value in the hexadecimal stash $CO, Cl and double it by left shifting. Note that an MSB overflow cannot occur
since the decimal values being converted are always less than 65,536.

$49E0-49FC - PRINT INVERSE TO SCREEN

$49FD-49FE

$49FF-4A06

Test the character. If a space or a carriage return, do not change. If anything else, force low ASCII , equivalent to the apple
inverse character screen code. Put on screen. Used for status lines.

- CLEAR THE SCREEN

Load a form feed and fall through to print normal to screen. Form feed scrolls everything out of sight.

- PRINT NORMAL TO SCREEN IF NO WPL

Test the WPL flag $CF. If WPL is not active, print to screen .

$4A07-4A66 - GET USER STRING FROM KEYBOARD

Affirm flashing cursor symbol. Get key. Disallow $00 entry and try again . If a right arrow, move to right without changing
keybuffer. If a delete or a backspace, remove the previous character from the screen and back up the cursor. Continue
getting characters unti l a carriage return . Check length and sound ding dong if > 128 characters. After accepting
characters, clear screen if not WPL.

$4A67-4A8F - DOS ACCESS PROMPTER

Unsplit the screen. If not WPL, clear the screen and put down DOS command menu. Then put down return prompt. Then
get user response and process DOS command. Repeat loop until a carriage return or a DOS error.

$4A90-4AF8 - PROCESS DOS ACCESS COMMAND

Force uppercase and save command . Abort on carriage return or anything less than an ASCII "A". If a catalog, get slot and
drive and go catalog disk. Range check and exit if more than ASCII "G" . If a legal command scan through the DOS
selection menu until a "." marker following each letter prompt. Compare the letter before the period against the saved DOS
command . If not identical, continue searching the DOS selection menu. When match is found, output the DOS prefix,
then get and output command, forcing uppercase. If a slot and drive trailer is needed print a comma, followed by the trailer
and a carriage return . DOS should now do its thing. If a catalog, put down a return prompt. Note that this service loop is a
sub-sub. If you simply RTS, you exit to the DOS access prompter. If you pop the stack twice and exit, you cancel DOS
access and return to processing words.

168 Enhancement 12

Org.
Let's start with the differences ...

Apple Writer lie Nonstock DOS

1. The DOS image is installed $3800 bytes higher in
RAM than usual.

2. The boot program is OBJ.BOOT, instead of HELLO.

3. The INIT feature only inits; it does not copy a DOS
image or a HELLO program.

4. Only two open files are allowed at any time.

5. The OPEN command is sometimes altered to prevent
creating a new and unwanted filename.

6. DOS is accessed in nonstock ways when reading or
writing a text file.

So, the DOS is stock DOS 3.3. But, then again it isn't. The importantthing is that the
files created are 100 percent compatible with DOS 3.3 or 3.3e.

Let's see why this DOS has to be different. It is located $3800 bytes higher than
normal, so thatthe DOS image runs from$ DS00 through $D7FF, rather than from the
usual $9D00 through$ BFFF. All of the individual routines sit where you would expect
them; just add $3800 to each address in Beneath Apple DOS. This higher relocation
makes room for a bigger text file. This is crucial in the "E" version, and very
convenient in the "F" version . When the program is first run, internal hooks are
automatically connected as needed to access DOS in this nonstock location.

Since the only thing that ever needs booting is the boot code, this DOS has been
modified to boot a program named OBJ.BOOT, rather than HELLO.

The INIT command is also modified to only initialize. Sadly, this does not give you
more storage space on your program diskettes.

There is only enough room left in high RAM for two sets of DOS buffers. Thus, your
MAXFILES value is always two. This is all you need for normal use anyhow.

At certain times, the DOS command of OPEN is modified to prevent creating a new
file and filename. When you OPEN a file to read from it, you normally do not want a
new file created just because of some fumble-fingered typing. This eliminates the
hassle of having lots of nonexistent and confusing files mysteriously cropping up on
your disks. The OPEN command is returned back to normal after special uses.

As you have discovered by now, you are pretty much "insulated" from direct DOS
access by the program. The single most important and most valid reason forth is is error
recovery. It is essential in a word processor to be able to recover from all possible
errors with your text files intact and salvagable and with your program up and running
in an orderly and expected way.

Tearing Into Apple Writer lie

There are four ways DOS is accessed ...

DOS Access

1. LOAD does a fast and powerful custom text file load
by using a special buffer in main RAM.

2. SA VE does a fast and spec ia I text file save.

3. TAB and PRT access uses DOS in the normal way. So
do the [0) commands of Catalog, Lock, Rename,
Verify, Unlock, lnit, and Delete.

4. Update 1.1 does a stock binary load but puts the
image into the LOFILE text file area.

169

We'll start with the normal stuff. Both the tab file and the print constant files are
binary images of the work files in main RAM. These are BLOADed and BSAVEed in the
usual way by feeding commands out the$ FDED output hook COUT and letting DOS
grab them.

All of the [0) auxiliary functions are also done in the normal way, by outputting a
DOS attention prefix and the command in uppercase to the character hooks $FDED.
This is totally standard and is done for Catalog, Rename, Verify, Lock, Unlock, Delete,
and lnit.

Remember that the [L)oad feature of Apple Writer lets you casually scan through a
text file for some beginning or ending delimiters. Stock DOS does not let you do this.
So, a special pair of buffers are set aside in the workfile at $0C0(µ)DFF. The first buffer
holds a track and sector list for the newly OPENed file. The second holds a 256
character image of the last sector read. Since you have this viewable text buffer in front
of you, it is a simple matter to scan for starting or ending match strings, picking up only
what you need. Should you get to the end of the text buffer, the code automatically
picks up the next sector to be read.

The read and write to track and sector RWTS machine language access is used to fill
this buffer. The companion input-output block IOB is stashed at $02EO. Parameters in
the IOB control the RWTS access.

Which lets you do mind-boggling things like counting all words in a DOS text file
whose second letter is a "k". Or, more significantly, doing random access on a
sequential address file made up of variable length entries.

Besides being much more powerful, this custom load method is faster than the usual
DOS text file READ and WRITE commands. The OPEN and APPEND commands
needed before a load or a save are done in the normal way by sending the message out
the hooks as usual. This is done invisibly and automatically.

As mentioned before, the [L)oad command does not create a new text file if one
cannot be found on disk. Instead, a FILE NOT FOUND error message is created. This
prevents mistyping from creating nonexistent files on disk.

Loads and saves of the glossary or WPL program loads are also done using special
text file access, although the fancy searching and scanning features are not normally
needed.

The Update 1.1. file feature is rarely needed. When it is, a BLOAD command is sent
to auxiliary DOS through the usual output hooks. This gets a binary file used by Apple
Writer 1.1 and puts its image in the same place in auxiliary RAM that a normal Apple
Writer lie text file image would go.

170 Enhancement 12

There is no provision to save a 1 .1 binary file, nor does there seem to be mucli
demand for one. Once a text file, always a text file. Although, I could think of lots of
sneaky "limit pushing" uses for this feature.

The main [Slave command uses custom code to take a text file in auxiliary RAM and
send it to DOS. This is much faster than the usual DOS access.

Summing up, there are four major ways DOS is accessed. DOS is used for the TAB
and PRT file binary access, as well as for text file, glossary, or WPL loads and glossary
saves. Text file loading is done via some powerful searching code that works on
buffered images of the DOS sectors using RWTS and the 108.

Text file saving is also done with special and fast code. Updating 1.1 files are done
with conventional BLOADs.

DOS errors are trapped and sent to recovery code starting at $4808. The error
recovery reaches back into DOS to find and then print an error message. Error
processing continues by doing an orderly restart.

Note that all we say here applies only to DOS 3.3e.

"PHANTOM" DOS

The AWlle code makes an assumption that is just plain wrong.
The code apparently assumes that high RAM and low RAM switch together between

the main and the auxiliary page. In reality, high RAM only switches when page zero is
switched. Since page zero is never switched by AWlle, high auxiliary RAM is never
accessed.

See page 27 of the extended text card supplement to verify this. Or try flipping the
switches yourself. Or check the lie Technical Reference Manual.

Because of this assumption, A WIie tries to clone a copy of DOS into high auxiliary
RAM. The intent was for main DOS to use files in main RAM and auxiliary DOS to use
files in auxiliary RAM. This "double" DOS would seem to solve an apparently thorny
memory management hassle.

The cloning attempt fails, and all that happens to theDOS image in main RAM is
that it gets picked up, has the dust swept out from under it, and then gets plopped
down right back where it was.

It turns out that there is a page zero flag at $7F that was intended to pick the
"correct" version of DOS to use. This flag ends up picking the same DOS each and
every time, since there is only one DOS image in the machine.

No harm is done, and the main DOS is available for all uses.
If you are using stock A WIie, there is no reason to worry about all of this. But, if you

are a hacker pushing the limits, we see that there is a big block of cloning code that can
be replaced with a single RTS, freeing up some in-program space for custom mods.
Better yet, with a totally "free" 16K of high RAM and a separate page zero and stack
switching together, all sorts of exciting possibilities exist to integrate A WIie with other
program modules.

Tearing Into Apple Writer lie 171

Enough said on DOS. Next, let's check into . . .

MONITOR ACCESS

There is essentially zero AWlle use of the monitor .. .

There isn't any.

(Or at most, darn little.)

After bootup, there is zero, repeat zero, use of any monitor routines in ROM. During
bootup, a copy of only the "old" monitor area from $F800-$FFFF is cloned into main
RAM at $ F800-$ FFFF. Then the ROM is turned off and left off.

While a few older monitor calls are used by oddball things like the first screen and
the 1.1 Update code, the only monitor feature really used by this program is $FDED,
the character output routine. No use is made of "fideyfoo," good old print to screen
$FDF0 or any of the screen update code. Nor is any use made of GETKEYor any part of
the "new'' half of the monitor down at $C00O-CFFF. Reset vectors are used when and
if needed for reset error recovery.

The $FDED or COUT routine reads the output hooks CSWL and CSWH at $36 and
$37 and then does an indirect jump there. This greatly simplifies DOS access.

FDED can point several places ...

Normally-

(1) Points to DOS followed by a "brick wall" RTS
when DOS is to receive characters.

Except when it -

(2) Points to special screen update code for loading
only to the screen.

(3) Points to a special entry code if the catalog is to be
copied into the text.

(4) Points to the printer during the direct keyboard to
printer access option.

The usual use of $FDED is to send characters to DOS, nothing more. After DOS
receives the character, it is bounced off a brick wall "RTS" to end access. There are
three other local and specialized uses of $FDED. These local uses include a DOS load
directly to the screen, a CATALOG command that both loads the catalog to the screen
and to the text file, and finally, a special printer hook for direct keyboard to printer
access.

172 Enhancement 12

All of the keystroke entry and screen update code is done inside Apple Writer lie. In
general, this is more powerful, faster, and manages memory better.

Which leads us to ...

MEMORY MANAGEMENT

As we have seen, the text files are in auxiliary memory, while most everything else is
in main memory. Text files are accessed by some code down on page one that does
not change as the memory is switched between main RAM and auxiliary RAM.
Routines in main RAM that need to do something to the text file do so via these page
one access links.

Remember that the auxiliary RAM textfile is really two files. LOFILE starts at $0801
and builds up, while HIFILE starts at $BEFE and builds down. $FF markers define the
beginning of LOFILE and the end of HIFILE. The "open" ends of both files face each
other across all the remaining text file space. These "open" ends are marked with a
$00 marker. LOFILE holds everything from the start of the message up to the current
cursor position. HIFILE holds everything from just beyond the cursor to the last
character in the file.

Characters are normally entered into the top of LOFILE. All of the entered characters
are entered as high ASCII, but another routine carefully re-marks each end of each
screen line with a low ASCII character instead.

Most of the usual routines enter characters to the top of LOFILE. Others will pass a
character from LOFILE to HIFILE to back up the cursor. Yet others will pass a character
from HIFILE to LOFILE to move the cursor forward. [BJ and [El are extreme examples.

There are several pointers which access the text file. These include pointers
LOCURS and HICURS which point to the "open" ends of LOFILE and HIFILE.

You will also find a screen pointer that starts at a point in LOFILE equal to the top
screen line, advances through LOFILE to the cursor, and then automatically switches
to HIFILE to continue. The screen pointer keys on any low ASCII characters to count
screen lines.

A printer pointer is used to scan through LOFILE to get characters. Since everything
is moved to LOFILE before printing, no switch to HIFILE is needed by this pointer.
There is also a general use pointer pair that accesses either LOFILE or HIFILE as
needed.

As we have seen, there is never any switching into the monitor ROM. Those few
times that monitor code is needed, it is accessed from its clone in high main RAM.

CHARACTER ENTRY

No use is made of the monitor KEYIN routine. If you tried using KEYIN with a word
processor, you probably would drop keystrokes during hectic typing times.

Which is a no-no.
Instead, Apple Writer lie uses its own internal routine to get keystrokes. This routine

includes a dual key buffer. If your typing gets ahead of the processing, up to 64
keystrokes are saved in a pair of storage buffers. The main keystrokes are saved to the
character buffer at $1740, while the "<open-apple>" and "<closed-apple>" key
strokes are separately saved to the apple buffer at $1AC0-1AFF. Remember that the
apple keys must be saved as well as the main keystroke, or certain functions would be
done wrong.

Two round-and-round pointers keep track of where you are in the key buffer. A
filling pointer $F3 and an emptying pointer $F2 handle this task. During nonhectic

Tearing Into Apple Writer lie 173

times, the filler and the emptier stay together and the keystrokes are immediately used.
At other times, the filler gets ahead, and characters get saved to the buffer.

Routines that take lots of time automatically check the keyboard every now and then
to make sure nothing gets missed. A busy signal "*" prompt appears on the normal
status display during busy times.

As was mentioned earlier, characters can still get missed every now and then if-a
sloppy typist, a bug in the keyboard encoder, and the slower insertion mode all gang
up on the key buffer. The buffer seems to be working perfectly when this happens. Its
just the buffer access that fouls up the works.

Characters are normally and usually gotten directly from the keyboard during
nonhectic times, and otherwise gotten out of the type-ahead buffers when things
happen too fast.

There are several other character sources, besides the user.
Down on page zero is a special WPL and glossary activity flag$ DF. Bit 7 or the MSB

"N" slot of this flag controls WPL activity, while Bit 6 or the "V" slot controls glossary
activity.

If the glossary is active, the character is gotten from the glossary file. Similarly, if
WPL is active, the character is gotten from the WPL program file. Sometimes the WPL
file will involve itself with its $A-$ D strings. If WPL is active, and if these strings are
active, then the $A-$ D string becomes the source for the next character to be used.
You'll find a separate string activity flag at $F6 to handle this.

There is yet another source for strings of characters. Sometimes you want to use a
string already in the machine, such as the "=" filename, or something else that has
been previously formatted or put together. In this case, there is a special controlling
string flag $AD. If set, the old string that's usually in the key buffer at $0200 gets used
one character at a time. If cleared, new characters are gotten as needed from the user,
the type-ahead buffer, the glossary, WPL, or the $A-D flags.

Arrgh!
The majority of the word processor's time usually consists of patiently waiting for the

user to input a new keystroke.
After a keystroke is received, regardless of its source, it is filtered for control and

cursor motion commands. If a valid command is found, it is carried out. If not, the
character gets entered to the top of LOFILE.

Summarizing ...

(1) Directly from the user during nonhectic times.

(2) Indirectly from the user via a type-ahead buffer when
the processor gets busy.

(3) From the glossary during glossary activity.

(4) From the WPL program during active use of WPL.

(5) From the $A-$ D strings if these WPL strings are
active.

(6) From an old string already in the key buffer if still
needed.

174 Enhancement 12

We have seen that there are several possible sources of keystrokes, al I of which are
handled internally by the code. User input is accepted either directly, or else is stashed
in a pair of buffers if the processor is busy. Characters can also come from the glossary,
from WPL, or from a WPL $A-$O string if the controlling flags are properly set.
Sometimes, an old string will be reused, rather than getting new input.

Now for some details on the . . .

SCREEN DISPLAY

The screen display has some very sneaky and complicated code associated with it.
We'll first note that you can turn the screen off and on, controlled by flag $F7. Leaving
the screen off speeds up WPL considerably. Naturally, it is hard to see what you are
doing when the screen is off. An "off" screen is useful to display WPL menus, prompts,
and whatever.

Before a screen display is updated, any routine that messes with the text files will
automatically reformat the screen lines in the text file. It does this by backing up two
lines from where it is, and then automatically counting how many whole words will fit
on a line. Each line stops either on a carriage return, or else when there is not enough
room on the line for the next word.

Atthat point, a marker character, usually an $80 carriage return or an $AO space, is
changed to a low ASCII $00 or $20 and restored to the text file. All old low ASCII
characters are erased from the text file. The process continues forward through the text
file until a carriage return is found that is already correctly formatted.

Note that anything two lines before the current activity had to already be correct,
thanks to previous reformatting. Everything beyond the next carriage return is also
correct. Only the mess in the middle needs to be straightened out.

The upshot of all this is that, before a screen update, all of LOFILE and all of HIFILE
have end-of-screen-line markers properly placed to end each line on a whole word.

The cursor usually stays on the middle line of the active screen. Should it overflow,
everything scrolls up one line. Should it underflow, everything backs down one line.
During insertions, characters get "turnstiled" as far as they have to in order to reach
the next carriage return.

To update the full screen, a screen pointer pair $88,89 backs up 12 lines, which is
usually 12 low ASCII characters from the top of LOFILE. Characters are copied from
LOFILE and put on the screen up to the cursed location. Immediately beyond
LOCURS, the pointer is moved to HICURS, and the code continues filling in charac
ters from HIFILE until 12 more lines are completed.

The flashing you see on the cursed character is purely your imagination at work. The
service routine that awaits a keystroke patiently flips the cursed character on the
screen between normal and inverse text. Sometimes that character is left as inverse
text. One example of this is the cursor on the nonactive side of the split screen.

Note that the large and empty "no man's land" between LOCURS and HICURS is
bypassed. The highest character in LOFILE ends up at the cursed location. The very
next character comes from HIFILE.

Note also that the alternate character set used has no flashing mode. High ASCII
screen characters appear as normal text, while low ASCII screen characters appear as
inverse text.

On a split screen, only the active half of the screen gets updated on entries and
changes. The inactive half of the screen is static, remembering things the way they
were.

Tearing Into Apple Writer lie 175

If the wraparound flag$ El is not active, then characters are put on the screen wall to
wall without regard for word breaks. Only a 79 character line is used, since room must
be left for the optional ")" carriage return display to appear in column 80.

Sometimes, a user prompt is needed at the bottom of the active screen. To do this,
two lines are erased, and the prompt is placed on the bottom line. Prompts are
normally read as needed out of the reference file area.

Service subs are built into the screen code for the live cursor screen motions, clear to
end of line EOL, scrolling, and so on.

Another summary . . .

(1) Before any screen update, low-ASCII markers are
placed at the end of each screen line in the text file.

(2) Everything before the cursor on the screen comes
from LOFILE as does the cursed character itself.

(3) Everything beyond the cursor on the screen comes
from HIFILE.

We now know something about how DOS works, how the monitor is used, where
the characters come from, how they are managed, and how the screen update works.
With this background, we should be ready to survey the ...

INDIVIDUAL CONTROL COMMANDS

Let's briefly run down the control command list, seeing roughly what each com
mand is up to. For more detail, consult Table 12-7, or your own "torn" disassembly
listing and cross-reference list.

[@] is really the DELETE key, recoded to $80 from its default value of $FF. This one
unconditionally knocks out the uppermost character in LOFILE and replaces it with a
$00 marker. It then backs LOCURS up one character.

[Al is not used and was probably reserved for modems and telecommunications.
[Bl moves all the characters from LOFILE into HIFILE, placing the cursor to the

beginning of the text. When finished, LOFILE will be completely empty, and HIFILE
will hold the text being processed.

[CJ changes the case flag, initally from none to U, or later from U to L, or from L to U.
When characters are entered, this flag is checked. If active, uppercase or lowercase is
forced as chosen. The flag is reset on all cursor motions except the left and right
arrows. These arrows let you capitalize or uncapitalize as many characters in a row as
you want. Only "real" letters are changed.

[DJ toggles the data direction flag, between"<" and">". This sets the direction of
a search or replace. If a [WI or [X] and ">", words or paragraphs are restored. If"<",
words or paragraphs are deleted.

[El moves all the characters from HIFILE into LO FILE, placing the cursor at the end of
the text. When completed, HIFILE ends up completely empty, and LOFILE holds all of
the text being processed.

[Fl does either a search or a search and replace. Delimiters are interpreted,
substituting special ones if used. Then the text is searched using the $98,99 pointer

176 Enhancement 12

pair. If a replace, text is moved from HIFILE to a work buffer, and the replacement is
then made. Various options substitute for fake carriage returns, allow repeats for all
occurrences, use wildcards, and provide any-length capabilities.

[G] either sets up or reads the glossary. If a valid read, the glossary flag is set as a
source of characters. These characters are gotten from the glossary work file until the
next carriage return. At that time, the flag is cleared. If an "*", the glossary is emptied
by placing a zero at the glossary start location $1 BOO. If a"?", the end of the glossary is
found, and the new definition is entered, ending with a carriage return and a $00. The
glossary has a nest that works like a subroutine, remembering up to eight return
pointers that pick back up on the caller when the callee is finished.

[HJ is the left arrow. By itself, it backs up one location by moving one character from
LOFILE to HIFILE. With the "<closed-apple>" key, it does an express "by word"
backspace, continually backing up until the first space is found. With the "<open
apple>" key, it saves a character to the swallow buffer instead of HIFILE, and
increments the round-and-round swallow buffer pointer $AC.

[I] does an actual tab. The present position since the last carriage return is calcu
lated. Then a test is made to see if any valid tabs exist beyond the present position. If
so, spaces are added to the top of LOFILE to move to the next tab position. If the
" < closed-apple>" key happens to be down, the cursor is moved without space
padding. This tabs over the characters without moving them.

U] is the down arrow. By itself, it moves characters from HIFILE to LOFILE,
repeatedly frontspacing until one line is moved . Each succeeding line ends with a low
ASCII marker. With the " < closed-apple> " key, it trys to go forward 12 whole lines if
enough text is left.

[Kl is the up arrow. By itself, it moves characters from LOFILE to HIFILE, repeatedly
backspacing until one line is moved. Each preceding line ends with a low ASCII
marker. With the "<closed-apple> " key, it tries to go backward 12 whole lines if
enough text is available .

