

ENHANCING YOUR APPLE® II

VOLUME 1

Second Edition

Don Lancaster heads Synergetics, a new-age prototyping and consulting firm
involved in micro applications and electronic design. He is the well-known author of
the classic CMOS and TTL Cookbooks. He is one of the microcomputer pioneers,
having introduced the first hobbyist integrated-circuit projects, the first sanely priced
digital-electronics modules, the first low-cost TVT-1 video display terminal, the first
personal computing keyboards, and lots more. Don's numerous books and articles
on personal computing and electronic applications have set new standards as under
standable, useful, and exciting technical writing. Don's other interests include eco
logical studies, firefighting, cave exploration, bicycling, and tinaja questing.

Other SAMS books by Don Lancaster include Active Filter Cookbook, CMOS Cook
book, TTL Cookbook, RTL Cookbook (out of print), TVT Cookbook, Cheap Video
Cookbook, Son of Cheap Video, The Hexadecimal Chronicles, The Incredible Secret
Money Machine (available only from Synergetics), Don Lancaster's Micro Cookbooks
Volumes 1 and 2, and Don Lancaster's Assembly Cookbook for the Apple II and lie.

ENHANCING YOUR
APPLE® II

VOLUME 1
Second Edition

by Don Lancaster

Howard W. Sams & Co., Inc.
4300 WEST 62ND ST. INOIANAPOLIS, INOIANA 46268 USA

Apple is a registered trademark of Apple Computer Inc., Cupertino, CA.
Franklin Ace 1000 and Franklin Ace 1200 are trademarks of Franklin Computer

Corp., Cherry Hill, NJ.

Copyright© 1982 and 1984 by Howard W. Sams & Co., Inc.
Indianapolis, IN 46268

SECOND EDITION
FIRST PRINTING-1984

All rights reserved. No part of this book shall be
reproduced, stored in a retrieval system, or transmitted by
any means, electronic, mechanical, photocopying,
recording, or otherwise, without written permission from
the publisher. No patent liability is assumed with respect to
the use of the information contained herein. While every
precaution has been taken in the preparation of this book,
neither author nor publisher assumes any responsibility for
errors or omissions. Neither is any liability assumed for
damages resulting from the use of the information
contained herein.

International Standard Book Number: 0-672-21822-4
Library of Congress Catalog Card Number: 83-51704

Edited by Frank N. Speights
Illustrated by T. R. Emrick

Printed in the United States of America.

CONTENTS

INTRODUCTION 7

ENHANCEMENT 1

Two CLOMPERS .. 11

Two methods to eliminate hassles over rf changeover switches.

ENHANCEMENT 2

PROGRAMMABLE COLOR KILLER 1 7

Simple modification that eliminates color fringes on HIRES text displays
under software control.

ENHANCEMENT 3

TEARING INTO MACHINE-LANGUAGE CODE 29

An astonishingly fast and simple way to tear apart someone else's
machine-language program.

ENHANCEMENT 4

FIELD SYNC .. 89

One wire add-on for stunning new animation, game, video, and control

possibilities.

ENHANCEMENT 5

fuN W1rn M1xrn f1ELDS .. 115

Mix or match text, HIRES, and LORES any place on the screen, fast and
flicker-free. Also reveals the secret of the 121 LORES colors. Or does it?

ENHANCEMENT 6

GLITCH STOMPER , ... 1 5 7

Add-on adaptor that further improves field sync and mixed field switching.

ENHANCEMENT 7

GENTLE Sc ROLL ... 169

Easy to use program gives you gentle or crawling scrolls that are easily read
while in motion.

ENHANCEMENT 8

FAST BACKGROUNDER .. 199

Utility program that gives you hundreds of HIRES colors or zillions of

background patterns.

APPENDIX

SPECIAL UPDATE SECTION .. 225

Changes, programs, lists, and other items that will allow you to enhance the
operation of your Apple lie and Franklin computers.

INDEX .. 265

INTRODUCTION

If you use your Apple II personal computer often enough, long enough, and
late enough, eventually your Apple may decide to reveal "IT" to you.

"IT" is a series of revelations on where we came from, where we are, and
where we are heading. Most often, your Apple will reveal "IT" to you very early
some morning in your second or third year of Apple use.

The "IT" revelation is for real. Just ask anyone who has worked with an Apple
long enough. The wry smile and knowing nod tells all.

If my Apple will forgive me, I'd like to reveal some of the present "IT"
messages to you, for they say a lot ...

- Ii Ii Ii -

The Apple II is far and away the single most powerful tool ever put in the
hands of many individuals on an uncontrolled and unregulated basis. The new
personal freedoms and the potential opportunities that result from this are almost
beyond belief. It's now a whole new ball game, a jump into hyperspace from
where we are. The Apple II is far more significant and it will have a vastly greater
impact than such short term frivolities as the automobile and television-and,
possibly, even more than the printed word itself. Even time may eventually be
measured as "BA" and "AA," split at that magic date in the spring of 1977.

-lilili-

The Apple experience is absolutely and totally unique. There is no other
product available anywhere, at any price, that adapts itself as easily, as well, and

as conveniently to whole new worlds of strongly user-oriented applications. The
unbridled potential of Apple's sixteen 1/0 sockets is utterly awesome.

- • Ii Ii -

Future historians will recognize the Apple 11 as the DC-3 of the microcomputer
revolution.

- lilili-

There are several reasons for Apple's success. The first is simply being in the
right place at the right time. The second is blind luck. But, the third and most
important reason is that Apple has lacked "us-versus-them."

7

8 Introduction

Apple has always treated its users like they were friends and not the enemy.