[L] is the load command . Loading can be from the text file, which is really a copy
command, or from DOS. A fast DOS load using RWTS and an IOB is used to transfer
sector images into a work file at $0D00. From this work file, delimiters can be
checked, and only those needed portions get moved to the top of LOFILE, entering
them into text just beyond the present cursed position. Options provide for all
occurrences, wildcards, and fake carriage returns. There is also an option to load only
to screen.

[Ml is the carriage return that ends each command. It is not available for other uses,
although you can fake a glossary carriage return with a"]", and a searching carriage
return with a special delimiter, such as ">".

[0] is the DOS access menu. The menu is put down and a selection is gotten. If
needed, a filename and a slot and drive is also picked up. The menu is then reread to
DOS, forcing the first word of the selection to upper case with the proper prefix and
postfix. For all but Catalog, the DOS code does all the work, completing the Rename,
Verify, Lock, Unlock, Delete, or ln it. On a Catalog, built-in code handles the prompt
needed for long listings, as well as allowing a special catalog-to-file option.

(Pl updates the print/program file or carries out a WPL command. On a valid two
character print/program value, that value is converted to hex and entered into the
correct slot in the print/program file. Absolute values are entered as such. Relative
values are added to or subtracted from the old value. Two's complementing is used for
subtraction. On TL and BL entries, the string is placed in the correct file. On UT, the
underline token is saved. On NP, CP, and WPL commands, the selected command is
completed.

[Ql is the additional functions menu. Both tab and print/program values are
BLOADED or BSAVED as called for, using $FDED standard access COUT to DOS.

Tearing Into Apple Writer lie 177

Glossary loads and saves are done using stock text file DOS access. Carriage return
displays or data line displays are done by toggling their respective $D2 or $El flags.
On a [Q]-I, one character at a time is routed directly from keyboard to printer, aborting
on a [Q). To update a 1.1 file, [Ql-J reads a binary file directly into LOFILE using DOS
in auxiliary RAM. The [Q]-K selection is both useless and unnecessarily nasty.

[RI toggles the replace mode flag$ FS. When in replace mode, a character is deleted
from HIFILE before each character entry, and then the new character is entered into
the top of LOFILE as usual. The combination of deleting the character beyond the
cursor and entering one at the cursor gives the illusion of replacing the old character.
Replace mode is aborted on practically all cursor motions.

[S] is the save command. On a full save, the entire text is moved to LOFILE, and the
text is then written directly to DOS using the RWTS access and the IOB. On a partial
save, the text is scanned for the correct delimiters, and only the desired portion is
saved to disk.

[Tl sets or clears tabs . On a purge, the entire tab file is cleared to all zeros. On a
clear, only one pair of tab entries is zeroed. On a Set, the present position is set since
the last carriage return is placed in the tab file. Up to 32 tabs are allowed. A separate
tab status display is updated, causing all set tabs to appear in inverse, and all cleared
tabs as normal.

[U] is the right arrow, or frontspace. By itself, it goes forward one location by
moving one character from HIFILE to LOFILE. With the "<closed-apple>" key, it
does an express "by word" frontspace, continually going forward until the first space
is found. With the "<open-apple>" key, it retrieves a character from the swallow
buffer instead of from HIFILE, placing the character into the top of LOFILE, and
decrements the round-and-round swallow buffer pointer $AC.

[VI toggles the verbatim flag $DO. With this flag set, all control characters except
[Ml or [V] are entered directly into the text file. This allows imbedded control
characters for such things as special printing or typesetting commands. With the V flag
cleared, control characters are used in their normal manner.

[W] inserts or deletes a whole word, depending on the data direction. On"<", a
word is saved to the word and paragraph deletion buffer starting at the first open spot
available. Characters are removed from the top of LOFILE and placed in this buffer,
until either a space or an empty file is found. On">", a word is recovered from the
word and paragraph deletion buffer, putting the characters into the top of LOFILE, and
stopping on a space. A round-and-round pointer pair $94,95 keeps track of positions
in the deletion buffer. A separate deletion overload counter makes sure the buffer does
not overflow.

[X] is identical to [W], except it inserts or deletes an entire paragraph, keying on a
carriage return rather than a space.

[Y] is the screen splitting switch. On a [Y]-Y, the split screen is set up, using only 12
lines per display instead of the usual 24. One side of the split screen is active at a time.
The other side is a static display of the way things were. Pointer $F8 decides which
side is active. On a [Y] with a split screen, control flips over to the other screen side by
toggling $F8. On a [Y]-N, the pointer is cleared, allowing the normal full screen
display.

[ZI toggles the wraparound flag at $El . Wraparound is always present in the text
file, since each screen line ends with a low ASCII marker. If this flag is active, the
screen update code ends each line on these markers. If there is no wraparound,
characters are put on screen as they occur, stopping at 79 screen characters. The
rightmost character slot is always reserved for a possible")" carriage return display,
whether or not it is used.

And [Z], of course, is the end of the alphabet. Unfortunately, we aren't quite
through, since we have saved two of the heavies for last. As a reminder, we are

178 Enhancement 12

scanning through the various features of this program to see roughly what they do.
Much more detail is found in Table 12-7 and in your own "torn" disassembly and
cross reference.

The first heavy is .. .

PRINTING

Unlike some word processors, the Apple Writer lie printing routines are part of the
machine-resident editing code, rather than a module separately loaded off the disk.

In Apple Writer lie, you have a choice of four possible print destinations. You can
print to a real printer to get a hard copy. You can print to a modem or other special
plug-in card. You can print to the screen to see exactly what your printed text will look
like. Or, you can print directly to a disk text file.

This last option gives you a final document in final form, without any AWlle
imbedded commands and looking exactly like the final image to be sent to the final
printer. "Printing to .pd8" is particularly useful when you are typesetting or transmit
ting between two different brands of computers.

The choice of a print destination is done with the ".pd" command. A ".pd0" outputs
to the screen for "what you see is what you get" previews. A ".pdl" dumps to a printer
card in the selected slot. Rarely, a ".pd4" could be used to dump to a modem or some
other special card. A ".pd8" dumps directly to the disk.

Printing begins by moving everything to LOFILE with an [El command. A printing
pointer pair $90,91 then moves through the text file, starting at $0801 and working its
way through the file.

Pages are formatted using the prinUprogram values, such as the top margin, left
margin, right margin, bottom margin, page numbers, etc. At the beginning of the first
page, the ".pn" page number is saved to the running page counter pair at$ BE,BF. The
default left and right margins are saved as well. This way, the top and bottom line
formats will stay the same throughout the document.

The top line, if used, is formatted and printed first. This is done by reading the three
possible pieces out of the top line file and then moving them into a work area where
the page number can be substituted for the # symbol and the final length counted.
Each left, center, or right piece is then moved to a line buffer that has been previously
filled to all spaces. The left piece starts at the left. The center piece starts half way
across minus half the length of the center text. The right piece begins short of the right
margin by its length.

After the top line, the top margin padding is put down, followed by the body of the
page. The body is formatted and printed one line at a time, allowing for paragraph
margins or outdents on the first line in each paragraph.

Each line begins by getting enough characters out of the text file to fill the line. As the
characters come in, they are filtered for AWlle imbedded commands and for foot
notes. lmbedded commands start with a carriage return, followed by a period,
followed by two or more letters. If these commands are found, the printing stops long
enough to allow the imbedded command to do its thing.

For instance, on a ".lm + 5" command, printing halts momentarily. The left margin
is then gotten, decimal 5 is added to it, and left margin is then replaced. The new left
margin value will get picked up on the next line.

Unfortunately, as you undoubtedly have found out by now, AWlle counts any
command it does not recognize as printing characters. Which leads to the "short line"

Tearing Into Apple Writer lie 179

problem on certain printers that receive imbedded escape commands. A short line
patch is available free; just call me on the helpline for a copy. It also appears on the
companion diskette.

Characters are also filtered for footnotes, which begin with the"(<" command. If
footnotes are found, they are stored into the footnote buffer at $1200, and the footnote
flag$ FE is set. This flag is incremented once for each footnote per page as needed. The
very first footnote knocks two counts off the available number of printed lines, while
any additional footnotes knock off one extra line. This gives a space between the
bottom body line and the first footnote line.

At any rate, characters are gotten and filtered until there are enough whole words to
fit between the left and right margins. These are placed in the line justify buffer at
$1600. Then that line is justified .

Should left justify be in use, nothing more is done, leaving all of the words flush left.
If center justify is in use, the length of the characters used are subtracted from the line
width, and half this distance is used to offset the characters in the line buffer.

If right justify is in use, the length of the character string is subtracted from the line
width, and this entire distance is used to offset the characters in the line buffer. In any
of these three modes, you end up with the buffer holding the line justified in the correct
position.

Spaces are added as needed before the center justified and right justified text.
Spaces are not needed beyond any text since the carriage return completes the entry. A
row of printed spaces looks the same as the unprinted page, so it is neither needed nor
used.

On fill justify of a long line, the needed number of padding spaces is calculated. Text
is then moved one space to the right, beginning with the first space, and repeating as
often as needed to force the fill justification. Microjustification is not available inside
stock AWlle. You can instead use imbedded commands to tell an intelligent printer to
do this for you. Naturally, if you have this feature available, it will look much better
than text justified by whole spaces.

The Diab/a 630 is especially good at microjustifying AWlle text, eliminating the
short line problem at the same time. More details on fully automatic formatting for
high print quality appear in Enhancement 9.

Regardless of the justify mode, all of the characters end up in the correct place in the
line justify buffer. When finished, this line is output for printing. The line is preceded
by enough spaces to make up the left margin. On first paragraph lines, the ".pm" value
is also used to adjust the number of leading spaces needed.

As the line is printed, the characters are filtered for the underline token. Should this
token show up, it is replaced with a space, and the underline mode flag$ EO is toggled.
Underlining is done by printing the "_" underline character, and then by backing up
one space and printing the character to be underlined.

Underlining will not work on some very old or otherwise primitive dot-matrix
printers. The printer must be able to recognize the $88 ASCII backspace command for
this type of underlining.

Incidentally, one simple AWlle fix for underlining up to a period or comma is to
imbed a backspace before the punctuation. Most often, your printer will offer better
underlining than AWlle does.

As many lines as are needed are put in the body of the text. When finished, any
footnotes are recovered from the footnote buffer and printed. These are followed by
the bottom line padding, and, if used, the bottom line.

Printing continues until all of LOFILE has been printed. At that point, a new file can
be loaded and a ".cp" continue printing command can be given, picking up exactly
where you left off with the same running page number and current margin settings.

180 Enhancement 12

On the single sheet option, printing halts at the bottom of the page long enough for
you to change papers.

By the way, your printer card should defeat any video echo. If it does not, this may
slow down your printing, particularly at higher serial baud rates. You will, of course,
get the best printing with an intelligent printer or typesetter that accepts imbedded
commands and can do its own proportional spacing, boldface, italics, shadow
printing, and microjustification.

So much for printing. The real biggie is . . .

WPL

The amazing thing about WPL is how much is done with how little. The additional
code needed is rather short and compact.

WPL is a supervisory language that looks like a cross between Pascal and assembler.
Its intended use is as an executive controller that will see you through long and
involved tasks.

Obvious uses are printing a multiple file book chapter with the correct headings and
footings, customizing a mailing to a separate address list, counting words, putting
down menus, prompting operators, building an index, and things like this.

It's the nonobvious uses of WPL that boggle the mind.
I've used WPL to insert or remove the line numbers from assembly code, and to

picture process strings sent to a plotter. I've used it to trick a printer into doing "camera
ready" copy, and to scan for formatting errors. I have also used it to create high-level
graphic images. In fact, I am convinced that WPL is far more powerful at processing
pictures than it is words. Others have even written adventures in WPL!

Back in Enhancement 9, we saw how to use WPL to completely format a document
for full "bells and whistles" high quality printing, along with several other examples.

The message is overwhelming. WPL is super powerful and super important. Without
it, Apple Writer lie may have some second-rate competition.

With WPL, that's all she wrote . . .

If you do not thoroughly know and aggressively use WPL,
then you are passing up at least 98 percent of the good
stuff you can do with AWlle.

Maybe more. So get with it. Now.
Fig. 12-4 summarizes a WPL instruction. WPL instructions are each one line long,

ending with a carriage return. Lines are normally done in the order they are found in a
WPL program, although there are several important exceptions.

Each line may begin with a label. The label must not have any spaces in it. If used, a
label lets WPL find a certain line for possible subroutine or jump access. If, as is more
often the case, a label is not used, then a space must be the first character on a WPL
line.

Either way, the first character after the first space in a WPL line is treated as if it were
a control character. WPL then behaves just like you typed that control character from
the keyboard. For instance, if a WPL line consists of a space followed by a "B", the
WPL interpreter would see this as a [Bl and would move the cursor to the beginning of
the screen .

THE LABEL IF USED,
COMES FIRST AND
IDENTIFIES THIS LINE
FOR A WPL JUMP

THE "OPERAND" IF USED,
PROVIDES ANY ADDITIONAL
INFORMATION THE "OPCODE"
MAY NEED. IN THIS CASE.
THE OPERAND HOLDS THE
NAME OF THE FILE TO BE
LOADED.

OR SUBROUTINE ACCESS.

I l
GETFILE L ZORCH,D1

t
THE ·OPCODE" ALWAYS
FOLLOWS THE FIRST SPACE
AND IS ALWAYS TREATED
AS IF IT WERE A CONTROL
CHARACTER. HERE THE
L IS INTERPRETED AS A
<CTRL>-L OR (LI FOR LOAD.

Tearing Into Apple Writer lie 181

<CR>

t
LINES ALWAYS END
WITH A CARRIAGE RETURN.
COMMENTS CAN BE
ADDED TO MANY WPL
COMMANDS IF AN
"OPERAND" IS NOT USED.

FIGURE 12-4. A WPL command line is very similar to a line of assembly source code.

Nearly anything you can do at the keyboard, WPL can do for you, automatically,
potently, and error free.

Think of WPL as a high-level language that is extremely proficient at editing long
strings of characters and acting on them, as well as being a competent disk and printer
supervisor.

So, what is WPL and how does it work?
We first need a way to write a WPL program. Since a WPL program is nothing but

some processed words, you write your WPL program on Apple Writer lie just like any
old text file and save it to disk.

There is a WPL command called DO. To run your WPL program ZORCH, you
simply do a "[Pl DO ZORCH."

That is all there is to it. The DO code first clears all the various WPL flags and work
areas. It then loads the named program into a WPL program file starting at $0EO0. The
program can be 1024 characters long with footnotes in use or 2048 characters
without. WPL programs can be chained together. Variables are preserved during this
chaining. The DO command also sets the WPL activity flag $DF, so that keystrokes
will be read from the WPL file, rather than from the keyboard.

If the WPL flag is set, the first line of the WPL program is read. If a label is present, it is
passed over, finding the first character past the first space or string of spaces. This
character is converted into a control command, and is processed just the way any
control characters entered from the keyboard would be. Any remaining characters on
the line are used as needed by the control command. For instance, a filename might
follow a "L" for [L]oad, or a search and replace string might follow a "F" for [F]ind.

The WPL lines are read one at a time, usually in sequential order. Each line
terminates with a carriage return. The final WPL line ends with a $00 marker, which
stops WPL and returns control back to the keyboard.

WPL has jumps and subroutines. The WPL command GO will start at the beginning
of the WPL file and search for a label. On the "pgo" jump command, the label is
found, the program unconditionally jumps to that line and then continues from there.

182 Enhancement 12

The WPL command " psr", for subroutine, does almost the same thing, except that a
return address is remembered on a WPL stack at $1 700, along with a stack pointer $92
that remembers where to return to.

WPL has numeric variables. Not very many, though. There are three numeric
variables (X), (Y), and (Z) that each can range from Oto 65535 . Any time an (X) is
found, the (X) value will be substituted. Same goes for (Y) or (Z). You can set these
numerics to any value, either absolute or relative. You can easily test a numeric for
zero. With some hassle, you can also test a numeric for most any nonzero value.

For instance, "psx45" puts a decimal 45 into (x) . " psx7" sets (X) unconditionally to
decimal seven. A command of "psx + 7" adds seven to whatever was already in (X).
Most importantly, the command " psx-1 " decrements a counter loop involving (X) by a
single count.

The numerics are really nothing but print/program values, and are stashed in the
print/program file just like, say" .Im" or " .ut". See Table 12-1 for the exact locations.
Substitutions are done at the time the WPL line is interpreted.

WPL has string variables . There are four of them named $A through $D. They are
stashed in the work files starting at $1780. Just like the numerics, the strings are
substituted for their symbols at the time the WPL is interpreted. Strings may be loaded
from memory or disk with the " .Is" , assigned to an immediate value with " .as" and
compared with the " .cs" commands. Check Tables 12-5 and 12-7 for more details.

During disk access, the" .Is" load string command borrows an unused portion of the
text file immediately above LOCURS out in "no man's land." Since the $A-D strings
are only allowed to be 64 characters long, there is little danger of crashing into
HICURS, except on a nearly full text file. This is done to give all of the powerful
loading options to WPL strings that the usual text loads receive. After use; the string
above LOCURS is zeroed out so it does not become part of the text file.

WPL has conditional execution, an absolutely essential feature of any computer
language. The next WPL statement gets skipped if a numeric reaches zero; or if [F]ind
can't; if [L]oad won't; or if "psc" doesn' t compare. The skipped statement usually is a
jump, a subroutine call , or a program quit. Thus, you can make a test and cause WPL
to pick two different routes, depending on the result of that test.

WPL interacts with the user. You can clear or put fixed messages or menus on the
screen with the "ppr" command. You can get a string from the user with a "pin"
command . The display can be turned on with the YD command and off with the ND
command. An off display computes much faster, besides holding the last prompt or
message for you .

There is also an " .ep" command in WPL that enables the printer if the hex stash
value is not zero. You use this command to print only the page you want in the middle
of a document. To accomplish this, put an " .ep0" at the beginning of your document,
and an " .ep 1 " where you want the actual printing to start.

Let's round up these .. .

WPL Tricks that Beginners Miss

Clear screen
Beep
Tweedle

Turn printer off
Turn printer on

ppr[L]
ppr[G]
ppr[GJ [G] [G]

.ep0

.epl

Tearing Into Apple Writer lie 183

Clear screen only works after a "pnd" command. It is best to use the beep only
when an error occurs. Use the tweed le to get the user's attention when a long routine is
finished.

Of course, WPL can have errors. Lots of different things can go wrong with a WPL
program. You might have a label missing or mispelled. You might be calling sub
routines without returning. The program might get too long. Just as DOS has an orderly
exit method and prompting for DOS errors, there is a separate WPL error processor
that does an orderly shutdown ofWPL and prompts the user. This error processor starts
at $3B45 in the "F" version.

The escape key shuts down a wayward WPL program. This same key also serves as a
printer panic button.

WPL is great for what it is and what it does. But it is a specialized language and, as
such, it has some series shortcomings. Its arithmetic abilities are putrid. A floating
point multiply takes over 46 seconds. That's seconds, not milliseconds or microse
conds.

So, there are lots of things you might like to add to WPL to make it even more
powerful.

Of the things I would like, the ability to PEEK, POKE, and CALL machine language
extensions is essential. Also needed is a single keystroke GETKEY from the user, and
most importantly, a way to "put the cursed character into the $ D string."

We'll find out how to add a surprisingly simple POKE capability to WPL shortly.
Which leads us to the obvious question of . ..

MODIFYING APPLE WRITER lie

Obviously, you want to modify either all of Apple Writer, or else just part of WPL, or
you wouldn't have gotten this far .

First, you will want to have completely torn apart the program and thoroughly
understand it.

Secondly, you will want to find some good . ..

Hooks-

Places in a program where it is reasonable to attach
· your own custom code.

A listing of a few of the more obvious attachment and extension points of the "F"
version of Apple Writer lie is shown in Table 12-8.

As you can see, there are control functions you can grab, auxiliary functions you
can divert or add, blocks of memory you can replace with your own code, and large
portions of RAM that are unused.

Your first attempt at any modification should preserve the position and length of the
stock code . . .

If you modify Apple Writer lie, try to keep the position
and the length of each code module EXACTLY the same
as the original program.

184 Enhancement 12

Table 12-8. Apple Writer lie Hooks

Hooks are points in a program that lend themselves to your own custom expansion and modification.

Here are some reasonable "F" version possibilities:

1. Control functions [j], [/], [I] and n are addable for command modes. Function [Al is also
usable but may conflict with modern use.

2. Auxiliary functions [Q]-H, [Ql-J, and [Q]-K are easily diverted. [QJ-H does the same thing
as the <esc> key. [Q]-J might be usurped, since just about all 1.1 files should be long
gone. Selection [QJ-K destroys everything within a 300-foot radius of your Apple lie and
then "kicks sand in your face." It is even worse than a cold restart.

3. Auxiliary functions [Q]-L through [Q]-Z may be added. For that matter, you can do a [Ql
followed by a number or punctuation key for even more tasks.

4. The following internal code areas can possibly be diverted for your own uses:

(a) Quit Apple Writer $2CA4-2D0E (106 bytes)
(b) Convert 1.1 files $2D0F-2DB1 (162 bytes)
(c) DOS cloner $3464-3480 (28 bytes)
(d) Reserved area $3AD6-3B39 (99 bytes)
(e) Reference file $5088-508B (4 bytes)

Note that (a) and (b) are contiguous.

5. The top of the print/program file from $19E2-19EF is available for values you wish to save
to disk as a PRT value.

6. All of main RAM from $53D0--BFFF is available free for your use, although future-looking
uses should avoid $B FOO--BFFF. Page zero locations unused by Apple Writer lie, DOS,or
actually used monitor routines are available, as are main RAM locations $0157--0180,
$0380--03CF, and $16E5- 16FF.

7. Also available, but tricky to manipulate, are auxiliary page zero and page one, auxiliary
memory high RAM, and the two "first" 4K banks of RAM in both main and auxiliary
memory.

To not do this will introduce all sorts of sticky complications.
Which says that you should hold off trying to use the HIRES screens in their intended

locations for anything unless you are ready to change things in a very big way.
There are some surprisingly simple ways to do HIRES screen dumps on either stock

or modified versions of A WIie . Much more on this and an A WIie graphics in general in
a future enhancement.

Let's suppose that you want to make some small and sane change to Apple Writer
lie. How do you do it?

I'll show you two wildly different ways to modify the program. The first method is
shown you in Table 12-9. This method is best suited for something you wish to sell. It
takes a stock copy of Apple Writer lie, installs it in your machine, and then overwrites
your patches into portions of the machine-resident code.

Most importantly, it keeps separate the original work by the original author and your
own. If your patch is good, the original author sells more copies of his work. If your
patch is bad, you get blamed or ignored.

You make your patch by BLOADing the original program into your machine under
stock DOS 3.3, changing what you want to change, and then saving the program
under the name PATCH.

The patch is installed by a sneaky trick. Note that the print/program file sits before
the main program in memory. Normally, when a print/program file is loaded, it fits
exactly into the print/program space. But, thankfully, there is no check made on the
length of a 11>rint/program file as it is being BLOADed.

Tearing Into Apple Writer lie 185

Table 12-9. How to Patch Apple Writer lie

WARN I NG: The following description works ONLY on EXACTLY the DOS 3 .3e "F" version of Apple
Writer lie, circa March of 1983. Use the "tearing method" to change as needed to suit
your current code version.

TO PATCH APPLE WRITER lie:

(1) Write protect your third backup copy of Apple Writer lie and your third backup copy of
your DOS 3.3e system master.

(2) Cold boot your DOS 3.3e system master disk third copy in slot 6, drive 1.

(3) Remove the system master disk from drive 1 and insert a new and blank diskette in its
place. Do not use drive 2.

(4) I nit this new, blank diskette with your favorite HELLO or MENU program. If you have no
favorite HELLO program, then ...

) 10 REM TEMPORARY HELLO <er>

) INIT HELLO < er>

Do NOT use the init feature built into your Apple Writer program! Use your system master.

(5) Replace the blank diskette with your third backup copy of Apple Writer lie in drive 1.

Then ...

) BLOAD OBJ.APWRT] [F, A$2300 < er>

) BLOAD PRT.SYS, A$18C0 < er>

] POKE 6912,0 < er>

(6) Replace the copy of Apple Writer lie with the initialized blank diskette in drive 1.

(7) Make any and all changes to the code now resident in your lie that you care to.

(8) Then .. .

) BSAVE PRT.PATCH, A$18C0, L$3B41 < er>

Do this to your initialized blank diskette in drive one. Your particular "L$" value will be
different if you lengthened or shortened the original code. This completes creation of your
custom patch.

TO USE YOUR PATCHED VERSION OF APPLE WRITER lie:

(1) Boot your stock Apple Writer lie diskette in the usual way.

(2) Replace the stock diskette with the modified diskette.

(3) Then ...

[QJ -C PATCH < er>

Your patched code is now resident in your Apple lie awaiting your use.

So, you simply load a print/program file under [Q]-C that is a little longer than
normal. In fact, you load one that is so long that it completely overwrites all of stock
AWlle!

To use your patch, you boot stock Apple Writer lie in the normal way. Then you
[Q)-C PATCH, and all your changes get magically made to your machine resident
program.

Two gotchas.
First, if there is any change to stock Apple Writer lie at all, your patch may not work.

Thus, it is up to you to keep track of version changes through time. Since this is such a
popular and well-supported program, rare and major updates are more reasonably
expected than continual small changes. Versions are obviously tested by looking at
certain bytes in the code that are different for each version . Note particularly that

186 Enhancement 12

separate patches are needed for the "E" and "F" versions of the code, depending on
whether extended memory is available.

Secondly, the length of your program may be different from the original. This is
allowed, since there is some 27K of free main RAM above the present "F" program
that you are free to use. Be sure to change the "L$" length in step eight of Table 12-9 if
your length differs from the original.

Once again, it is best to leave everything exactly where it is in memory, making
changes that overwrite, rather than relocate, code modules. If you don't have enough
room, jump out into "free" RAM and then jump back.

This patching method is preferred for commercial uses. You might like something
simpler and more flexible for your own personal needs.

So, let's see how we can go about ...

ADDING POKE TO WPL

Any computer language faces a dilemma.
If you do not provide ways to extend and change the language, then your language

is forever yours and its integrity is never compromised by dumb or otherwise stupid
things others have tried to do to it.

If you do provide ways to extend or change the language, then the language can
push the limits and do fantastic and unexpected things, as many different people put
their skills and thought processes to work improving and upgrading.

The same is true of a word processing program.
If you change it, it may get better or it may get worse. If you cannot casually change

the program, it does exactly what is expected of it, reliably and certainly. If you do
change the program, it may do great and wonderful things. Then again, it might blow
up in your face.

What I am saying is . ..

I POKE is a deadly weapon I I
I will show you a very simple way to add a rudimentary POKE capability to Apple

Writer lie that will let you modify any part of the program at any time for any purpose.
But bear in mind that you have been handed a deadly weapon that, more likely than
not, will get you into very deep trouble.

Needless to say, neither Sams nor I will clean up any of the mess you make.
The idea is simple. Nobody uses the (O]-C "Verify File" option much. Just replace it

with an [O]-C "Bload Patch", and you can wreck any havoc of your choosing.
One possible use of a POKE ability is to send commands to a printer card that needs

POKEs to change its printing modes. To POKE with a BLOAD, you simply load a
binary file one byte long. That byte goes where you tell it to. To do fancier DOS stuff,
just use your new BLOAD to overwrite the normal tab loads and stores with any fancier
DOS commands you may need. Just be sure to put everything back the way it belongs
when you finish. You can even get verify back temporarily, again by overwriting the
tab load or store.

As an "exercise for the student", try replacing the (Q]-K option with code that "puts
the cursed character into the $ D string." Note that you have to use the memory

Tearing Into Apple Writer lie 187

management routines and that the cursor must be decremented, used, and then
incremented back to point to the open end of LOFILE. The solution is included as a
bonus module on the companion diskette.

Putting the cursed character into the $D string ends the long WPL song and dance
needed to find out what the cursor is looking at. Many file-modifying programs can be
dramatically sped up with this new feature. Additionally, logic can be done based on
what any particular character is or is not.

The professional way to add a POKE capability is by following Table 12-9. Here is a
simpler and more flexible method ...

Adding POKE to Apple Writer lie

Preferred commercial method -

Use Table 12-7, changing the (O)-C selection to read
"Bload Patch" instead of "Verify File".

Alternate personal method -

(1) Make a fourth backup copy of Apple Writer lie,
using any of the usual methods. Put a fluorescent

· label on this and then stripe the label.

(2) Using a disk zapper, such as COPY II PLUS, find
and blast out the "Verify File" in the DOS options
menu and replace it with "Bload Patch," directly
on this newly created disk.

(3) The needed code area may or may not be on the
boundary between track 8, sector 0 and track 9,
sector B.

"Verify File" codes as $ D6-E5-F2-E9-E6-F9-A0-
C6-E9-EC-E5-8D.

"Bload Patch" codes as $C2-EC-EF-E1 -E4-A0-D0-
E1-F4-E3-E8-8D.

Don't forget that there are two versions of AWlle on your source disk. There's the
"E" version for use without extended memory, and the "F" version with. Be sure your
patch goes on the right version, or you will end up in deep trouble.

Remember that most POKEs will work on one version and will destroy the other.
Once you start using your new POKE ability to in-place modify your word pro

cessor, you will be amazed at the many different things you can do with it. Also
astounding will be the disasters you create along the way. Be sure to use the hotline to
keep us informed on your successes.

If any.
Let's wrap things up by .. .

188 Enhancement 12

Capturing Your Own Source Code

Needless to say, it is far easier to make major changes in any program by working
directly with source code, rather than puzzling over mysterious object code. Captured
source code is almost essential for such major changes as repositioning the program or
otherwise making major improvements. It is also necessary if you are to integrate your
word processor with other program modules, such as a spreadsheet, data base
manager, or telecommunications package.

There are also many good reasons to not try and capture source code. For one thing,
a lot of time, patience, and effort are involved if you are to do the job correctly. More
importantly, things get sticky fast if you try to make any commercial use of your
captured and modified source code.

You are, of course, free to make any changes you want any way you want to any
program you personally own, so long as you do so for your own use only. The problem
comes up if you try to sell or otherwise pass on "your" work, which is really a mix of
what you have done and the value created by the original author.

Play fair, or don't play at all.
At any rate, Table 12-10 shows you how to capture source code for the "F" version

of Apple Writer lie. Note that these instructions will ONLY work on the exact version
of the program that I used.

There is a slight amount of black magic involved in getting a good capture. This is
handled by a module called SNEAKYSTUFF. This is listed in Table 12-10 and provided
ready for your use on the companion diskette. We'll save details on SNEAKYSTUFF for
you to puzzle over.

The SNEAKYSTUFF module is disgustingly elegant. I'll give a free Sams book to the
first ten Apple Writer lie enhancers that correctly tell me what this module does and
what specific problem it solves.

We may take a further look at source code capturing techniques in a later enhance
ment.

A most important capture rule ...

Captured source code is totally and utterly useless if it
does not EXACTLY reassemble into code that is a PER
FECT match to the original object code.

So, be sure to reassemble your captured source code back into object code and
byte-for-byte compare it against the original. Full details on working with source and
object code appear in my Assembly Cookbook for the Apple I/Ille (Sams Cat. No.
22331).

See you there.
Your captured source code consists of some 7837 lines of undocumented code.

This can be assembled on stock EDASM, but that's about all. From here, you will want
to split the code up into workable chunks and add the proper chaining and documen
tation. After that you will be well on your way to making major modifications of your
own choosing.

Note that this enhancement is intended specifically for Apple Writer lie. The
helpline is specifically set up to handle Apple Writer problems and has many free
Apple Writer patches available. Write or call.

Tearing Into Apple Writer lie 189

Table 12-10. How to Capture Apple Writer lie Source Code

WARNING: The following description works ONLY on EXACTLY the DOS 3.3e " F" version of Apple
Writer lie, circa March of 1983. Use the "tearing method" to change as needed to suit
your current code version .

(1) Write protect your third backup copies of Apple Writer lie, the DOS 3.3e system master,
and Disasm 2.2e. Work only with drive 1 in the following steps to avoid any possible
mixups.

(2) lnita new blank diskette using your backup DOS 3.3e system master, as you did in Table 9.
Do NOT use the init feature of the Apple Writer program.

(3) Cold boot the newly inited blank diskette. Then :

[CALL -151 <er>

* 2000: 34 09 Cl Cl 00 00 00 00 <er>

* 2008: 34 OB Cl Cl AB B2 00 00 <er>

* 2010: 34 10 Cl Cl AB B7 00 00 <er>
* 2018: 34 17 C2 C2 00 00 00 00 <er>

* 2020: 34 19 C2 C2 AB B2 00 00 <er>
* 2028: 48 02 C3 C3 00 00 00 00 <er>
* 2030: 48 04 C3 C3 AB B2 00 00 <er>
* 2038: 48 44 C4 C4 00 00 00 00 <er>

* 2040: 48 4B C4 C4 AB B7 00 00 <er>
* 2048: 48 48 C4 C4 AB B4 00 00 <er>
* 2050: 48 OB cs cs 00 00 00 00 <er>
* 2058: 48 12 cs cs AB B7 00 00 <er>

* 2060: 28 3E C6 C6 00 00 00 00 <er>
* 2068: 28 3F C6 C6 AB Bl 00 00 <er>
* 2070: 28 40 C6 C6 AB B2 00 00 <er>
* 2078: 2B 6B C7 C7 00 00 00 00 <er>

* 2080: 2B 6C C7 C7 AB Bl 00 00 <er>
* 2088: 2B 6D C7 C7 AB B2 00 00 <er>
* 2090: FF FF FF FF FF FF FF FF <er>

Check your work with a . . .

*2000.2097 < er>

And then . . .

*3D0G < er>

) BSAVE SNEAKYSTUFF, A$2000, L$98 <er>

This creates a special label table for later use by Disasm lie. A ready-to-use copy of
SNEAKYSTUFF is included on the Enhance II companion diskette. Note that this table
MUST be used with Disasm lie. See text for address .

(4) Cold boot your backup copy of Disasm 2.2e. Then ...

) BLOAD DISASM < er>

Now, put the Apple Writer lie backup disk into drive one and : . .

) BLOAD OBJ.APWRT) [F, A$3300 <er>

190 Enhancement 12

Table 12-10-cont. How to Capture Apple Writer lie Source Code

Next, put the recently inited diskette into drive one and ...

BLOAD SNEAKYSTUFF <er>

CALL 2048 <er>

You are now ready to start the capture process.

(5) Complete the following prompts as they come up . . .

Assembler: DOS Toolkit (1) <er>

Physical address beginning: $3300 < er>
$63D0 < er>
$2300 < er>

Physical address ending:
Execution address beginning:

Table 01: Begin $3B92
Table 02 : Begin $4046
Table 03: Begin $5AF9
Table 04: <er>

End $3BA2 F = 11 < er>
End $4095 F = 11 < er>
End $63D0 F = 11 < er>

Label table address: $2000 < er>

Wait .. . and then ...

Printer slot:
Single X-Ref:

Full X-Ref:

Generate file :

Filename:

N

y

<er>
<er>

(unless you want one now)

(do NOT use < er>)

APPLEWRITER.F.SOURCE <er>

Wait lots more to complete the capture.

(6) Assemble your new source code using EDASM off the DOS toolkit. You MUST get ZERO
assembly errors. When you finally do, compare the new object code against the original
by loading both into different parts of lie main memory and then using the monitor verify
command. Like so . . .

Cold boot the diskette with your new object code on it. Then . . .

] BLOAD APPLEWRITER.F, $A6300 <er>

Swap to the stock Apple Writer disk and . ..

] BLOAD OBJ.APWRT] [F, A$2300 < er>

Remove this diskette. Then . ..

] CALL -151 <er>

*62FF<22FF.53DlV < er>

If the verify is good, you will get two and only two errors. These errors will lie
outside the program boundaries at $22FF and $53Dl.

YOUR NEW OBJECT CODE MUST EXACTLY MATCH THE ORIGINAL.

If it does not, find out why and try again. Be sure to delete all inaccurate capture attempts.

(7) Your 7837 captured source code lines are undocumented and far too long to do anything
with except direct assembly. To continue, you will want to break your captured source
code up into reasonable-sized chunks, say 16K or so for "new way" editing, and then use
the CHN command to chain the pieces together. Then make up reasonable label names
and insert the documentation from Tables 12-1-12-7 where and as needed. You also have
the option of pre-capturing labels using a new label table and another pass through
Disasm lie.

NOTE: Full details on EDASM and the fast "new way" editing process appear in Don
Lancaster's Assembly Cookbook for the Apple I/Ille, Sams Cat. No. 22331, from
your favorite book rack, or call 1-800-428-SAMS.

Tearing Into Apple Writer lie 191

The magic modules SNEAKYSTUFF and CURSDSTRING
are both included on the companion diskette to this
volume.

In addition, the entire contents of this enhancement are
available on eight diskette sides as the AWlle TOOLKIT.

See the response cards in back for full details.

This enhancement works on most
"real" Apples including the lie.
Changes are needed on Franklins or
clones.

Enhancement

THE VAPORLOCK

An upgrade of Enhancement 4 that gives you a fast and exact lock to
video timing without needing any hardware modifications. It works on
the II, II+, lie, or lie. Among other uses, you can now mix and match
HIRES, LORES, or text nearly anywhere on the screen.

193

194 Enhancement 13

THE VAPORLOCK

The exact field sync of Enhancement 4 sure separated the sheep from the goats.
The goats said "Oh Boy! Now we can push the Apple limits and do the impossible!"

And they went out and did just that. But countless sheep instead said "You want me to
open the lid on my Apple? No way!"

Needless to say, I am a Capricorn. Like most goats, I don't even know where the lid
to my Apple is. Also needless to say, should any Apple ever get caught revealing IT
messages to a sheep, that Apple will immediately get busted to a rank of RAM 4K and
will get reassigned to handling the data base for the latrine orderly on the northernmost
military post in the world .

Well sheep, this one is for you.
The Vaporlock is a sneaky way to do a fast and exact field sync that takes zero

hardware modifications, and works with most any "real" Apple 11, II+, lie, or lie. It
does everything the old field sync does, except that it locks far faster, requires no
hardware mods, and is much easier to program and use.

The Vaporlock can be used in your commercial programs with suitable credit.
Locking time can be as few as eight horizontal scan lines, and a substantial amount of
"free use" throughput remains available to you during a mixed field display. Program
timing is now far simpler and less critical.

If you've come in late, any exact field synchronization scheme on the Apple lets you
mix and match HIRES, LORES, and text anywhere on the screen in nearly any
combination, can give you glitch less and flawless animation, can greatly simplify light
pen hardware, and does lots more.

We'll look at some mind-bending additional uses for exact field sync at the end of
this enhancement.

RUNNING ON "FUMES"

Let's review. The Apple shares its main memory between the video display elec
tronics and the microcomputer itself. It does this by switching between the two. The
switching is done twice every CPU cycle, or roughly once each half microsecond.

This invisible memory sharing buys you transparency. Transparency is the ability to
continuously and smoothly display stuff even while the computer side of the works is
changing or updating the same memory area in use by the video.

In any stock Apple, there is no built-in way for the CPU to tell exactly where the
display happens to be in its scanning process. If the CPU could find out when the
display is black during its long vertical retrace, you can clean up most animation. You
do this by replotting to screen memory only during the times when the display
scanning won' t mix up "old" and "new" data bytes. Proper use of blanking times can
eliminate any "sugar" or "collisions" on the screen and make things much more
viewable.

Better yet, if you and the CPU can find out precisely and exactly when a new video
field is going to start, you can flip the display soft switches on the fly, and mix HIRES,
LORES, and text most anywhere you want in most any order. If you do it just right, this
switch flipping turns out glitch less and completely free from any display flicker. Lots of
other exciting things start happening when you begin flipping nonobvious soft
switches in exact screen display positions.

Thus, you can make some Apple display improvements just by finding the vertical
blanking time and using it. But you can do far more and do it far better if you are able to
provide an exact and jitter-free lock to the video display timing. You have an exact lock
when you know exactly where the scan is at all times.

The Vaporlock 195

Exact, precise, and jitter-free field sync is not trivial. If it was, you would have known
about it in 1977, for everything needed for it was available way back then, just as it is
today.

There are only four ways I now know about that can be used to route information
from the video side of the Apple electronics to the CPU side. Let's pick up on these in
historical order.

The first way was to add the wire of Enhancement 4. As a jittery lock, this added
connection dates back to the days of the Apple Software Bank. Back then, the average
cost of an Apple program was around $11. Fully unlocked and unprotected, of course.
If you couldn't afford such horrendous expense, your Apple dealer would freely and
generously copy lots of zero-cost Apple-supplied public domain programs for you,
customer or not.

Sigh.
Much more recently, Enhancement 4 showed you how to get from the jittery lock to

an exact lock on older Apples.
This wire connected a vertical blanking signal from the video side to a port on the

CPU side, which let you immediately find the blanking time with a simple software
test. Given a long enough "song-and-dance" routine in software, you could also do an
exact lock. The exact lock could take as many as seven full fields.

Our first locking method has several disadvantages. The Apple had to have its
hardware modified. Commercial use would be severely limited, since you might have
to provide the parts for the hardware mod as well as the software in your customer
package. You had to tie up the cassette input, or the phantom "fourth" push button.
Worst of all, there is no place to put the wire on an Apple lie or lie. And, finally, an
exact lock took so long that there was no way to do a lock on every field .

The only nice thing you can say about this method is that it proved that an exact lock
was possible and that mind-blowing things could be done with it.

The second method only briefly saw the light of day. By adding two cheap gates to an
Apple II or II+, you could extract a timing signal on the last scan line of each display.
The circuit tapped some of the LS161's in the main timing chain. The output of this
synchronizing circuit went the same place as the wire of method one.

This new locking circuit output a burst of eight pulses. Each pulse was four
microseconds wide and the spacing between pulses was also four microseconds. The
pulse burst appears only on the last blank display line.

Software would read this signal and could give you an exact lock each and every
field . This method greatly eased software problems and opened up lots of new
possible exact locking uses. The problems here included even more hardware than a
simple wire, operation only on the II or II+ , and a conflict with a few commercial
plug-in cards that needed access to the same timing area on the main board.

More details on this method appeared in Volume VII of the West Coast Computer
Faire proceedings.

Enter the Apple lie for the third locking method.
The lie has a nice feedback wire built in that goes to previously unused address

location $C019. No hardware mods are needed. By reading this location, you could
tell whether you were in the blanking or the live portion of a scan. This location proved
a godsend for programmers who would be satisfied with a jittery, nonexact field sync.

A single measurement of this location could have as much as seven characters worth
of jitter. An exact lock can be done, but it takes up to seven fields of exact timing. At the
very minimum, two whole fields seem to be needed for an exact lock. That takes
sneaky coding. Besides, whatever you did would not be downward compatible with
the II or II+ . But at least there is no need for hardware mods.

196 Enhancement 13

The update section on Second Edition printings of Enhancing Your Apple II, Vol. 1
(Sams Cat. No. 21822) gives you complete details on how to use $C019 for an exact
lock on your Apple lie.

Unfortunately, the lie uses $C019 for a wildly different purpose, and lie routines will
not run as is.

The fourth locking method is not mine. It was discovered by Bob Bishop and
published in Softalk a while back. But, amazingly, Bob presented everyone with the
keys to the kingdom and then never bothered opening the door! He showed only an
approximate, jittery lock with on-screen glitches. Which did neat things. But it was not
an exact lock, and thus it severely limited the really great stuff that was possible.

So, for method four, we' ll be combining my proving that an exact lock can be done
with Bob's paving the way for it to be done.

Method four literally runs on fumes.
Which is why I call it the vaporlock. Fig. 13-1 shows us details.

TYPICAL VIDEO TYPICAL VIDEO
DATA BUS DATA BUS
DRIVER RECEIVER
,---------, ,---------,
I

!
I I

I I I
I I I
I I I
I I

~--I NC ' APPLE COMMON DATA
I I BUS IS TIME-SHARED
I I BETWEEN CPU AND I I I
I 1 I """ "'"· "'"''"' \ I
I I ROLES FOUR TIMES I
I I I
L----·----...J EACH MICROSECOND. L...--------...l

UNUSED RECEIVERS ARE
DRIVERS ONLY ACTIVATED
·FLOAT· T

DURING THEIR
IN OFF I VALID TIME
POSITION I IF THE DATA BUS IS SLOTS. ,---------, :*: READ WITHOUT AN

,---------,
!

I I I
I 1 ACTIVE DRIVER CON- I I
I ,!,- NECTED. THIS "STRAY " I I
I 4C>- : I CAPACITANCE WILL

NC
I HOLD THE LAST-USED -- : I DATA BUS VALUES.
I I

1
I I I
I I I
I I I
I I I L ____ -____J L...--------..l

TYPICAL CPU TYPICAL CPU
DATA BUS DATA BUS
DRIVER RECEIVER

FIGURE 13-1. Reading a "floating" Apple data bus will return the
last video byte as valid data.

Remember that the same internal Apple data bus is used both for video and CPU
uses. The two take turns. Every one-half microsecond or so, an electronic switch, or
multiplexer, gets flipped . The data bus is used for video for one-half microsecond, and
then gets used for computing the next one-half microsecond. Video and CPU latches
on the output grab the data bus during their intended time slots.

Thus, the video uses the data bus half the time, and the CPU uses the data bus the
other half of the time. Careful timing keeps all of the video on the video side and all of
the computing separately done on the CPU side.

Well, almost separate.

The Vaporlock 197

The data bus is activated by bus drivers. We've shown two typical bus drivers in Fig.
13-1. One bus driver is intended for video use, and a second one is intended for CPU
use. These are cal led tri-state bus drivers. Tri-state bus drivers can connect a positive
voltage to the bus for a logical ONE, can connect the bus to system ground for a logical
ZERO, or can do nothing and just float there.

Each bus driver is shown as a three position, center off switch. You leave the bus
driver in the "center," "unconnected," or "off" state when you do not use it. When you
decide to use a bus driver, you briefly switch to the ONE or the ZERO state when your
timing is just right. After forcing your data onto the data bus, you quickly switch back
to the middle position.

Obviously, only one bus driver is allowed to be active at any time. All the others
must float in their tri-state "off" positions.

The video bus drivers are activated as needed by the display timing. The CPU bus
drivers are instead activated by the CPU. During a CPU memory read the bus driver is
built into the RAM memory circuitry. Data will get sent from memory to CPU. During a
memory write the bus driver will be built into the CPU. This time, data will get sent
from CPU to memory.

Now for the neat part.
Most Apple memory locations are both written to and read from as a normal part of

computer operation. But, certain Apple locations in the 1/0 space are set up to only be
written to, while others are set up to only be read from.

If you try. reading an "empty" Apple location, or if you try reading from an Apple
location with "write-only" hardware in it, nothing will get connected to the data bus
and you will end up with a floating data bus ...

Floating Data Bus

A condition when a data bus is being read, but nothing
is able to write to it.

Software reading of a "write-only" memory location
will attempt this.

Any electronic system has unavoidable stray capacitance in it. Since the Apple data
bus is routed all over everywhere and since it connects to lots of different things, we
can expect some fairly substantial stray data bus capacitance. In fact, there would be
no way to completely avoid strays even if we tried.

Now, stray capacitance behaves just like any other capacitor. You have to charge
the stray capacitance positive if you try to make the bus positive. And you have to
discharge the stray capacitance if you try to lower the bus to ground. The bus drivers
have to be powerful enough to quickly charge the circuit strays. If the drivers are not
strong enough, delay-caused errors will result.

Normally, the next bus driver in use will quickly charge or discharge the data bus
stray capacitance. But what happens when you float the data bus?

If you try this, the stray capacitance will act just like a circuit called a sample and
hold that will save the last value put on the data bus. This happens because there is no
new bus driver connected to quickly charge or discharge the stray capacitance.

So,· if you read a floating data bus, you should be able to read the previous data
value being temporarily saved for you by the stray bus capacitance.

The immediately previous use of the data bus was by the video. So any floating data
bus read by the CPU will pass on the next byte to be output as video at that particular

198 Enhancement 13

instant. This happens because the stray capacitance "samples" and then "holds" the
video value long enough for the CPU to accept the "held" value as valid data.

Try it and it works!
So ...

An Apple read of a floating data bus will return a clone of
the next byte to be output as video.

Once th is clone is inside the CPU, it can be processed just
like any other data value.

One good "write-only" location that produces a floating data bus is $C020, which
is the cassette output location. The cassette output circuitry completely ignores the
data bus. It simply recognizes its own private address on the address bus and toggles a
flip-flop circuit whenever location $C020 is addressed. During a read of $C020,
nothing is connected to the data bus. Since the data bus stray capacitance holds onto
the last thing it received, the video byte from the previous one-half microsecond gets
"caught" and held.

Magically, a byte intended to go out to the screen gets copied into the CPU for use or
analysis . ..

Commands such as . . .

LDA $C020
CMP$C020
BIT $C020

(etc.)

... will read the floating data bus and return a clone of
the next video byte to be output.

The Vaporlock we are about to look at reads a floating data bus to move precise
video timing information into the CPU.

This sounds sort of flakey, but the technique works very reliably on an Apple lie or
lie with their fully buffered data buses. It works equally well on an Apple II+, so long
as you don't plug a ridiculous number of cards into the expansion slots at once, or so
long as you don't use certain oddball "problem" cards. More on this later.

Actually, the str;,ty capacitance isn't really that small, and the amount of hold time
isn't all that long. So, the Vaporlock would seem to be a reliable process that you can
safely use in commercial programs. Best of all, the hardware-free Vaporlock lets us do
a fast and exact lock that is completely free of jitter.

Being able to read what is going to the video screen is only half of the problem.
Besides this, we have to somehow put just the right values into .. .

The Vaporlock 199

MAGIC SCREEN LOCATIONS

To use the Vaporlock, we have to put some magic bytes into some magic screen
locations. Then we read and analyze the contents of these locations as they fly by on
the way to the screen. A Vaporlock read to the floating data bus does this for us.

These magic screen locations must be output only during the blanking time. This
way, we won't ever see them. The locations also have to be unique so they will only
appear at one place on the screen . The magic locations also must be as near to the
bottom of the screen as possible, if we are to do the fastest possible lock.

Finally, whatever we put into these magic locations must not appear elsewhere in
the display in exactly the same order. If part of the display also maps the magic
locations, you might get a false lock that will mess up the works. Regardless of the
screen content, you must somehow prevent any false locks from happening.

Sounds tough.
And it is tough. But just possible. Fig. 13-2 shows us a block of magic memory

locations near the bottom of the screen that have the needed magic properties.

S3FF9 $3FFA S3FFB $3FFC S3FFD $3FFE

$2BF8 S2BF9 $2BFA $2BFB $2BRC $2BFD $2BFE S2BFF

$2FF8 S2FF9 $2FFA S2FFB $2FFC S2FFD $2FFE $2FFF

FIGURE 13-2. This unique "i.d. patch" appears only once on the
Apple screen during vertical blanking and retrace.
Here are the magic addresses.

We will always use the full HIRES page one when we begin our Vaporlock. Since
what you see is what you get, your Apple must always pre-switch into this mode . ..

For the Vaporlock to work -

You MUST always be in the GRAPHICS, HIRES, PAGE
ONE, and FULL-SCREEN modes at the instant you ask for
an exact lock.

The HIRES full-page-one mode maps memory locations from $2000 though $3FFF
onto the screen. Study the detailed maps in Enhancement 7 if you want to know what
goes where. Mapping takes place continuously, even during the blank portions of the

200 Enhancement 13

screen . Continuous video addressing solves a refresh problem on the dynamic RAM
memories, besides being simpler.

Many of the RAM locations are mapped twice, once on the "live" portion of the
screen, and once on the blank portion. A few RAM locations are mapped on/yduring
the blank portions of the screen and thus are invisible and unused under normal
circumstances. It turns out that memory locations ending in $78 through $7F or
locations ending in $ F8 through $ FF are always invisible. Thus, $217 A and $3AFC
both get read from to the full HIRES1 screen, but are never seen .

Add them all up, and you'll find a total of 512 "invisible" memory locations.
There's 16 per page for 32 pages from $2000 through $3FFF. These invisible memory
locations are normally dangerous to use since they get plowed on every HIRES
scrolling or screen clear.

What we need to find is a unique pattern of invisible memory locations that occurs
only once on the screen. This also should happen as near the bottom of the screen
as possible. We will call this unique pattern of invisible memory locations an i.d.
patch . . .

I.D. Patch-

A unique group of invisible screen bytes that occur only
once during a full HIRES screen scan.

So far, I have found only one totally unique i.d. patch. There is a rather violent
change in system timing that takes place on the 255th consecutive scan in any field .
Funny things happen between scan line 255 and scan line 256. These numbers
assume the first scan at the top is called scan line 0. The funny things that happen only
here let us set up the start of a unique i.d. patch.

Specifically, you will find the invisible addresses of $3FF8 through $3FFF on line
255 and, immediately below them one scan line later, you will find the invisible
addresses of $2BF8 through $2BFF. Immediately below these, you will find addresses
$2FF8 through $2FFF, and below those, you'll find $33F8 through $33FF.

Fig. 13-2 shows us the hidden addresses of the "magic" i.d. patch.
This i.d. patch is unique and occurs only in this one position, some six scan lines

before the start of a new field. All we have to do now is decide what to put into the i.d.
patch and how to use it.

Fig. 13-3 shows us one possible set of magic values that we can put in our i.d. patch.
It turns out that we will only use 20 of the 32 possible i.d. bytes. To set up the
Vaporlock, you pick six "magic" data values. You choose these data values as bytes
that appear very rarely in typical HIRES pictures. The bytes are placed as shown.

Now, the trick is to (1) find the i.d. patch, (2) read the i.d. patch in such a way that
jitter gets eliminated, and (3) be sure that nothing else on screen looks like the i.d.
patch. A suitable software algorithm is shown in Fig. 13-4.

Finding the i.d. patch is easy enough . You simply search for the first i.d. value. In
this example, you look for a value of $DB. If you go through the 6502's timing in
detail, you'll find that there is an "inherent" seven clock cycle jitter in making a single
search for one byte. This jitter happens because an LOA or CMP absolute takes four
CPU cycles, and the test-and-try-again BNE takes another three. We can only make
one test each seven CPU cycles as a minimum on a stock 6502. That is why there are
seven DBs in the first row of the ID byte.

We catch one of the DBs in the top line of the i.d. patch. Which one? We don't
know yet. But, having caught one of them, we delay exactly one horizontal line and

S3FF9

$24
S2BF9

$49
S2FF9

SF2

S3FFA

$24
S2BFA

$88
S2FFA

SJFFB SJFFC

$24 $86
S2BFB S2BRC

$88
S2FFB S2FFC

SJFFD

$86
S2BFD

S2FFD

SJFFE

$86
S2BFE

S2FFE

S2BFF

S2FFF

FIGURE 13-3. One possible set of magic data values for the i.d. patch.

The Vaporlock 201

grab the next line of the i.d. patch. There are 65 clock cycles or roughly 65 microse
conds in one Apple horizontal line. After a one-line delay, you grab a new value off
the second line in the i.d. patch and analyze it.

Now the fun begins.
If we did not get a "hit" on an i.d. value of $24 or $B6, then we must have caught

some other $DB somewhere else in the main display. This is unlikely, but if it
happens, we go back and try again.

Remember that we could have hit any one of the seven$ DBs on the first line of the
i.d. patch. Let's call the first four of these early hits and the last three late hits. On an
early hit, your second line i.d. value will be a $24. On a late hit, you'll read a $B6
instead.

You then delay only the early hits by four clock cycles.
Why?
To get rid of some of the jitter. Before, we could have ended up in any of seven

character slots. Now we can only end up in four possible slots. We still have some
jitter, but only half as much as we had before.

Go through the math, and you'll find one way to eliminate seven cycles of jitter is
with three separate measurements each of which has two possible results. The trick is
to get seven paths through the i.d. patch. Each path is arranged to take exactly the
correct amount of time so that each path exits into the very same screen time slot.

Next, we delay for another line. More precisely, we delay for another line minus
four cycles. We do this to move everything back into the "early" four slots on the third
line of the i.d. patch. After this, we check those i.d. bytes again. If wedo not get a $49
or a $88, then we must not be in the third line of the i.d. patch and have to go fetch
some more.

This time, we can call catching one of the first two bytes ea:rly hits, and catching
either of the last two bytes late hits. The early hits will be $49s, while the late ones will
be $88s. Now, you delay the early hits by two cycles, removing half the remaining
jitter. At this point, we have only one of two possible jitter values remaining.

Repeat the process one more time on the fourth and final line of the i.d. patch. If you
get a $F3, stall one cycle. If, instead, you get a $F2 i.d. byte, do not stall. If you have
neither a $F2 or a $F3, then go fetch again, because you must have somehow missed
the patch.

202 Enhancement 13

MISS

MISS

JSR

WRITE
ID PATCH

SET FULL
HIRES

PAGE ONE

STALL
HLINE

CYCLES

STALL
4 CYCLES

STALL
HLINE-4
CYCLES

$B6

MISS

MISS

STALL
2 CYCLES

STALL
HLINE-2
CYCLES

STALL
1 CYCLE

STALL TILL
START OF

NEXT FIELD

RTS

$88

m

FIGURE 13-4. Flowchart shows algorithm used for exact Vaporlock synchronization.

At this point, if you caught each and every i.d. byte properly, you will have a jitter
free and exact screen lock. This locking occurs some three lines before the start of the
next field. You can then burn up the remaining time with any old delay and phasing
code of your choosing.

Reviewing, the first line of the i.d. patch lets you find the patch. The second line
removes half the possible jitter. The th ird line removes another half of the remaining
jitter. And the fourth line knocks out all the possible jitter that's left. For seven possible

The Vaporlock 203

hits on the first line, there are seven possible paths through the code. Each path differs
by one microsecond. The "early" hits are delayed more than the late ones. Everything
comes out even, and you end up with an exact lock and zero jitter.

One question remains. What are the odds of random HIRES bytes looking exactly
like an i.d. patch and giving us a false lock? Well, we first have picked HIRES bytes that
are seldom used. If some of them do not occur in your HIRES picture, then you are
home free. Otherwise, you could change your i.d. bytes to be sure the patch is unique.

But, checking your HIRES pictures for certain bytes is not at all needed.
Say you have totally random HIRES data. This means you are pretty sure of a hit on

the first i.d. byte. But you have to have one of two possible i.d . bytes exactly one line
below, and then one of two new unlikely i.d. bytes below that, and finally one of yet
two more unique i.d. bytes below that. The odds on a false lock? About (1/128) t 3 or
something like one screen in 2,097,152.

Taint likely, McGee.
So, the i.d. patch is essentially unique. You will never get a false lock on a HIRES

picture unless you are very unlucky. Even with really bad luck, you can always change
one i.d. byte and you are home free. Don't sweat it.

This particular i.d. patch scheme seems rather complicated. But remember that you
have to both get an exact lock and reject false locks from random screen data. Let me
know if you find a simpler i .d. patch and locking scheme that works as well as this one.
Use either the response card or the hotline.

SOME CODE

Program 13-1 is a listing of the VAPORLOCK code, shown under EDASM. To handle
the lowercase on "old" EDASM, just use Apple Writer lie instead of the EDASM editor.
The recent EDASM overhaul and upgrade now has lowercase built in and ready to go.

This EDASM program provides the code needed to find the start of a new video field,
precisely and free from jitter.

We have put the code at $BAFF for those of you using HRCG on the DOS toolkit, but
this code is relocatable more or less anywhere near an even page boundary without
any need of reassembly.

Many more details on working with assembly language appear in my Assembly
Cookbook for the Apple I/Ille (Sams Cat. No. 22331).

The Vaporlock appears on the companion diskette, both in EDASM assembler
source code and as ready-to-use object code. To do an exact lock, you simply JSR to
your Vaporlock. The Vaporlock then exits precisely and exactly on the start of the next
field . The exit is jitter free. An exact lock takes as few as eight scan lines.

There are three parts to this code, called SETUP, LOCK, and STALL. In the SETUP
portion, you write the magic i.d. values to the i.d. patch and then switch to HIRES full
page one. This page switching is delayed on the lie until the vertical blanking time. A
check of an identification byte in the monitor verifies the version byte in the monitor at
$FBE3. The delay eliminates a possible screen glitch on the lie.

LOCK follows the algorithm of Fig. 13-4. The first line of the i.d. patch is sought out
and found. The hit ends up with seven possible jitter values. The second line is then
tested for validity and half the total jitter is removed . The third line is found, verified,
and then is further de-jittered. Finally, the fourth line is found, verified, and the last
possible jitter cycle is adjusted.

An exact and jitter-free lock is reached some three I ines before the end of the present
field. Should you miss one of the magic i.d. values, the Vaporlock assumes it is looking
at the HIRES picture instead and starts over again.

204 Enhancement 13

PROGRAM 13-1 Listing of VAPORLOCK.SOURCE.

BAFF:

BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:

BAFF:

BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:

BAFF:

BAFF:
BAFF:
BAFF:
BAFF:
BAFF:

NEXT OBJECT FILE NAME IS VAPORLOCK

BAFF 3

5
6
7
8
9

10;
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

27

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

46

48
49
50
51
52

ORG $BAFF ; FOR HIGH HRCG CHARACTER SET

* *
*
*
*
*
*
*
*
*

-< VAPORLOCK >-

(FAST AND EXACT FIELD SYNC)

VERSION 1.0 ($8AFF-$8BC7)
for the APPLE II+ and APPLE Ile

10-12-83

*
*
*
*
*
*
*
*

* *
*
*
*
*
*
*
*
*
*

.......................................
COPYRIGHT C 1983 BY

DON LANCASTER AND SYNERGETICS
BOX 1300, THATCHER AZ., 85552

(602) 428-4073

ALL COMMERCIAL RIGHTS RESERVED

*
*
*
*
*
*
*
*
*

*** WHAT IT DOES***

This subroutine gives you a fast and exact field
sync that locks to the video screen in as few as
nine scan lines. No hardware mods are needed.

The same code works on the Apple II+ or Ile.

The vaporlock, with suitable support software,
lets you mix and match HIRES, LORES, and text
anywhere on the screen, provides for glitchless
animation, simplifies light pens, allows grey
scale, text-over-color, professional video wipes,
and offers many other new visual display tricks
that seem •impossible• to do on a stock Apple.

Typical displays are totally free from any
glitches or jitter.

*** HOW TO USE IT***

To lock to the video timing, do a JSR VAPORLK at
$8B00 or CALL 35840.

The vaporlock exits exactly and precisely on the
start of a new video field.

PROGRAM 13-1 cont

8AFF:

8AFF:
8AFF:
8AFF:
8AFF:
8AFF:
8AFF:
8AFF:
8AFF:
8AFF:
8AFF:
8AFF:
8AFF:
8AFF:

8AFF:

8AFF:
8AFF:
8AFF:
8AFF:
8AFF:
8AFF:
8AFF:
8AFF:
8AFF:
8AFF:
8AFF:
8AFF:

8AFF:

8AFF:
8AFF:
8AFF:
8AFF:
8AFF:
8AFF:
8AFF:
8AFF:
8AFF:
8AFF:
8AFF:

8AFF:

8AFF:
8AFF:
8AFF:
8AFF:
8AFF:
8AFF:
8AFF:
8AFF:
8AFF:
8AFF:

C052
C050
C057
0006
C054
C020
C051
C019
FBB3
FCA8

55

57
58
59
60
61
62
63
64
65
66
67
68
69

71

73
74
75
76
77
78
79
80
81
82
83
84

86

88
89
90
91
92
93
94
95
96
97
98

101

103
104
105
106
107
108
109
110
111
112

The Vaporlock 205

GOTCHAS

This code only runs on "real" Apples.

Franklins, clones, and look-alikes may have
different timing that requires special code.

Certain oddball plug-in cards might interfere
with operation on the II+. Such interference
is unlikley on the Ile.

Parts of the code have very critical timing
and must not cross a page boundary. If you
relocate the code, put it all on one page.

ENHANCEMENTS

You can make a '"phasing" adjustment by adding
or removing NOPs and branches in the PHASE code.
code. Note that a NOP or a branch not taken uses
two clock cycles, while a branch taken needs three.

You can preset the soft switches at the top of
the screen with suitable pokes to SHOW.

VAPORLK object code is relocatable, if you put
it all on one page of memory. Be sure to protect
memory and link to your first or second address.

*** RANDOM COMMENTS***

The accumulator and all flags are saved to the
stack. No use is made of the X or Y registers.

The vaporlock exact field sync may be used in
your commercial programs provided fair credit
is prominently given.

VAPORLK may be loaded as the highest HRCG
character set.

Program length is $CS (200) bytes.

HOOKS

FULL EQU $C052 FULL SCREEN SOFT SWITCH
GR EQU $C050 GRAPHICS SOFT SWITCH
HIRES EQU $C057 HIRES SOFT SWITCH
IDBYTE EQU $06 ID VALUE FOR APPLE Ile
PAGE! EQU $C054 PAGE ONE SOFT SWITCH
SNIFF EQU $C020 FLOATING DATA BUS READ ADDRESS
TEXT EQU $C051 TEXT SOFT SWITCH
VBLANK EQU $C019 JITTERY V BLANKING (Ile ONLY!)
VERSION EQU $FBB3 SYSTEM ID BYTE LOCATION
WAIT EQU $FCA8 MONITOR DELAY SUBROUTINE

206 Enhancement 13

PROGRAM 13-1 cont

8AFF: 114

8AFF: 00DB 116 ID0
8AFF: 0024 117 IDl
8AFF: 00B6 118 ID2
8AFF: 0049 119 ID3
8AFF: 0088 120 ID4
8AFF: 00F3 121 IDS

8AFF: 124

8AFF: 126
8AFF: 127
8AFF: 128
8AFF: 129
BAFF: 130
8AFF: 131
8AFF: 132
8AFF: 133
8AFF: 134
8AFF: 135
8AFF: 136
8AFF: 137
8AFF: 138
8AFF: 139
8AFF: 140
8AFF: 141
8AFF: 142
8AFF: 143
8AFF: 144
8AFF: 145
8AFF: 146
8AFF: 147
8AFF: 148
8AFF: 149
8AFF: 150
8AFF: 151
8AFF: 152
8AFF: 153
8AFF: 154
8AFF: 155
8AFF: 156
8AFF: 157
8AFF: 158
8AFF: 159
8AFF: 160
8AFF: 161
8AFF: 162
8AFF: 163
8AFF: 164
8AFF: 165
8AFF: 166
8AFF: 167
8AFF: 168
8AFF: 169
8AFF: 170

CONSTANTS

EQU
EQU
EQU
EQU
EQU
EQU

$DB
$24
$B6
$49
$88
$F3

ID BYTES FOR SYNC PATCH
(ALL SHOULD BE RARELY USED)

THIS BYTE MUST BE ODD VALUE!

*** VAPORLOCK SUBROUTINE****

There are three parts to the Vaporlock
subroutine. These are SETUP, LOCK, and STALL.

SETUP works by writing a magic "id patch"
to invisible locations on the text screen.
These magic locations tap the unique 3FFX
to 2BFX transitions that happen only on
the invisible advance from line 255 to 256.

SETUP also forces the full HIRESl mode
during the locking process. A Ile-only
blanking search minimizes any entry glitches.

LOCK searches for the magic combinations
of invisible ID bytes, starting on line
255. Four lines are needed for complete
and exact locking. One half of the
possible jitter is eliminated on each of
the second, third, and fourth lines,
ending with an exact lock at the end of
blank screen line 258.

LOCK uses the "floating data bus" read
technique pioneered by Bob Bishop. If
an Apple location is read addressed in
which there is no read hardware, a
floating data bus results. This floating
data bus acts as a "sample and hold" that
saves the last video screen access. The
"fumes" that remain from the previous
video screen access can be read as data.

STALL delays until the exact start of
the field. It is presently set up
to exit exactly on the start of the live
screen at the top of the field. You
can adjust this for phasing, or to gain
pre-screen time for setup or actions.
The exit is exact and jitter-free.

The FIX2+ routine provides one extra
delay cycle to adjust for screen switching
differences between the Ile and II+.
For II+ exotic (non-screen) field switching,
you might want to defeat this adjustment.

The Vaporlock 207

PROGRAM 13-1 cont

BAFF: 173 ** SETUP**

8AFF:EA 175 NOP EQUALIZE TO PAGE BOUNDARY
8B00:08 176 VAPORLK PHP SAVE FLAGS
8B01:48 177 PHA SAVE ACCUMULATOR

8B02:A9 DB 179 LOA UDO WRITE ID PATCH
8B04:8D F8 3F 180 STA $3FF8 TO LINE 1255
8B07:8D F9 3F 181 STA $3FF9
8B0A:8D FA 3F 182 STA $3FFA
8B0D:8D FB 3F 183 STA $3FFB
8Bl0:8D FC 3F 184 STA $3FFC
8Bl3:8D FD 3F 185 STA $3FFD
8Bl6:8D FE. 3F 186 STA $3FFE

8Bl9:A9 24 188 LOA UDl TO LINE 1256
8BlB:8D F8 2B 189 STA $2BF8
8BlE:8D F9 2B 190 STA $2BF9
8B21:8D FA 2B 191 STA $2BFA
8B24:8D FB 2B 192 STA $2BFB
8B27:A9 B6 193 LOA UD2
8B29:8D FC 2B 194 STA $2BFC
8B2C:8D FD 2B 195 STA $2BFD
8B2F:8D FE 2B 196 STA $2BFE

8B32:A9 49 198 LOA UD3 TO LINE 257
8B34:8D F8 2F 199 STA $2FF8
8B37:8D F9 2F 200 STA $2FF9
8B3A:A9 88 201 LOA UD4
8B3C:8D FA 2F 202 STA $2FFA
8B3F:8D FB 2F 203 STA $2FFB

8B42:A9 F3 205 LOA UD5 AND FINALLY TO LINE 258
8B44:8D F8 33 206 STA $33F8
8B47:A9 F2 207 LOA UD5-l
8B49:8D F9 33 208 STA $33F9

8B4C:A9 06 210 LOA UDBYTE CHECK FOR A IIe
8B4E:CD B3 FB 211 CMP VERSION
8B51:D0 05 8B58 212 BNE MORE0
8B53:2C 19 co 213 VBFIND BIT VBLANK WAIT TILL IIe BLANKING START
8B56:30 FB 8B53 214 BMI VBFIND

8B58:2C 50 co 216 MORE0 BIT GR FORCE FULL HIRES PAGE ONE
8B5B:2C 57 co 217 BIT HIRES
8B5E:2C 52 co 218 BIT FULL
8B61:2C 54 co 219 BIT PAGEl THEN FALL THROUGH TO LOCK

8B64: 222 ** LOCK **

8B64:A9 DB 224 LOCK LOA UDO LOOK FOR FIRST PATCH ID VALUE
8B66:CD 20 co 225 RETRYl CMP SNIFF
8B69:D0 FB 8B66 226 BNE RETRYl
8B6B:A9 02 227 LOA 102 DELAY FOR EXACTLY 57 CYCLES
8B6D:20 A8 FC 228 JSR WAIT (HLINE-BNE-LDAt-LDA)
8B70:48 229 PHA

208 Enhancement 13

PROGRAM 13-1 cont

8B71:68 230 PLA
8B72:AD 20 co 231 LOA SNIFF GET SECOND PATCH ID VALUE
8B75:C9 B6 232 CMP UD2 JITTER 4,5,OR 6?
8B77:F0 06 8B7F 233 BEQ MOREl
8B79:C9 24 234 CMP tIDl JITTER 0,1,2, OR 3?
8B7B:F0 02 8B7F 235 BEQ MOREl OK TO CONTINUE
8B7D:D0 ES 8B64 236 BNE LOCK MISSED, TRY AGAIN

8B7F:A9 02 238 MOREl LOA t02 DELAY FOR EXACTLY 50 CYCLES
8B81:20 AB FC 239 JSR WAIT (HLINE-4-CMPt-BEQ-LDAt-LDA)
8B84:AD 20 co 240 LOA SNIFF GET THIRD PATCH ID VALUE
8B87:C9 88 241 CMP UD4 JITTER 2 OR 3?
8B89:F0 04 8B8F 242 BEQ MORE2 YES
8B8B:C9 49 243 CMP UD3 JITTER 0 OR 1
8B8D:F0 02 8B91 244 BEQ MORE3 ONLY WANT 2 CLOCK CORRECTION

8B8F:D0 03 8B64 246 MORE2 BNE LOCK CURSES! FOILED AGAIN!
8B91:A9 02 247 MORE3 LOA 1$02 DELAY FOR EXACTLY 50 CYCLES
8B93:20 AB FC 248 JSR WAIT (HLINE-2-CMPt-BEQ-BNE-LDAt-LDA)
8B96:AD 20 co 249 LOA SNIFF GET FOURTH PATCH ID VALUE
8B99:4A 250 LSR A SHIFT INTO CARRY
8B9A:B0 00 8B9C 251 BCS MORE4 TO EQUALIZE ONE COUNT

8B9C:C9 79 253 MORE4 CMP UDS/2 FINAL VALIDITY CHECK
8B9E:D0 C4 8B64 254 BNE LOCK BACK TO SQUARE ONE
8BA0:EA 255 NOP HAVE LOCK AT THIS POINT

8BA1: 258 ** STALL**

8BA1:A9 05 260 STALL LOA t0S DELAY FOR EXACTLY 193 CYCLES
8BA3:20 AB FC 261 JSR WAIT
8BA6:A9 02 262 LOA 102
8BA8:20 AS FC 263 JSR WAIT

8BAB:A9 06 265 FIX2+ LOA tIDBYTE ADD ONE EXTRA CYCLE ONLY ON
8BAD:CD B3 FB 266 CMP VERSION THE II+ TO EQUALIZE ON-SCREEN
8BB0:D0 00 8BB2 267 BNE SHOW DISPLAY MODE SWITCHING

8BB2:2C 20 co 269 SHOW BIT SNIFF OPTIONAL MODE CHANGES GO HERE
8BB5:2C 20 co 270 BIT SNIFF
8BB8:2C 20 co 271 BIT SNIFF
8BBB:2C 20 co 272 BIT SNIFF

SBBE:18 274 PHASE CLC PHASING CHANGES GO HERE
8BBF:B0 00 8BC1 275 BCS MORES
8BC1:EA 276 MORES NOP EACH BRANCH TAKEN= 3
8BC2:EA 277 NOP EACH BRANCH NOT TAKEN 2
8BC3:EA 278 NOP EACH NOP= 2 CHARACTERS
8BC4:EA 279 NOP

8BC5:68 281 PLA RESTORE ACCUMULATOR AND FLAGS
8BC6:28 282 PLP
8BC7:60 283 RTS AND EXIT

The Vaporlock 209

STALL does just that. It burns up enough cycles to exit you precisely on the start of
the new field. The first part of STALL uses two trips through the monitor WAIT
subroutine at $FCA8. By the way, a bonus program called the Triple Delay Finder is
provided on the companion diskette. This program can be used to quickly find most
any single, double, or triple trip through the WAIT code.

The Apple II+ switches its screen modes one cycle earlier than the lie. A routine
called FIX2 + is included that makes the screen exit appear the same on both versions
of the Apple. A service module called SHOW follows next. SHOW can be used to
preset what will get displayed as the next scan begins. For instance, a $2C $56 $CO
puts you into LORES, and so on down the usual list.

A final routine is called PHASE. This lets you advance or retard the exit of Vaporlock
before or after the exact field start by as many cycles as you want. This is handy for
doing field switching at oddball locations on the screen. Video wipes usually will need
this phasing adjustment.

Another use of PHASE lets you call the Vaporlock as a subroutine, rather than
building it into your code. Just exit the Vaporlock six cycles short and add an RTS to the
end of the module. You will now return to your main code with an exact lock at the
exact screen start. This is handy if you have several routines that separately will need
an exact lock.

Three test routines are shown you in Chart 13-1. The first is a quick Vaporlock tester
called VLTEST. This gives you a split-screen display with text on the top half and HIRES
on the bottom. Most importantly, a single HIRES line four-characters long appears at
extreme upper right. You can use this for locking and phasing experiments.

The second test routine is named ALTERNATER. This field alternater flips you
between text on one complete field and HIRES on the next complete field. As usual,
field alternaters will give you some flicker. Practically all other mixed-field uses are
completely glitch and flicker free.

I almost didn't include a field alternater here since they can do so many bad things in
such awful ways. You can minimize flicker by keeping as much of the screen as
possible either black or constant, by using darker colors, setting minimum contrast, or,
best of all, by using an orange long-persistence display monitor. The reason to show an
alternater at all is to get you thinking about all of the new possibilities of exact field
sync, however bad some of them might seem.

If you do use an amber screen, the flicker is nearly invisible. Unfortunately, all of
those new amber screens are totally unsuited for most games or animated graphics.
The same persistence that helps the alternater destroys animation by changing balls
into comets, blurring motion, and doing other bad things.

UPDATING VFFS FILES

The Vaporlock by itself is only a service routine that exits you exactly on the start of a
field. Very nicely, you can now relock on each and every field. This leaves time for you
to do all sorts of other things during or after a mixed-field display. It also makes your
software much simpler, since you no longer have to hold exact timing values for the
entire display time.

For instance, you can now do a mixed-field display on one field and return to your
main program at the end of the field mixing. You can then do other things before you
grab the next lock. Timing is not at all critical , so long as you finish up whatever it is you
want to do before the minimum locking time on the next field . For most mixed-field
uses, you have several thousand clock cycles available for your use per field without
serious restrictions.

210 Enhancement 13

Chart 13-1 . V APORLOCK Test Utilities

NOTE: For these tests to be useful, you should place something of interest both
on text page one and on HIRES page one. Results will not be obvious
with an all-black HIRES screen or a completely cleared text screen.

I. VAPORLOCK tester:

BLOAO VAPORLOCK <er>
CALL -151 <er>

* 2000: FF FF FF FF FF FF FF <er>
* 0300: 20 00 8B 2C 51 co A9 20 <er>
* 0308: 20 A8 FC 2C 50 CO 4C 00 03 <er>
* 0300G <er>

You should get a split-screen display, top half text, bottom half HIRES. A
single HIRES line four characters long should show in the extreme upper left.
The name of this utility is VLTEST.

II. Field Alternater:

J BLOAO VAPORLOCK <er>
1 CALL -151 <er>
* 0320: A9 50 80 BC 8B 20 00 8B <er>
* 0328: A9 51 80 BC 8B 20 00 8B 4C 20 03 <er>
* 0320G <er>

You should see superimposed text and HIRES pages. The wretched flicker
ing can sometimes be gotten around by using an amber monitor or through
careful choice of program material and display settings. See text for more
details. The name of this utility is ALTERNATER.

Ill. VLFFS Window Tester:

1 BLOAO VLFFS.EMPTY <er>
1 CALL -151 <er>
* 8BA0: 50 <er>
* 8BAF: 51 <er>
* 8CA0: E0 <er>
* 8C44: E0 <er>
* 8CFB: 80 <er>
* 8OC4: 51 <er>
* 8B00G <er>

You should see a text screen with an inset HIRES window. The name of this
utility is VLFFS.WINDOW.

These and many other demos and use examples appear on the companion
diskette to this volume.

The Vaporlock 211

In fact, for some field mixers, you can retain 90 percent or higher throughput. This
can happen if you only mix fields on the first few lines of a display, such as a graph title
or a scoring clock inset into a HIRES game display.

A program called VFFS.EMPTY was shown you in Enhancement 5 that let you mix
and match HIRES, LORES, and text anywhere on the screen in any combination. A
new program called VLFFS.EMPTY is shown as Program 13-2. This program does
everything that VFFS.EMPTY does, but now includes the Vaporlock exact lock. The
code for exiting on keypressed and timeout is still built in. You also have the new
option of doing anything you like with the hook URCODE, so long as whatever you are
doing only lasts a few thousand clock cycles.

This EDASM program will let you mix and match text, HIRES, and LORES anywhere
on the screen. The exact display format is changed by altering the VPAT and HPAT files.

There are two different ways to use VLFFS.EMPTY. If you enter the code at
ONESCAN, you get a single mixed field that lasts for one tv scan from top to bottom .
You then return to your main program. If you enter the code at CONSCAN, the mixed
fields keep going round and round until timeout or a pressed key. Even with CON
SCAN, you can use several thousand clock cycles at URCODE anyway you wish.

Once again, URCODE timing is not at all critical. Just be sure to end it in time for the
next lock on the next screen.

VLFFS.EMPTY has been carefully set up to keep the same entry and file points as
VFFS.EMPTY. All of the work sheets and file details of Enhancement 5 may still be used
for VLFFS.EMPTY. Be sure to refer back to this older Enhancement before you try using
any mixed fields.

A most interesting tester for VLFFS.EMPTY is shown as the third test program in
Chart 13-1. It's called VLFFS.WINDOW and will give you a small HIRES window
completely surrounded by text. Other windows can easily be added wherever you
like. Sizes are also easily changed .

You can update any existing VFFS.WHATEVER files you may have already created
with Program 13-3, the VFFS> VLFFS CONVERTER. This program is self-prompting
and automatic. A few hand patches to SHOW may be needed for some uses. For
instance, VFFS.GIRLS needs LORES affirmed at the top of the screen and VFFS.BYE
needs mixed graphics affirmed.

The previous demo of FUN WITH MIXED FIELDS has been updated to FUN WITH
VLFFS FIELDS and appears on the support diskette for this volume. LORES COLORS
121 has also been upgraded to LORES COLORS 121 (VL) and also appears on the
companion diskette.

Should you want to shorten the mixed-field part of your display for more computing
throughput, just change NEWFLD. A value of $CO gives you a full screen of mixed
fields. Use $AO to provide four lines of text at the bottom, $80 for eight text lines, and
so on. A value of $08 just lets you mix the top eight scan lines. Anything between gives
you whatever tradeoff you want, swapping available computing time against mixed
field displaying.

212 Enhancement 13

PROGRAM 13-2 Listing of VLFFS.EMPTY.SOURCE.

BAFF:

8AFF:
8AFF:
BAFF:
8AFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
8AFF:
BAFF:
8AFF:
8AFF:
BAFF:
8AFF:
BAFF:
8AFF:
8AFF:
8AFF:
BAFF:

8AFF:

8AFF:
BAFF:
BAFF:
BAFF:
8AFF:
8AFF:
BAFF:
8AFF:
BAFF:
8AFF:
BAFF:

BAFF:

BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
8AFF:
BAFF:
BAFF:
BAFF:

NEXT OBJECT FILE NAME IS VLFFS.EMPTY

BAFF 3

5
6
7
8
9

10
11
12
.13
14
15
16
17
18
19
20
21
22
23
24
25

27

29
30
31
32
33
34
35
36
37
38
39

41

43
44
45
46
47
48
49
50
51
52

ORG $8AFF FOR HIGHEST HRCG CHARACTER SET

* *
*
*
*
*
*
*
*
*

-< VLFFS.EMPTY >

(VAPORLOCK FIELD FORMATTER SUB)

VERSION 1.0 ($8AFF-$8DCE)
for the APPLE II+ and APPLE Ile

10-12- 83

*
*
*
*
*
*
*
* * *

*
*
*
*
*
*
*
*
*

COPYRIGHT C 1983 BY

DON LANCASTER AND SYNERGETICS
BOX 1300, THATCHER AZ., 85552

(602) 428-4073

ALL COMMERCIAL RIGHTS RESERVED

*
*
*
*
*
*
*
*
*

*** WHAT IT DOES***

This subroutine lets you mix and match HIRES,
LORES, and text anywhere on the screen.

The screen mode can be changed once each HBLANK
time using the VPATRN file, and up to ten times
per H scan using files HPATl through HPAT4.

VLFFS displays are totally glitch and flicker free.

See Enhancements ts and 113 of ENHANCING YOUR
APPLE II for full use details.

*** HOW TO USE IT***

To use, set up your pattern files ahead of
time, deciding which screen switches get
flipped where on the screen.

For a single field scan,JSRONESCAN at
$8821 or CALL 35617.

For continuous display till timeout or
a key is pressed,JSRCONSCAN at $8800
or CALL 35584.

The Vaporlock 213

PROGRAM 13-2 cont

BAFF:

BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:

BAFF:

BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:

BAFF:

BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:

BAFF:

8Acf'F:
BAFF:
BAFF: ·

C060
C052
coso

55

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

74

76
77
78
79
80
81
82
83
84
85
86
87
88
89

91

93
94
95
96
97
98
99

100
101
102
103

106

GOTCHAS

This code only runs on "real" Apples.

Franklins, clones, and look-alikes may have
different timing that requires special code.

Certain oddball plug-in cards might interfere
with operation on the II+. Such interference
is unlikley on the Ile.

Parts of the code have very critical timing
and must not cross a page boundary. Watch
this detail on any code relocation.

A maximum of four HPAT files are presently
allowed. These can repeat in sequence as
often as needed per screen.

ENHANCEMENTS

You can make a "phasing" adjustment by adding
or removing NOPs and branches at PHASE. Note
that a NOP or a branch not taken uses two clock
cycles, while a branch taken needs three.

You can preset the soft switches at the top of
the screen with suitable pokes to SHOW.

Several thousand machine cycles per field are
available for your use per field. These need not
be synchronized, and timing is not critical.

The number of field switched lines per scan is
set by NEWFLD+l at $8B25 (35621).

*** RANDOM COMMENTS***

The VLFFS.EMPTY exact field formatter may be used
in your commercial programs provided fair credit
is prominently given.

VFSS Worksheets 5-1, 5-2, and 5-3 may be used with
VLFFS. VFFS programs need conversion to VLFFS.

Be sure to carefully study Enhancements ts and
113 before attempting to use this code.

Program length is $2CF (719) bytes.

HOOKS

108 DUMMY
109 FULL
110 GR

EQU
EQU
EQU

$C060
$C052
$C050

LOCATION FOR NO-SWITCH H
FULL SCREEN SOFT SWITCH
GRAPHICS SOFT SWITCH

214 Enhancement 13

PROGRAM 13-2 cont

8AFF: C057 111
8AFF: 0006 112
8AFF: C0lO 113
8AFF: cooo 114
8AFF: C054 115
8AFF: C020 116
8AFF: cooo 117
8AFF: C051 118
8AFF: C019 119
8AFF: FBB3 120
8AFF: FCA8 121

8AFF: 123

8AFF: 00DB 125
8AFF: 0024 126
8AFF: 00B6 127
8AFF: 0049 128
8AFF: 0088 129
8AFF: 00F3 130

8AFF: 133

8AFF: 135
8AFF: 136
8AFF: 137
8AFF: 138
8AFF: 139
8AFF: 140
8AFF: 141
8AFF: 142
8AFF: 143
8AFF: 144
8AFF: 145
8AFF: 146
8AFF: 147
8AFF: 148
8AFF: 149

8AFF: 151

8AFF:EA 153

8B00:20 FE 0c 155
8B03:20 21 8B 156
8B06:20 oc 8B 157
8B09:90 F8 8B03 158
8B0B:60 159

8B0C:60 161

HIRES EQU $C057 HIRES SOFT SWITCH
IDBYTE EQU $06 ID VALUE FOR APPLE IIe
KBSTRB EQU $C010 KEYBOARD STROBE RESET
KEYBD EQU $C0OO KEY PRESS CHECK
PAGE! EQU $C054 PAGE ONE SOFT SWITCH
SNIFF EQU $C020 FLOATING DATA BUS READ ADDRESS
SWITCH EQU $C000 VFILE SWITCH LOCATION
TEXT EQU $C051 TEXT SOFT SWITCH
VBLANK EQU $C019 JITTERY V BLANKING (IIe ONLY!)
VERSION EQU $FBB3 SYSTEM ID BYTE LOCATION
WAIT EQU $FCA8 MONITOR DELAY SUBROUTINE

*** CONSTANTS ***

ID0 EQU $DB ID BYTES FOR SYNC PATCH
IDl EQU $24 (ALL MUST BE RARE HIRES BYTES)
ID2 EQU $B6
ID3 EQU $49
ID4 EQU $88
IDS EQU $F3 THIS BYTE MUST BE AN ODD VALUE!

**** VLFS.EMPTY ****

There are four parts to the VLFFS.EMPTY subroutine.
These include CONSCAN, ONESCAN, VAPORLK, and URCODE.

ST

CONSCAN continuously exercises the field formatting
until timeout or a key is pressed.

ONESCAN is the old VFFS.EMPTY modified to work only
for a single field.

VAPORLK is the vaporlock exact field sync code,
shortened slightly for VFFS.EMPTY compatibility.

URCODE is a hook that lets you do anything you want
for up to several thousand clock cycles per field.

** CONTINUOUS SCANNER**

NOP EVEN PAGE START (FOR HRCG)

CONSCAN JSR SETUP SET TIMEOUT VALUE
AGAIN! JSR ONESCAN DO A SINGLE SCAN

JSR URCODE DO WHATEVER YOU HAVE TIME FOR
BCC AGAIN! REPEAT SCAN TILL TIMEOUT OR KP
RTS EXIT ON SET CARRY

URCODE RTS RETURN IF NO USER CODE

The Vaporlock 215

PROGRAM 13-2 cont

8B0D: 163 ** SINGLE FIELD SCAN**

8B21: 8B21 165 ORG ST+$22 BURN BYTES TO MATCH VFFSY
8B21:20 08 8D 166 ONESCAN JSR VAPORLK DO EXACT LOCK TO EDGE

8B24: 169 ** START OF FIELD**

8B24:A0 co 171 NEWFLD LOY 1$CO FOR 192 LINES

8B26:B9 00 SC 173 NXTLNl LOA VPATRN,Y GET LINE PATTERN
8B29:30 63 8B8E 174 BMI HPAT2
8B2B:10 00 8B2D 175 HPATl BPL HPl
8B2D:29 7F 176 HPl AND 1$7F MASK SWITCH COMMAND
8B2F:AA 177 TAX
8B30:9D 00 co 178 STA SWITCH,X
8B33:8D 60 co 179 STA DUMMY
8B36:8D 60 co 180 STA DUMMY
8B39:8D 60 co 181 STA DUMMY *
8B3C:8D 60 co 182 STA DUMMY **
8B3F:8D 60 co 183 STA DUMMY *
8B42:8D 60 co 184 STA DUMMY *
8B45:8D 60 co 185 STA DUMMY *
8B48:8D 60 co 186 STA DUMMY *
8B4B:8D 60 co 187 STA DUMMY ***
8B4E:8D 60 co 188 STA DUMMY
8B51:88 189 DEY ONE LESS LINE
8B52:F0 32 8B86 190 BEQ BOTTOM AT SCREEN BOTTOM?
8B54:D0 DO 8B26 191 BNE NXTLNl

8B56:B9 00 SC 193 NXTLN4 LDA VPATRN,Y ; GET LINE PATTERN
8B59:30 DO 8B2B 194 BMI HPATl
8B5B:10 00 8B5D 195 HPAT4 BPL HP4
8B5D:29 7F 196 HP4 AND 1$7F MASK SWITCH COMMAND
8B5F:AA 197 TAX
8B60:9D 00 co 198 STA SWITCH,X
8B63:8D 60 co 199 STA DUMMY
8B66:8D 60 co 200 STA DUMMY
8B69:8D 60 co 201 STA DUMMY *
8B6C:8D 60 co 202 STA DUMMY **
8B6F:8D 60 co 203 STA DUMMY * *
8B72:8D 60 co 204 STA DUMMY * *
8B75:8D 60 co 205 STA DUMMY *****
8B78:8D 60 co 206 STA DUMMY *
8B7B:8D 60 co 207 STA DUMMY *
8B7E:8D 60 co 208 STA DUMMY
8B81:88 209 DEY ONE LESS LINE
8B82:F0 02 8B86 210 BEQ BOTTOM AT SCREEN BOTTOM?
8B84:D0 DO 8B56 211 BNE NXTLN4

8B86:4C C2 SC 213 BOTTOM JMP BTM "SPLICE" RELATIVE BRANCH

8B89:B9 00 SC 216 NXTLN2 LOA VPATRN,Y GET LINE PATTERN
8B8C:30 30 8BBE 217 BMI HPAT3
8B8E:10 00 8B90 218 HPAT2 BPL HP2
8B90:29 7F 219 HP2 AND 1$7F MASK SWITCH COMMAND
8B92:AA 220 TAX
8B93:9D 00 co 221 STA SWITCH,X

216 Enhancement 13

PROGRAM 13-2 cont

8B96:8D 60 co 222 STA DUMMY
8B99:8D 60 co 223 STA DUMMY
8B9C:8D 60 co 224 STA DUMMY ***
8B9F:8D 60 co 225 STA DUMMY * *
8BA2:8D 60 co 226 STA DUMMY *
8BA5:8D 60 co 227 STA DUMMY *
8BA8:8D 60 co 228 STA DUMMY *
8BAB:8D 60 co 229 STA DUMMY *
8BAE:8D 60 co 230 STA DUMMY ******
8BB1:8D 60 co 231 _ STA DUMMY
8BB4:88 232 DEY ONE LESS LINE
8BB5:F0 CF 8B86 233 BEQ BOTTOM AT SCREEN BOTTOM?
8BB7:D0 DO 8B89 234 BNE NXTLN2

8BB9:B9 00 SC 236 NXTLN3 LDA VPATRN,Y GET LINE PATTERN
SBBC:30 9D 8B5B 237 BMI HPAT4
SBBE:10 00 8BC0 238 HPAT3 BPL HP3
SBC0:29 7F 239 HP3 AND i$7F MASK SWITCH COMMAND
8BC2:AA 240 TAX
8BC3:9D 00 co 241 STA SWITCH,X
8BC6:8D 60 co 242 STA DUMMY
8BC9:8D 60 co 243 STA DUMMY
8BCC:8D 60 co 244 STA DUMMY *****
8BCF:8D 60 co 245 STA DUMMY *
8BD2:8D 60 co 246 STA DUMMY *
8BD5:8D 60 co 247 STA DUMMY **
8BD8:8D 60 co 248 STA DUMMY *
8BDB:8D 60 co 249 STA DUMMY * *
8BDE:8D 60 co 250 STA DUMMY ***
8BE1:8D 60 co 251 STA DUMMY
8BE4:88 252 DEY ONE LESS LINE
8BE5:FO 9F 8B86 253 BEQ BOTTOM AT SCREEN BOTTOM?
8BE7:D0 DO 8BB9 254 BNE NXTLN3

8C00: scoo 257 ORG ST+$101 : BURN BYTES TO MATCH VFFS

SC00:60 60 60 60 259 VPATRN DFB 96,96,96,96,96,96,96,96,96,96,96,96,96,96,96,96

8C10:60 60 60 60 261 DFB 96,96,96,96,96,96,96,96,96,96,96,96,96,96,96,96

8C20:60 60 60 60 263 DFB 96,96,96,96,96,96,96,96,96,96,96,96,96,96,96,96

8C30:60 60 60 60 265 DFB 96,96,96,96,96,96,96,96,96,96,96,96,96,96,96,96

ac40:60 60 60 60 267 DFB 96,96,96,96,96,96,96,96,96,96,96,96,96,96,96,96

8C50:60 60 60 60 269 DFB 96,96,96,96,96,96,96,96,96,96,96,96,96,96,96,96

8C60:60 60 60 60 271 DFB 96,96,96,96,96,96,96,96,96,96,96,96,96,96,96,96

8C70:60 60 60 60 274 DFB 96,96,96,96,96,96,96,96,96,96,96,96,96,96,96,96

8C80:60 60 60 60 276 DFB 96,96,96,96,96,96,96,96,96,96,96,96,96,96,96,96

8C90:60 60 60 60 278 DFB 96,96,96,96,96,96,96,96,96,96,96,96,96,96,96,96

The Vaporlock 217

PROGRAM 13-2 cont

8CA0:60 60 60 60 280 DFB 96,96,96,96,96,96,96,96,96,96,96,96,96,96,96,96

8CB0:60 60 60 60 282 DFB 96,96,96,96,96,96,96,96,96,96,96,96,96,96,96,96

8CC0:60 60 284 DFB 96,96

8CC2: 287 ** KEYPRESSED AND TIMEOUT**

8CC2:2C FB 8c 289 BTM BIT CONTROL IS KEY EXIT ACTIVE?
8CC5:10 0A 8CD1 290 BPL KEYOK
8CC7:2C 00 co 291 BIT KEYBD LOOK FOR KEY
8CCA:10 05 8CD1 292 BPL KEYOK NOT THERE?
8CCC:2C 10 co 293 BIT KBSTRB RESET KEYSTROBE
8CCF:38 294 QUIT SEC SET CARRY =
8CD0:60 295 RTS EXIT ON KEY OR TIMEOUT

8CD1:EE FD 8c 297 KEYOK INC TIMEX INCREMENT TIMEOUT MULTIPLIER
8CD4:2C FB 8c 298 BIT CONTROL IS TIMER ACTIVE?
8CD7:50 oc 8CE5 299 BVC NOQUIT
8CD9:A9 lF 300 LOA t$1F MASK FOR 1/32
8CDB:2D FD 8C 301 AND TIMEX AND TEST MULTIPLIER
8CDE:D0 05 8CE5 302 BNE NOQUIT
8CE0:CE FC 8c 303 DEC TIMER ONE LESS COUNT
8CE3:F0 EA 8CCF 304 BEQ QUIT DONE?
8CE5:18 305 NOQUIT CLC CLEARED CARRY=
8CE6:60 306 RTS OK TO CONTINUE SCANNING

8CFB: 8CFB 308 ORG BTM+$39 BURN BYTES TO MATCH VFFS

8CFB:C4 310 CONTROLDFB $C4 ARMS KP AND SETS TIMEOUT
8CFC:00 311 TIMER DFB $00 COUNTER FOR TIMEOUT
8CFD:00 312 TIMEX DFB $00 TIMEOUT* 32 MULTIPLIER

8CFE:AD FB 8c 314 SETUP LOA CONTROL INITIALIZE TIMEOUT
8D01:29 3F 315 AND t$3F MASK TIMEOUT BITS
8D03:8D FC 8c 316 STA TIMER
8D06:60 317 RTS AND CONTINUE

8D07: 320 *** VAPORLOCK SUBROUTINE***

8D07: 322 See the VAPORLOCK program for more use details.
8D07: 323

8D07: 325 ** SETUP **

8D07:EA 327 NOP EQUALIZE TO PAGE BOUNDARY
8D08:08 328 VAPORLK PHP SAVE FLAGS
8D09:48 329 PHA SAVE ACCUMULATOR

8D0A:A9 DB 331 LOA UDO WRITE ID PATCH
8D0C:8D F8 3-F 332 STA $3FF8 TO LINE 1255
8D0F:8D F9 3F 333 STA $3FF9

218 Enhancement 13

PROGRAM 13-2 cont

8D12:8D FA 3F 334 STA $3FFA
8D15:8D FB 3F 335 STA $3FFB
8D18:8D FC 3F 336 STA $3FFC
8D1B:8D FD 3F 337 STA $3FFD
8D1E:8D FE 3F 338 STA $3FFE

8D21:A9 24 340 LOA iIDl TO LINE 1256
8D23:8D F8 2B 341 STA $2BF8
8D26:8D F9 2B 342 STA $2BF9
8D29:8D FA 2B 343 STA $2BFA
8D2C:8D FB 2B 344 STA $2BFB
8D2F:A9 B6 345 LOA UD2
8D31:8D FC 2B 346 STA $2BFC
8D34:8D FD 2B 347 STA $2BFD
8D37:8D FE 2B 348 STA $2BFE

8D3A:A9 49 350 LOA UD3 TO LINE 257
8D3C:8D F8 2F 351 STA $2FF8
8D3F:8D F9 2F 352 STA $2FF9
8D42:A9 88 353 LOA UD4
8D44:8D FA 2F 354 STA $2FFA
8D47:8D FB 2F 355 STA $2FFB

8D4A:A9 F3 357 LOA iID5 AND FINALLY TO LINE 258
8D4C:8D F8 33 358 STA $33F8
8D4F:A9 F2 359 LOA iID5-l
8D51:8D F9 33 360 STA $33F9

8D54:A9 06 362 LOA UDBYTE CHECK FOR A IIe
8D56:CD B3 FB 363 CMP VERSION
8D59:D0 05 8D60 364 BNE MORE0
8D5B:2C 19 co 365 VBFIND BIT VBLANK WAIT TILL Ile BLANKING START
8D5E:30 FB 8D5B 366 BMI VBFIND

8D60:2C 50 co 368 MORE0 BIT GR FORCE FULL HIRES PAGE ONE
8D63:2C 57 co 369 BIT HIRES
8D66:2C 52 co 370 BIT FULL
8D69:2C 54 co 371 BIT PAGEl THEN FALL THROUGH TO LOCK

8D6C: 374 ** LOCK **

8D6C:A9 DB 376 LOCK LOA UDO SEARCH FOR FIRST PATCH ID VALUE
8D6E:CD 20 co 377 RETRYl CMP SNIFF
8D71:D0 FB 8D6E 378 BNE RETRYl
8D73:A9 02 379 LOA i02 DELAY FOR EXACTLY 57 CYCLES
8D75:20 A8 FC 380 JSR WAIT (HLINE-BNE-LDAt-LDA)
8D78:48 381 PHA
8D79:68 382 PLA
8D7A:AD 20 co 383 LOA SNIFF GET SECOND PATCH ID VALUE
8D7D:C9 B6 384 CMP UD2 JITTER 4,5,OR 6?
8D7F:F0 06 8D87 385 BEQ MOREl
8D81:C9 24 386 CMP iIDl JITTER 0,1,2, OR 3?
8D83:F0 02 8D87 387 BEQ MOREl OK TO CONTINUE
8D85:D0 E5 8D6C 388 BNE LOCK MISSED, TRY AGAIN

The Vaporlock 219

PROGRAM 13-2 cont

8D87:A9 02 390 MORE! LOA i02 DELAY EXACTLY 50 CLOCK CYCLES
8D89:20 AB FC 391 JSR WAIT (HLINE-4-CMPt-BEQ-LDAt-LDA)
8D8C:AD 20 co 392 LOA SNIFF GET THIRD PATCH ID VALUE
8D8F:C9 88 393 CMP UD4 JITTER 2 OR 3?
8D91:F0 04 8D97 394 BEQ MORE2
8D93:C9 49 395 CMP UD3 JITTER 0 OR l?
8D95:F0 02 8D99 396 BEQ MORE3 ONLY WANT 2 CLOCK CORRECTION

8D97:D0 D3 8D6C 398 MORE2 BNE LOCK CURSES! FOILED AGAIN!
8D99:A9 02 399 MORE3 LOA 1$02 DELAY FOR EXACTLY 50 CYCLES
8D9B:20 AB FC 400 JSR WAIT (HLINE-2-CMP-BEQ-BNE-LDA-LDA)
8D9E:AD 20 co 401 LOA SNIFF GET FOURTH PATCH ID VALUE
8DA1: 4A 402 LSR A THEN SHIFT INTO CARRY
8DA2:B0 00 8DA4 403 BCS MORE4 TO EQUALIZE ONE COUNT

8DA4:C9 79 405 MORE4 CMP UDS/2 FINAL VALIDITY CHECK
8DA6:D0 C4 8D6C 406 BNE LOCK BACK TO SQUARE ONE
8DA8 : EA 407 NOP HAVE LOCK AT THIS POINT

8DA9: 410 ** STALL**

8DA9:A9 05 412 STALL LOA i$05 DELAY FOR EXACTLY 172 CYCLES
BDAB:20 AB FC 413 JSR WAIT
8DAE:A9 01 414 LOA t$01
BDB0:20 AB FC 415 JSR WAIT

8DB3:A9 06 417 FIX2+ LOA tIDBYTE ADD ONE EXTRA CYCLE ONLY ON
8DB5:CD B3 FB 418 CMP VERSION THE II+ TO EQUALIZE ON-SCREEN
8DB8:D0 00 8DBA 419 BNE SHOW DISPLAY MODE SWITCHING

8DBA:2C 20 co 421 SHOW BIT SNIFF OPTIONAL MODE CHANGES GO HERE
8DBD:2C 20 co 422 BIT SNIFF
8DC0:2C 20 co 423 BIT SNIFF
8DC3:2C 20 co 424 BIT SNIFF

8DC6:18 426 PHASE CLC PHASING CHANGES GO HERE
8DC7:90 00 8DC9 427 BCC MORES
8DC9:EA 428 MORES NOP BCC TAKEN= 2: NOT TAKEN = 3
8DCA:EA 429 NOP NOP= 2 CHARACTERS

BDCB:68 431 PLA RESTORE ACCUMULATOR AND FLAGS
BDCC:28 432 PLP
BDCD:60 433 RTS AND EXIT

220 Enhancement 13

PROGRAM 13-3 An Applesoft program to upgrade older VFFS files into the new VLFFS format.

10 REM *********************
12 REM * *
14 REM * VFFS TO VLFFS *
16 REM * FILE CONVERTER *
18 REM * *
20 REM * VERSION 1.0 *
21 REM * APPLE II+ OR IIE *
22 REM * (9-25-83) *
23 REM * *
24 REM * COPYRIGHT 1983 *
26 REM * BY DON LANCASTER*
28 REM * AND SYNERGETICS *
30 REM * *
32 REM * BOX 1300 *
34 REM * THATCHER AZ 85552 *
36 REM * (602) 428-4073 *
38 REM * *
40 REM * ALL COMMERCIAL *
42 REM * RIGHTS RESERVED *
44 REM * *
46 REM ********************* [J]

[J]

100 HIMEM: 30000: TEXT : HOME : CLEAR [J]

110 PRINT" VFFS TO VLFFS FILE CONVERTER "
12 0 PRINT " ..•.••••..•..••••..•...•••....••••.•• "
130 PRINT PRINT "ONE OR TWO DRIVES ";:

GET D$: PRINT D$
140 PRINT INPUT "OLD VFFS FILENAME •...• ";A$
150 PRINT: INPUT "NEW VLFFS FILENAME? ..• ";B$
160 PRINT: PRINT PRINT: PRINT: PRINT

"OK TO CONTINUE (Y/N)? ";:GETZ$ [J]

170 IF Z$ >< "Y" THEN 100 [J]

180 C$ = "VLFFS.EMPTY"
190 POKE 34,2: REM SAVE HEADER
200 HOME: PRINT: PRINT: PRINT

"PUT ";C$;" INTO DRIVE ";D$: PRINT: PRINT
"THEN HIT ANY KEY TO CONTINUE";: GETZ$

210 HOME: PRINT: PRINT: PRINT "I AM LOADING ";C$;:
PRINT" FROM DRIVE ";D$

220 PRINT "[D]BLOAD ";C$;",D";D$
300 HOME: PRINT: PRINT: PRINT

"PUT ";A$;" INTO DRIVE l": PRINT: PRINT
"THEN HIT ANY KEY TO CONTINUE";: GETZ$

310 HOME: PRINT: PRINT: PRINT
"I AM LOADING ";A$;" FROM DRIVE l"

320 PRINT "[D]BLOAD";A$;",A$87FF,Dl"

PROGRAM 13-3 cont

400 HOME: PRINT: PRINT: PRINT
"I AM MOVING DATA VALUES" [J]

410 H(l) = 34865:H(2) = 34964:H(3) = 35012:H(4) = 34913
420 FOR KK = 0 TO 4: FOR LL= 0 TO 10:
430 POKE (H(KK) + 3 *LL+ 768), PEEK (H(KK) + 3 * LL)
440 ZZ = PEEK (49200): NEXT LL,KK
500 VP= 35072
510 FOR LL= 0 TO 192
520 POKE (VP+ LL+ 768), PEEK (VP+ LL)
530 ZZ = PEEK (49200): NEXT LL
6 0 0 POKE 3 6 0 91 , PEEK (3 5 3 2 3) [J]

620

630
640

650

HOME: PRINT: PRINT: PRINT
"PUT THE DISK YOU WANT ";B$;" ON";
PRINT: PRINT: PRINT "INTO DRIVE 11 ;D$; 11

•
11

PRINT: PRINT "THEN HIT ANY KEY TO CONTINUE
GETZ$
PRINT [J]

700 HOME: PRINT: PRINT: PRINT
"I AM NOW SAVING ";B$;" TO DRIVE ";D$

710 PRINT "[D]BSAVE";B$;",A$8AFF,L$2CF,D";D$
720 PRINT [J]

800 HOME: PRINT: PRINT: PRINT: PRINT

" .. , .

"FINISHED. SHALL WE DO ANOTHER (Y/N) "·GETZ$
810 IF Z$ = "Y" TdEN 100
820 TEXT: HOME: CLEAR: END

THE II+ AND OTHER GOTCHAS

The Vaporlock 221

The Vaporlock and VLFFS.EMPTY work best on the Apple lie. There are some
limitations and compromises you should know about if you want both of these to work
properly on both the Apple II+ and Apple lie.

First, the II+ switches its screen modes one cycle earlier than the lie. An automatic
compensator is built into the Vaporlock at FIX II+ that will make both types of Apples
switch at the same screen point. For some oddball , nonscreen field switching on the
II+, you may want to defeat this compensation.

Secondly, there will be some glitches in on-screen changes made by the II+. The
GLITCH STOMPER hardware mod of Enhancement 6 minimizes, but does not elimi
nate these. Glitches are far simpler to manage on the lie. Just exit from text on a space
and exit from LORES black, and all lie glitches should be invisible.

Thirdly, some rare plug-ins on the II+ may defeat the Vaporlock by loading the data
bus too heavily. The worst culprits seem to be any LSTTL gates that directly connect to
the data bus and pull up any floating zeros.

222 Enhancement 13

Send us a list of any problem boards you find.
Problem boards won't stall the Vaporlock on the lie, since lie slots 1-7 are fully

buffered. Just about anything plugged into slot O of the lie will terminate the data bus in
a suitable transceiver, so there should be no lie hassles with any known plug-in . The
lie, of course, has none of these problems.

Fourthly, a brief flash of the contents of HIRES page one will whip by on the first
Vaporlock locking on the II+ . This is automatically eliminated in the lie by use of the
$C019 blanking signal. For this II+ flash to be invisible, all of the contents of HIRES
full page one should look similar to what was previously displayed, what will be
displayed, or else should be left all black.

The bottom line is that you can do more and do it better by limiting commercial uses
of the Vaporlock to the lie, although it is definitely possible to do unique and
interesting stuff in mixed fields that run on any "real" Apple.

Please note that the Vaporlock and VLFFS.EMPTY will not run on a Franklin, and
may not run on a clone. The Franklin uses only 64 clock cycles per line, compared to
Apple's 65.

What the vaporlock will do on a clone is anyone's guess.
Better repeat that ...

The Vaporlock will only run for sure on "real" Apples!

Franklins and clones need not apply.

You can relocate Vaporlock in any protected space you want so long as you do not
cross any page boundaries after the relocation . The Vaporlock is fully relocatable
object code; all you have to do is move it. Any VLFFS files are best moved by
reassembly to a new origin .

As a final gotcha, remember that any text mode that exits during the horizontal
blanking time will try to kill the color. If too many horizontal lines do not have color
reference bursts, your color monitor or tv might get its colors mixed up or dropped
entirely. Fortunately, it takes lots of missed bursts to foul up the works on most sets, so
just keep as many lines out of the text mode during horizontal blanking as you can.

AN OFF-THE-WALL VAPORLOCK USE

Chart 13-2 shows a hex dump of a module I call VLFFS.NOCOLOR. When you
BRUN this module, any color HIRES display will be shown in black and white only .
Color returns on any key being pressed. Such a color killer is most useful when
showing HIRES graphs or business graphics without any annoying color fringes.

If you don't like hand loading, the program is available and ready to BRUN on the
companion diskette.

Naturally, everyone "knows" that it is absolutely impossible to build a software
only color killer that works equally well on a II+, lie, or lie. Only nobody bothered to
tell VLFFS.NOCOLOR.

I'll leave this one for you to puzzle over. You'll need a thorough understanding of
VLFFS.EMPTY, of exact field sync, of the color killer circuit and of Enhancement 3's
tearing method to figure it out. I've purposely left some slop in the program so you can
shorten it and further improve it.

Sneaky, huh?

The Vaporlock 223

Chart 13-2 Hex Dump of VLFFS.NOCOLOR

8AFF- EA 8C68- so so so so so so so so
8C70- E9 so so so so so so so

8B00- 20 FE SC 20 21 8B 20 OE 8C78- so so so so so so so F7
8B08- 8B 2C so co 90 FS 60 B6
8B10- 02 FF AO 80 AO 02 AO AO 8C80- so so so so so so so so
8B18- AO AO AO AO AO AO AO Bl 8C88- so so so so so so so so
8B20- DO 20 08 80 AO FC AD 00 8C90- so so so so so so so so
8B28- SC 30 63 10 00 29 7F AA 8C98- so so so so so so so so
8B30- 9D 00 co 80 60 co 8D 60 8CA0- so so so so so so so so
8B38- co 80 60 co 80 60 co 80 8CA8- so so so so so so so so

8CB0- so so so so 4F so so so
8B40- 60 co 8D 60 co 80 60 co 8CB8- so so so so so so so so
8B48- 8D 60 co 80 60 co 80 51
8BS0- co 88 F0 32 DO DO B9 00 scco- so so 2C FB SC 10 0A 2C
8B58- SC 30 DO 10 00 29 7F AA secs- 00 co 10 05 2C 10 co 38
8B60- 9D 00 co 80 60 co 80 60 8CD0- 60 EE FD SC 2C FB SC so
8B68- co 8D 60 co 80 60 co 80 8CD8- oc A9 lF 20 FD SC DO 05
8B70- 60 co 80 60 co 80 60 co 8CE0- CE FC SC F0 EA 18 60 AO
8B78- SD 60 CO 80 60 co 80 60 8CE8- C9 B4 AO A0 .C4 FF AO AO

8CF0- AO AO AO D4 BS AO AO BS
8B80- co 88 F0 02 DO DO 4C C2 8CF8- AO AO AO 80 00 79 AD FB
8B88- SC B9 00 SC 30 30 10 00
8B90- 29 7F AA 9D 00 co 8D 60 8D00- SC 29 3F 8D FC SC 60 EA
8B98- co 8D 60 CO 8D 60 CO 8D 8D08- 08 48 A9 DB 8D F8 3F 8D
8BA0- 60 co 80 60 co 8D 60 CO 8Dl0- F9 3F 8D FA 3F 8D FB 3F
8BA8- 8D 60 co SD 60 CO SD 60 8Dl8- 8D FC 3F 8D FD 3F 8D FE
8BB0- co 8D 60 co 88 F0 CF DO 8D20- 3F A9 24 8D F8 2B 8D F9
8BB8- DO B9 00 SC 30 9D 10 00 8D28- 2B 8D FA 2B 8D FB 2B A9

8D30- B6 SD FC 2B 8D FD 2B 8D
8BC0- 29 7F AA 9D 00 co 8D 60 8D38- FE 2B A9 49 8D F8 2F 8D
8BC8- co 8D 60 CO 8D 60 co 8D
8BD0- 60 co 8D 60 co 8D 60 co
8BD8- 8D 60 CO 8D 60 CO 8D 60 8D40- F9 2F A9 88 8D FA 2F 8D
8BE0- CO 8D 60 co 88 F0 9F DO 8D48- FB 2F A9 F3 8D F8 33 A9
8BE8- DO AO BO AO AO AO D4 AO 8D50- F2 8D F9 33 A9 06 CD B3
8BF0- AO AO AO AO AO AO AO AO 8D58- FB DO 05 2C 19 co 30 FB
8BF8- AO AO FF AO AO AO AO AO 8D60- 2C so co 2C 57 co 2C 52

8D68- co 2C 54 co A9 DB CD 20
scoo- so so so so so so so so 8D70- co DO FB A9 02 20 AS FC
8C08- so so so so so so so so 8D78- 48 68 AD 20 co C9 B6 F0
8Cl0- so so so so so so so so
8Cl8- so so so so so so so so 8D80- 06 C9 24 F0 02 DO ES A9
8C20- 3E so so so so so so so 8D88- 02 20 AS FC AD 20 co C9
8C28- so so so so so so so so 8D90- 88 F0 04 C9 49 F0 02 DO
8C30- so so so so 48 so so so 8D98- D3 A9 02 20 AS FC AD 20
8C38- so so so so so so so so 8DA0- CO 4A BO 00 C9 79 DO C4

8DA8- EA A9 05 20 AS FC A9 01
8C40- so so so so so so so so 8DB0- 20 AS FC A9 06 CD B3 FB
8C48- so so so so so so so so 8DB8- DO 00 2C 20 co 2C 20 co
scso- 4E so so so so so so so
8C58- so so so so so so so so 8DC0- 2C 20 co 2C 20 co 18 90
8C60- so so so so so so so so 8DC8- 00 EA EA 68 28 EA EA 60

This software-only color killer is available ready to run on the companion diskette to this volume.

224 Enhancement 73

SO WHAT GOOD IS AN EXACT LOCK?

What good is all this? Now you can mix HIRES, LORES, and text all over the screen .
But what can you really do with mixed fields that was impossible or very hard before?

Let's wrap up this enhancement with 13 brand new uses for exact field sync .

1. There must be something to subliminal ad messages because they are an
absolutely illegal no-no for commercial uses. How can you flash a subliminal
message for one field at full intensity and then for a second field at half intensity,
inserted into "normal" program material?

2. How can you include crosshairs into a HIRES display that does not change or
alter the database you are looking at? What uses can you think of for being able
to identify and then analyze a single horizontal line of video?

3. How much grey scale can you get out of your Apple? You can get one grey level
by alternating fields. Stuff on both fields will be white. Stuff on one field will be
grey. Stuff on no fields will be black. But, what if you add hardware between
the annunciator outputs and the video combiner circuitry so that the white level
changes with the annunciator values?

4. Once you have grey scale, how do you use anti-aliasing to get rid of the
"jaggies" on slanted lines? The big animation boys don't have any jaggies, and
they don't need lots of extra resolution to get rid of them.

5. Dynamically changing the switching positions in a mixed-field display would
reveal different portions of different screen parts as time progressed. Shows
how you can do dynamic video wipes to handle cuts, wipes, and fades that
rival commercial tv.

6. Snapping off-screen photographs of an Apple display is no trivial matter. Show
an electronic shutter control that exposes film for exactly one whole field of
video, no more, no less. Arrange your electronic and mechanical time delays
so the shutter opens during one vertical blanking and closes during the next
one.

7. How about a tail-less light pen smal I enough to wear on a finger without being
unpleasant or interfering with typing. Use a level-switched button cell battery
or else a solar cell for power. Mixed fields could tell where you were on the
screen and dramatically simplify the response circuitry. The part worn would
communicate to the Apple with ultrasonics or infrared with simple pulses.

8. What is possible in the way of text over color and mixed color displays? How
can you minimize flicker? The new, double resolution LORES and HIRES on the
lie should be exploitable here. Can you legibly "float" text over an adventure
display? What can you do that really looks great along these lines?

9. How about some odometer or gas pump style displays where inset numbers
smoothly rotate, rather than jumping from one number to another? Or slot
machines with smoothly rotating wheels? Bomber flybys? How can mixed
fields help you here?

10. Show how to insert a real-time clock or other score timing device into the top
line of a HIRES display. Can you do this without using interrupts? Without
needing hex-to-decimal conversions? Without needing any hardware mods at
all?

11. Can classical cell-by-cell animation be done on an Apple? Can you plot only
screen changes from cell to cell? Can you do this "free form" without byte
boundary limits? How can mixed fields help here?

12. What new uses for joysticks, mice, or paddles can you think of in which these
directly control the points at which field switching takes place on your Apple?
There should now be time enough to read a paddle between field lockings.
What else can your joystick control?

The Vaporlock 225

13. There are lots of new field switches on the Apple lie. What happens if you start
flipping these in sync to the screen in new, different, and unusual ways? Here is
where the real mind-blowers will show up. What can you think of?

And those should just about be enough to get you started. Use the response card in
the back of the book to tell us what you come up with and to ask any "what if?" or
"why not?" style exact field sync questions.

The following programs are included in the companion
diskette to this volume:

V APORLOCK.SOU RCE
VAPORLOCK
VLFFS.SOURCE
VLFFS
VFFS>VLFFS CONVERTER

VLTEST
ALTERNATER
VLFFS.EMPTY
VLFFS.WINDOW
VLFFS.NOCOLOR

FUN WITH VLFFS FIELDS
VLFFS.BOXES
VLFFS.GRAPH
VLFFS.GIRLS
VLFFS.BYE

See the cards in back of the book for feedback, hotline,
and ordering information.

Apple Enhancer Support Services

Don Lancaster and Synergetics offer many different support services for Apple
enhancers and others wishing to push the limits of their Apple capabilities.

Included now in these services are feedback cards, the "13-day" pre-release serv
ice, companion support diskettes, the Gila Valley Apple Growers Association, and a
no-charge voice hotline.

FEEDBACK RESPONSE CARDS

The feedback response cards at the back of this book are your way of closing the
loop and letting us know about any problems you may have, or to tell us what you want
to see in the way of future enhancements. Simply tear out the response card, fill it out,
and drop it in the mail.

Keep us posted on your progress and exploration of all of the enhancements.

THE 13-DAY PRE-RELEASE SERVICE

Just as soon as new Don Lancaster individual packages become available, you will
be able to get them on a "preview" basis, long ahead of when they can appear in print.
These materials will always be preliminary and will have no fancy packaging or
elaborate distribution.

To stay up to date on the "13-day" program, just use the response card to show us
your interest, or else watch for small ads appearing in Apple Assembly Line, Call
A.P.P.L.E., Modern Electronics, or Computer Shopper.

227

228 Apple Enhancer Support Services

COMPANION DISKETTES

A Volume 2 companion diskette is available that holds all of the code shown you in
Enhancements 9 through 13, along with a few bonus programs.

Here's a I ist of the . . .

Partial Contents of the Companion Diskette for Enhance
Volume 2

DGLOSS
EGLOSS
AWIIE NULLIFIER
AWIIE STRETCHIFIER
WPL.FORMAT DIABLO 630

WPL.FORMAT 0630 NOFRILLS
WPL.DET AIL VAPORLOCK
WPL.DETAIL E9
WPL.DETAIL ALL
WPL.CAMERA READY

WPL.BULLET SHOOTER
ART EXAMPLES 0630
SNATCHMON
KREBFSPELL.SOU RCE
KREBFSPELL

SNEAKYSTUFF
CURSDSTRING
TRIPLE DELAY FINDER
V APORLOCK.SOU RCE
VAPORLOCK

VLFFS.SOURCE
VLFFS
VFFS>VLFFS CONVERTER
VLTEST
ALTERNATER

VLFFS.EMPTY
VLFFS.WINDOW
VLFFS.NOCOLOR
FUN WITH VLFFS FIELDS
VLFFS.BOXES

VLFFS.GRAPH
VLFFS.GIRLS
VLFFS.BYE

... plus a surprise or two

Apple Enhancer Support Services 229

This 33 + program DOS 3.3e diskette costs only $19.50. It is fully copyable for your
personal use only and includes complete EDASM source code listings.

You can order this support diskette using the order card bound in the back of the
book. Visa® and MasterCard® are accepted, as are telephone orders via the hotline.

In addition, all of Enhancements 9 and 12, plus bunches more, are available as the
eight diskette side AWlle TOOLKIT package. These give you all the charts, text, and
tables in "machine readable" form for serious or advanced users.

On any Don Lancaster or Synergetics service, please note that purchase orders and
CODs can NOT be accepted. Orders to a foreign address or in foreign funds are also
NOT acceptable.

A number of other books and diskette packages are also available, including the
support diskettes for Enhance I and Assembly I, the AWlle TOOLKIT, the ProDOS
Apple Writer 2.0 TOOLKIT, and The Incredible Secret Money Machine, Don's under
ground classic book on forming your own winning technical ventures. Also available
are some exciting new graphics animation demos. See the order card for full details.

THE GILA VALLEY APPLE GROWERS ASSOCIATION

The Gila Valley Apple Growers Association is a most unusual consortium of Apple
owners and users. The meetings are a "test bed" for evaluation of new software
products in development by its members. New ways of "pushing the limits" of Apple
and other hardware and software are the usual activity focus. There is also a special
interest group on tinaja questing.

Membership is more or less free, but is strictly and exclusively limited to those
attending the meetings. There are not, and never will be, any printed notices,
newsletters, or outside library exchange services available.

By the way, you pronounce the "G" as if it were an "H", like in "Hee-luh".
The association meets 6-10 PM every Wednesday night during the school year here

in Thatcher, usually in Eastern Arizona College room TB or T9. ·
Stop in sometime.

THE APPLE ENHANCER'S HOTLINE

A voice hotline service is available as a joint service of Synergetics, Don Lancaster,
and the Gila Valley Apple Growers Association .. .

Apple Enhancers Voice Hotline
'

(602) 428-4073

The service is free, except for your phone charges. Best time to call is 8-5 weekdays,
Mountain Standard Time. The two main areas of expertise include Apple Writer lie
and assembly language programming.

230 Apple Enhancer Support Services

CARDS MISSING?

If the cards are missing, call or write .. .

SYNERGETICS
746 First Street
Box 809
Thatcher, AZ 85552

(602) 428-4073

A

Additional function(s)
addresses, 128, 130
menu, 128, 130

Alignment, column, 37-38
Analyzing Apple Writer lie, 112-114
Apple, key buffer, 124, 125
Apple lie

firmware, 68-70
installing "old" monitor EPROM in, 89-90
monitor modification, 84-90
reset, old, 66-67

Apple Writer lie
analyzing, 112-Tl 4
capturing source code, 188-190
character entry, 172-17 4
control commands, 175-178
DOS, 143,170

accessing, 169
differences, 168
phantom, 170

entry points, 143, 144-145
internal file, 116, 127
memory management, 172
memory maps, 114-116
modifying, 183-186
monitor access, 171
page zero uses, 133-143
patching, 184-186
printing, 178-180
reference file, 116, 127-130
screen display, 174-175
script of main program, 146-167
text files, 116, 117-120
work file, 116, 120-126
WPL, 180-183

ASCII
codes, numeric value, 25, 27
prompts, 128, 130
stashes, 128, 130

B
Bidirectional print tractor, 20
Body type, microjustifying, 49
Bottom line

formatter buffer, 12 3, 12 5
stash, 123, 125

Buffers files, Apple Writer lie, 121-125
Burner adapter, EPROM, 72-80
Bus drivers, tri-state, 197

C

Camera ready print mode, 20-21
Capturing source code, 188-190
Castle Wolfenstein

escape maps, creating, 94-106
Character

entry, Apple Writer lie, 172-174
strings, WPL, 123, 124

Chip
enable line, EPROM, 71
memory, analyzing, 70-72

Code(s)
ASCII control, 26
cracking of, tearing method, 109-112
Vaporlock, 203-209

INDEX
Column alignment, 37-38
Commands

imbedding
glossary method, 29-32
methods of, 24
print, 23-32
with WPL, 29-52

individual control, 175-178
Communications, between word processor

and computer, 16-17
Connections, RS-232C, 17-18
Control

Codes, ASCII, 26
commands, individual, 175-178
lines, 2764, 71

Counters, use of, 131
Cracking page zero, 130-133
Customizing text files, 51-52

D
Daisy wheel

printer, graphics on, 62
types of, 20-21

Data bus, Apple, 196-197
Decimal stash, 122, 125
Diablo 630 glossary, 34-39
Dissassembler program, 111
Document formatting, automatic, 45
DOS

Apple Writer lie, 143, 170
accessing, 169
differences, 168
phantom, 170

commands, 128, 130
filename save, 124, 125
functions menu, 128, 130
input/output block, 121, 124

E

Entry points, Apple Writer lie, 143, 144-145
Epson MX-80 glossary, 29-32
EPROM

burner adapter, 72-80
chip enable line, 71
output line, 71
program line, 71
programmer, 68-69
programming voltage, 71
64K, 70-72
testing new, 90
2764, 69-80

Escape maps, Castle Wolfenstein, creating,
94-106

Exact sync
lock, uses for, 224-225
need for, 194-195

Express cursor motion, work file, 128

F

File
internal, Apple Writer lie, 116, 127
reference, Apple Writer lie, 116, 127-130
text, Apple Writer lie, 116, 117-120
work, Apple Writer lie, 116, 120-126

Filename buffer, active, 121, 124
Find string save, 124, 125

Firmware, Apple lie, 68-70
First screen, 128, 130
Flags, use of, 131
Floating data bus, 197
Footnote buffer, 122, 125
Formatting document, automatic, 45
Function list, 128, 129

G
Glossary

Diablo 630, 34-39
Epson MX-80, 29-32
file, 124, 126
inbedding print commands with, 29-32

Graphics, on daisywheel printer, 62

H
Handshaking, between printer and word pro

cessor, 16-17
HIFILE, 118-120

lmbedding commands
print

glossary method, 29-32
methods of, 24
verbatim method, 25-29

using WPL, 39-52
Insets, in text, 49
Internal file, Apple Writer lie, 116, 127
Invisible memory locations, 200

Jitter, elimination of, 201-203

K
Kerning, type, 59-60
Keybuffer, 121, 124
Keystrokes, sources of, 173-17 4

l
Line justify buffer, 122, 125
LOFILE, 118-120

M
Machine code, cracking, 109-112
Manuals, printer, 13
Maps, Castle Wolfenstein, creating, 94-106
Memory

chip, analyzing, 70-72
locations, invisible, 200
management, Apple Writer lie, 172

code, 120, 121
maps, Apple Writer lie, 114-116

Microjustification, 21, 46
body type, 49

Modifying Apple Writ~r lie, 183-186
Monitor

access, 171
Apple lie

firmware, 66
installing old in, 89-90
modifying, 84

program, capturing, 80-84

231

232 Index

N

"N" and "N-1" values, ASCII characters, 25,
27

NULL command, problem with, 32-34
NULLIFIER, Apple Writer lie, 32, 33
Numeric values, ASCII characters, 25, 27

p

Page zero,
cracking, 130-133
uses of, 131

Apple Writer lie, 133-143
Paragraph

deletion buffer, 122, 124
ends, fixing of, 51

Patching Apple Writer lie, 184-186
Pointers, use of, 131
POKE, adding to WPL, 184-186
Print

commands
imbedding

glossary method, 29-32
methods of, 24
verbatim method, 25-29

constants, match file, 128, 130
program

file, 123, 125
functions menu, 129, 130
individual, 123, 125

quality, 19-23
rules, 12-16

tractor, 13
wheels,

matching with keyboard, 47-48
redefining spokes, 47-48

Printer
accessories, 13
choices, 12
cost, 13
manuals, 13
supply sources, 14-16

Printing
Apple Writer lie, 178-180
shadow, 50-51
work file, 129

Program
analyzing, 113
Apple Writer lie, script, 146-167
custom formatting, detail work, 53-55
Diablo 630

formatter

Program---cont
formatter

no frills, 56-59
WPL, 40-44

formatting glossary, 35-37
macro example, 37-38

disassembler, 111
Epson MX-80 formatting glossary, 30-32
file, WPL, 122, 125
line, EPROM, 71

Programmer, EPROM, 68-69
Programming,

2764, with old burner, 72-80
voltage, EPROM, 71

Proportional spacing, 20

Q
Quality print, 19-23

R

Redefining print wheel spokes, 47-48
Reference file, Apple Writer lie, 116, 127-130
RS-232-C connections, 17-18

s
Screen

base address table, 127, 128
display, Apple Writer lie, 174-175

Shadowing titles, 50-51
65C02 upgrade, 61
Source code, capturing, 188-190
Spacing, t ightening of, 48-49
Spokes, print wheel, redefining, 47-48
"Squashticity," 46
Stack

6502, 120, 121
WPL, 122, 125

Stashes, use of, 131
STRETCHIFIER, AWlle, 32
Supply sources, 14-16
Sync, exact, need for, 194-195
Synchroniz.<!tion, Vaporlock, 194-225
System vectors, 121

T

Tab file, 123, 125
Testing, EPROM, 90-91
Text

file
Apple Writer lie, 116, 117-120

Text---cont
file

buffer, 122, 124
insets in, 49
screen, 122, 124

Titles, shadowing of, 50-51
Toolkit, printer, 13
Top line

formatter buffer, 123, 125
stash, 123, 125

Tractor
bidirectional, 20
print, 13

Type
-ahead character buffer, 122, 125
kerning of, 59-60
stretching of, 51

2764
control lines, 71
EPROM, 69-80
programming with old burner, 72-80

u
Underlining

improvement of, 46-47
print characters, 28

Update, screen, 175
Utilities, Vaporlock test, 210

Vaporlock
code, 203-209
test utilities, 210

Vectors, system, 121

V

Voltage, programming, EPROM, 71
Verbatim method, imbedding print com

mands, 25-29

w
Word deletion buffer, 122, 124
Work file, Apple Writer lie, 116, 120-126
WPL, 46, 180-183

command file, 128, 130
adding POKE to, 186-188
error message file, 128, 130
formatter, no frills, 55-59
imbedding commands with, 39-52
program file, 122, 124

M•O•R•E O F•R•O•M O S•A•M•S
D ENHANCING YOUR APPLE II, Volume 1
(2nd Edition)
Don Lancaster shows you how to mix text, low-res and high-res
anywhere on-screen; do 3-D graphics, overlapping single-line
colors and other special effects, have gentle scrolls, generate
191 background colors and quickly analyze any machine
language program. Don Lancaster.
ISBN 0-672-21822-4 $15.95

D ASSEMBLY COOKBOOK FOR THE APPLE II/lie
Strong Lancaster seminar on assemblers and how to use them,
plus step-by-step instruction leading you through practical
modules of working assembly language code. Excellent stuff!
Don Lancaster.
ISBN 0-672-22331-7 S21.95

D DON LANCASTER'S MICRO COOKBOOK,
Volume 1
Down-to-earth coverage of all microcomputer and micro
processor fundamentals needed to start understanding
machine language programming. Can be applied to any micro.
Don Lancaster.
ISBN 0-672-21828-3 $15.95

D DON LANCASTER'S MICRO COOKBOOK,
Volume 2
Teaches you machine-language programming on the
microprocessor family and microcomputer of your choice, us
ing Don's "those#$!&#%$! cards" technique. Covers address
space, addressing, system architecture, 1/0. Don Lancaster.
ISBN 0-672-21829-1 $15.95

D TV TYPEWRITER COOKBOOK
Heaven for hobbyists. Discusses TVT comunications, basic
TVT system design, memory types, interface circuitry, hard
copy output and color graphics. Don Lancaster.
ISBN 0-672-21313-3 $12.95

D INTRODUCING THE APPLE® lie
Indispensable introductory guide describes all lie features,
discusses compatibility and differences with the lie and
covers lie setup, expansion, graphics and communications.
Philip Lieberman.
ISBN 0-672-22393-7 $17.95

D INTRODUCING THE APPLE MACINTOSH™
Explores Macintosh design philosophy, physical structure,
displays, keyboard, mouse, software, and accessories. Covers
graphics, word processing, spreadsheets, BASIC and window
ing. Connolly and Lieberman.
ISBN 0-672-22361-9 $12.95

D MACINTOSH USER'S GUIDE
Is the Macintosh right for you? Compares the Mac with 5 other
best-selling micros and then explains fundamental and advanc
ed applications. Gordon McComb.
ISBN 0-672-22328-7 $16.95

D APPLESOFT FOR THE lie
A detailed Applesoft programmer's reference manual written
specifically for the Apple lie and covering all aspects of lie syn
tax and programming techniques. Blackwood and Blackwood.
ISBN 0-672-22259-0 $19.95

D THE CHEAP VIDEO COOKBOOK
Logical sequel to TV Typewriter Cookbook. Demonstrates
methods for hobbyists to use in getting words, pictures, and
code from a computer to a TV with no electronic modifications
required. Don Lancaster.
ISBN 0-672-21524-1 $8.95

0 SON OF CHEAP VIDEO
This sequel to Cheap Video Cookbook makes cheap video even
cheaper with transparency detail for less than $1 plus details
for a complete $7 video display system. Don Lancaster.
ISBN 0-672-21723-6 $10.95

D THE HEXADECIMAL CHRONICLES
This bookful of instant, hassle-free tables lets you do 52 com
puting calculations and conversions easily. Don Lancaster.
ISBN 0-672-21802-X $17.95

D TTL COOKBOOK
A complete look at TTL, including what it is, how it works, how
it's interconnected, how it's powered and how it's used in
many practical applications. Don Lancaster.
ISBN 0-672-21035-5 $12.95

D CMOS COOKBOOK
Explains in cookbook format how CMOS differs from other
MOS designs, how it's powered and what its advantages are
over other constructions. Includes circuits you can build . Don
Lancaster.
ISBN 0-672-21398-2 $14.95

D ACTIVE-FILTER COOKBOOK
Don Lancaster presents a menu of pre-designed filters you can
borrow and adapt when you need an active filter but don't want
to take the time to design it. Don Lancaster.
ISBN 0-672-21168·8· $14.95

D BASIC TRICKS FOR THE APPLE
Filled with ideas and examples for input routines, rounding,
report formatting, working with dates and times, and sorting.
Do your own loading or save typing time with the disk-based
Combo Pack. Allen L. Wyatt.
Book: ISBN 0-672-22208-6 $8.95
Combo Pack: ISBN 0-672-26225-8 $24.95

D INTIMATE INSTRUCTIONS IN INTEGER BASIC
Integer BASIC executes more quickly than Applesoft. Learn to
build Integer programs which run smoothly and take full advan
tage of that dialect's speed. Blackwood and Blackwood.
ISBN 0-672-21812-7 $8.95

D MOSTLY BASIC: APPLICATIONS FOR YOUR
APPLE II
Book 1-Over 30 BASIC programs to help you save money on
energy usage, make bar charts, dial your telephone or learn a
foreign language. Also includes an electronic harpsichord, a
tarot card reader and some two-level dungeons. Howard
Berenbon.
ISBN 0-672-21789-9 $13.95

Book 2-Continues with dungeons, educational programs,
budget analysis, a weekly calendar, a series on money and in
vestment and programs on ESP. Howard Berenbon.
ISBN 0-672-21864-X $12.95

M•O•R•E O F•R•O•M O S•A•M•S
0 APPLESOFT LANGUAGE (2nd Edition)
Valuable as a tutorial or for reference on disk operation, syntax
and programming in Applesoft, advanced programming techni
ques, graphics, color commands, sorts and searches.
Blackwood and Blackwood.
ISBN 0-672-22073-3 $14.95

0 APPLE LOGO PROGRAMMING PRIMER
Quickly learn and use the complete Logo language. Em
phasizes top-down programming and covers recursion, out
puts and utilities. Includes clear and concise diagram explana
tions of Logo syntax and many sample programs. Martin,
Prata and Paulsen.
ISBN 0-672-22342-2 $19.95

D 88 APPLE LOGO PROGRAMS
Eighty-eight fully tested and ready-to-run Logo programs, in
cluding database and graphing packages for home and
business as well as entertainment, special turtle graphics pro
grams and a powerful "Matchmaker" program. Waite, Martin,
and Martin.
Book: ISBN 0-672-22343-0 $15.95
Combo Pack: ISBN 0-672-26224-X $29.95

0 KID-POWERED LOGO
The fictional character, Mr. Graphix, joins with his new friend
Mr. Thinker, to provide ch ildren with an introduction to Logo.
Uses many illustrations, large type and simple language. David
J. Fiday.
ISBN 0-672-22190-X $17.95

0 APPLE GAMES
Learn how to use text, graphics and sounds in developing your
own computer games. Complete program listings are provided
for every program. Do your own loading or save time and effort
with the disk-based Combo Pack. Allen L. Wyatt.
Book: ISBN 0-672-22394-5 $8.95
Combo Pack: ISBN 0-672-26226-6 $24.95

D APPLE II FOR KIDS FROM 8 TO 80
Large format, varied activities, conversational approach and
extensive graphics all combine with special computer camp
principles to help you learn fast. Zabinski and Mazzola.
ISBN 0-672-22297-3 $10.95

D KID-P'OWERED GRAPHICS
This simple, direct and jargon-free treatment focuses on com
mands, variables and program planning for students and
teachers in grades 3-8. David J. Fiday.
ISBN 0-672-22229-9 $14.95

D POLISHING YOUR APPLE, Volume 1
End your search through endless manuals with this clearly
written, high ly practical, concise assemblage of the pro
cedures needed for writing, filing and printing programs.
Herbert M. Honig.
ISBN 0-672-22026-1 $4.95

D POLISHING YOUR APPLE, Volume 2
Create attractive menus, do effective error-trapping and im
prove program flow with routines to format currency entries,
eliminate using return and generate 4-digit day, month, year
dating. Herbert M. Honig.
ISBN 0-672-22160-8 $4.95

DAPPLE PROGRAMMER'S HANDBOOK
Just the thing to get you started in assembly language on the
Apple. Packed with essential Apple data, dozens of tested
"stock" routines organized by topics and a detailed memory
map. Paul Irwin.
ISBN 0-672-22175-6 $22.95

DAPPLE lie PROGRAMMER'S REFERENCE
GUIDE
Makes needed lie facts, applications and other technical infor
mation readi ly available at your fingertips. David L. Heiserman.
ISBN 0-672-22299-X $19.95

D APPLE II ASSEMBLY LANGUAGE lJ.
Specifically designed to show beginning assembly language
programmers how to use the Apple's three character, 56-word
assembly vocabulary to create powerful, fast-running pro
grams. Marvin L. DeJong.
ISBN 0-672-21894-1 $15.95

D INTERMEDIATE LEVEL APPLE II HANDBOOK
Practical information that uses ROM-based Integer BASIC to
lead you into Apple 6502 machine and assembly language pro
gramming. Learn to mix machine code with BASIC and use In
teger's miniassembler, too. David L. Heiserman.
ISBN 0-672-21889-5 $16.95

D APPLE FORTRAN
Only fully detailed Apple FORTRAN manual on the market for
beginning and advanced programmers, businessmen and other
professionals. Blackwood and Blackwood.
ISBN 0-672-21911-5 $14.95

0 CIRCUIT DESIGN PROGRAMS FOR THE
APPLE II
Applesoft programs to show you "what happens if" and
"what's needed when" as they apply to periodic waveform, rms
and average values and the solution of simultaneous equa
tions. Howard M. Berlin.
ISBN 0-672-21863-1 $15.95

0 THE APPLE II CIRCUIT DESCRIPTION
Provides a detailed circuit description of the Apple II mother
board, keyboard and power supply. Covers all Apple II and II+
revisions and includes timing diagrams for most signals.
Winston Gayler.
ISBN 0-672-21959-X $22.95

D APPLE II PLUS/lie TROUBLESHOOTING AND
REPAIR GUIDE
Troubleshooting f lowcharts that allow you to diagnose and
remedy the probable cause of failure, plus advanced
troubleshooting for more complicated repairs. Robert C.
Brenner.
ISBN 0-672-22353-8 $19.95

0 DISKS, FILES, AND PRINTERS FOR THE
APPLE II
Easy-to-follow instructions for using disks and printers with
the Apple II, plus tips on programming with sequential, random
and EXECutive files also included. Blackwood and Blackwood.
ISBN 0-672-22163·2 $15.95

M•O•R•E O F•R•O•M O S•A•M•S
D APPLE II APPLICATIONS lJ.
Presents a broad spectrum of tested programming and board
level interfacing applications, including serial and parallel 1/0
boards, EPROM or E2PROM boards and remote data acquisi
tion . Marvin L. DeJong .
ISBN 0-672-22035-0 $13.95

D APPLE INTERFACING
Allows engineers, technicians, and hobbyists to master the im
portant task of successfully interfacing an Apple computer
with a variety of peripheral devices. Titus, Larsen and Titus.
ISBN 0-672-21862-3 $11.95

D FINANCIAL PLANNING MIND TOOLS
Seventeen pre-formed model overlays, or templates, allow you
to quickly use your spreadsheet for virtually every financial
calculation you will ever need. Expert Systems, Inc. Apple II
versions /equires Apple II compatible system, 64K RAM, one
disk drive and Multiplan or VisiCalc software.
For Multiplan
ISBN 0-672-29058-8 $79.95
For VisiCalc
ISBN 0-672-29059-6 $79.95

D MONEY TOOL
Keeps accurate records of income and expenses, balances and
reconciles your checkbook and helps manage your bank ac
counts for maximum interest. Herb Honig. Requires Apple II
compatible system, 48K RAM, DOS 3.3, Applesoft in ROM, one
disk drive and printer.
ISBN 0-672-26235-5 $29.95

D PEN PAL
Affordable and_ easy to use word processing for your Apple.
Left/right justifies, centers, indents, auto page-numbers. Does
text search, search and replace, delete and block moves. Many
on-line help menus. Moller and Moller. Requires Apple II com
patible system with 48K RAM, DOS 3.3, one disk drive and
printer.
ISBN 0-672-26234-7 $29.95

D INSTANT RECALL
Extremely fast , memory-based freeform data base allows in
stantaneous search and retrieval of characters, words or com
binations thereof. Supports all types of printers. Charles R.
Landers. Requires Apple II compatible system, 48K RAM , DOS
3.3, Applesoft in ROM and one disk drive. BO-column printer
optional.
ISBN 0-672-26233-9 $29.95

D HELLO CENTRAL!
Terminal program lets you dial voice calls, take messages and
use the built-in text editor to prepare, save, retrieve,
manipulate and print your communications. Bruce Kallick. Re
quires Apple II compatible system, 48K RAM, DOS 3.3, one disk
drive and modem. Printer and hard disk system optional.
ISBN 0-672-26081-6 $99.95

D COMPUTER GRAPHICS USERS GUIDE
Subjects include basic geometry, fundamental computing,
turning your ideas into pictures and transferring these pictures
from the computer to video tape or film . Many beautiful, full
color photographs. Andrew S. Glassner.
ISBN 0-672-22064-4 $19.95

D KEYFAX FOR THE APPLE II/lie
Two-color, rugged plastic templates fit around your keyboard
and provide required keystroke ·information for DOS and ap
plications software. Howard W. Sams & Co., Inc.

D VisiCalc/DOS 3.3
No. 26152 $12.95

D Multiplan/DOS 3.3
No. 26173 $12.95

D Applewriter lie/DOS 3.3
No. 26200 $12.95

D ProDOS (both sides)
No. 26202 $12.95

D Applesoft BASIC (both sides)
No. 26208 $12.95

D THE CAD/CAM PRIMER
Learn the basics about CAD/CAM and its probable impact on
our lives. Daniel Bowman.
ISBN 0-672-22187-X $14.95

D APE ESCAPE
As Harry the Ape, your task is to climb a skyscraper wh ile
avoiding bowling balls, falling nets, a zookeeper on a scaffold
and earthquakes. Kevin Bagley. Requ ires Apple II compatible
system, 48K RAM, DOS 3.3, Applesoft in ROM, one disk drive.
ISBN 0-672-26242-8 $19.95

D REGATTA
Complete documentation allows even a novice to quickly enjoy
this accurate simulation of sailing on a small but demanding
scale. DeMuth and Peterson. Requires Apple II compatible
system, 48K RAM, DOS 3.3, one disk drive.
ISBN 0-672-26237-1 $19.95

D SPUD/MUG SHOT
An incredible, fast-action, challenging game in which you and
your opponent each attempt to deflect the spud toward the
other's fort. Stephen Walloch. Requires Apple II compatible
system, 48K RAM, DOS 3.3, Applesoft in ROM , one disk drive.
Game paddles, color monitor optional.
ISBN 0-672-26241-X $19.95

D VOYAGE OF THE VALKYRIE
Conquer the island of Fugloy and claim its gold. By careful ex
ploration, you must discover the location of 10 castles. Leo
Christopherson. Requires Apple II compatible system, 48K
RAM, DOS 3.3, Applesoft in ROM, one disk drive, game paddles
or joystick.
ISBN 0-672-26238-X $19.95

D CAVES OF OLYMPUS
A classic adventure set on the planet Olympus. Outwit the
Overseer and escape to safety. Noone and Noone. Requires
Apple II compatible system, 48K RAM", DOS 3.3, Applesoft in
ROM, one disk drive.
ISBN 0-672-26239-8 $19.95

M•O•R•E O F•R•O•M O S•A•M•S
D BERMUDA RACE
Highly accurate simulation of the race from Newport, Rhode
Island to Bermuda lets you test your skills against the experts.
Biddle and Mattox. Requires Apple II compatible system, 48K
RAM, DOS 3.3, one disk drive. Game paddles, joystick, color
monitor optional.
ISBN 0-672-26236-3 $19.95

D MUSIC GAMES
Twelve entertaining, animated games combine to teach you
basic musical concepts. For ages 5 through adult. Lydia Bell.
Requires Apple II compatible system, 48K RAM, DOS 3.3, Ap
plesoft in ROM, 1 disk drive, and game paddles or joystick.
© 1982.
ISBN 0-672-26240-1 $19.95

D EXPERIMENTS IN ARTIFICIAL INTELLIGENCE
FOR SMALL COMPUTERS
Can a computer really think? Decide for yourself as you
duplicate such human functions as reasoning, creativity,
problem-solving, verbal communication and game playing.
John Krutch.
ISBN 0-672-21785-? $9.95

D INTRODUCTION TO ELECTRONIC SPEECH
SYNTHESIS
Why do computers talk funny? This book helps you under
stand how a human "voice" is electronically created, explains
three digital synthesis technologies and relates speech quali
ty, data rate and memory devices. Neil Sclater.
ISBN 0-672-21896-8 $9.95

D PASCAL WITH YOUR BASIC MICRO
You've heard of Pascal, but don't want to make a substantial in
vestment until you learn more? This two-part book explains
the language and includes a pseudo-Pascal compiler. Jeremy
Rushton.
ISBN 0-672-22036-9 $9.95

D ADVANCED 6502 INTERFACING JIJ.
Provides the expertise to design and interface circuits and LSI
devices that allow 6502 based micros to talk to "the outside
world." A must for your reference library. John M. Holland.
ISBN 0-672-21836-4 $13.95

D 6502 SOFTWARE DESIGN
Beginning with the 6502 instruction set , this tutorial takes you
through subroutines to final assembly language application
programs. Leo J. Scanlon.
ISBN 0-672-21656-6 $13.95

D PROGRAMMING AND INTERFACING THE
6502, WITH EXPERIMENTS
Actually two books in one, beginning with assembly language
programming and concluding with interfacing techniques.
Marvin L. De Jong.
ISBN 0-672-21651-5 $17.95

D THE MICROPROCESSOR HANDBOOK
Contains complete, standardized specifications for the 8080,
8085, 280, 6800, 6802, 6809, 6502, 8086, 8088, 28000 and 68000,
plus data for popular parallel and serial 1/0 port and common
memory chips. Elmer C. Poe.
ISBN 0-672-22013-X $14.95

D Has Your Apple Gone Soft?
Sams Computerfacts can help! Computerfacts reveals the in
ner workings of Apple micros, monitors, printers and disk
drives. It includes schematic wiring diagrams, parts lists,
disassembly instructions, troubleshooting techniques and
other repair data, all of it laboratory tested and all of it usable
by anyone with access to the tools and skills for fixing an or
dinary TV set. Order now!

Computerfact
Coverage Number Price
D Apple II, II+ computer 8900 ,$19.95
D Apple II A2M0003 disk drive 8938 19.95
D Apple II A3M0039 monitor 8939 19.95
D Apple lie computer 8920 19.95
D Apple lmagewriter printer 8941 19.95

Look for these Sams Books at your local bookstore. To order direct, call 1-800-428-SAMS or fill out form below.

--

Please send me the books whose numbers I have listed above. Mail to:
Enclosed is a check or money order. for $, ____ (plus $2.00 postage and handling). Howard W. Sams & Co., Inc.,

Charge my: D VISA
Account No. I I I I

o MasterCard 4300 West 62nd Street,
11 I I I I L..I -'--L...-L.....JI I I Exp. Date____ Indianapolis, Indiana 46268

Name {please print) _________________________ _

Signature (required tor credit card purchases) _________________ _

Address

City -----------~---State ____ Zip _____ _ DC006

RESPONSE CARD
D Keep me informed of any updates and

add itions to the Enhancing series.
D Please send me a free Don Lancaster

software product and book l ist.
D I am also defin itely interested in the new

"13 day" pre-release program.
D What I need right now are _ _ ____ _ _

D The next enhancements I want to see are

NAME
ADDRESS- _ ___________ _

CITY ______ STATE _ ZIP __ _

voice phone ____ ____ ____ ~

data phone ________ ____ _

..:

DISKETTES
Please send me:

D Enhance Volume 1 Diskette $19.50
D Enhance Volume 2 Diskette $19.50
D Assembly Cookbook Diskette $19.50
D Apple Writer® AWlle TOOLKIT

(8 disk sides) $39.50

D Check enclosed for$

D Charge my VISA/MasterCard account

Expiration Date _ ______ ___ _

Signature _ ________ ___ _

D ProDOS™ App le Writer® 2.0 TOOLKIT
(8 disk sides) $39.50

D Old fangled animation demo (Meyer) .. $ 9.90
D Incredible Secret Money Machine $ 7.50
D Don Lancaster book and software list .. . free

NAME
ADDRESS ___________ _ _

CITY _____ _ STATE _ ZIP ___ _

Please, NO purchase orders, COD, cash,

Canadian , or foreign.

DISKETTES
Please send me:

D Enhance Volume 1 Diskette $19.50
D Enhance Volume 2 Diskette $19.50
D Assembly Cookbook Diskette $19.50
D Apple Write r® AWlle TOOLKIT

(8 disk sides) $39.50

D Check enclosed for$ ___ _ ____ _

D Charge my VISA/MasterCard account

Expiration Date _ ____ _____ _

Signature _______ _____ _

D ProDOS™ Apple Writer® 2.0 TOOLKIT
(8 disk sides) $39.50

D Old fangled an imation demo (Meyer) .. $ 9.90
D Incredible Secret Money Machine $ 7.50
D Don Lancaster book and software list ... free

NAME
ADDRESS ___ ____ ______ _

CITY _______ STATE _ ZIP ___ _

Please, NO purchase orders, COD, cash ,

Canadian , or foreign .

FROM

SYNERGETICS
746 First Street
Box 809
Thatcher, AZ 85552

PLACE
POSTAGE

HERE

~- ---- -.....---·-----·- ---- - -- -- --- ·- -- -- - -- ---- -- - -- - ------- ~-- --- ""---- - - -
FROM

SYNERGETICS
746 First Street
Box 809
Thatcher, AZ 85552

PLACE
POSTAGE

HERE

. - -- - - - - - - - - - - - - - - --- - - -- -- - -- -- - --- -- - · - --
FROM

SYNERGETICS
746 First Street
Box 809
Thatcher, AZ 85552

PLACE
POSTAGE

HERE

Enhancing Your
Apple® II and lie
Volume2
A few simple enhancements can make a big difference in the way your computer operates!
Get this book and you'll get some helpful modifications and techniques you can use right
away to:

• Microjustify and proportionally space Applewriter lie to produce hard copy that's almost
as good as typeset copy

• Regain control of your machine by picking up an "old monitor" absolute and unconditional
reset

• Eliminate the Wolfenst~in SS using 6 new and easy-to-build playing aids

• Capture your own source code for custom modification using the "tearing method"

• Use software to create an exact and jitter-free screen lock, and much more!

Don Lancaster's writing style is light and informative. So learn how to get more from your
Apple computer! Let Don Lancaster show you the way.

Don Lancaster heads Synergetics, a new-age prototyping and consulting firm involved in micro applica
tions and electronic design. He is the well-known author of Sams CMOS and TTL Cookbooks. A pioneer in
microcomputers, he introduced the first hobbyist integrated-circuit projects, the first sanely priced digital
electronics modules, the first low-cost TVT-1 video display terminal and the first per·sonol computing
keyboards. Lancaster's numerous books and articles on personal computing and electronic applications
hove set new standards for understandable, useful, and exciting technical writing.

Other SAMS books by Don Lancaster include Active Filte_r Cookbook, CMOS Cookbook, TTL Cookbook, RTL
Cookbook , TVT Cookbook, Cheap Video Cookbook, Son of Cheap Video, The Hexadecimal Chronicles,
The Incredible Secret Money Machine (available only from Synergetics), Don Lancaster's Micro Cook
books Volumes l and 2 and Don Lancaster's Assembly Cookbook for the Apple II and lie.

Howard W. Sams & Co., Inc.
4300 West 62nd Street, Indianapolis, Indiana 46268 U .S.A.

$17 .9sm42s ISBN: 0-672-22425-9

	Enhancing Your Apple II & IIe Volume 2
	Table of Contents
	Introduction
	Enhancement 9: Microjustify & Proportional Space Apple Writer IIe
	Enhancement 10: Absolute "Old Monitor" Reset for the IIe
	Enhancement 11: Castle Wolfenstein Escape Maps
	Enhancement 12: Tearing into AppleWiter IIe
	Enhancement 13: The Vaporlock
	Apple Enhancer Support Services
	Index
	More From Sams
	Response Card
	Back Cover

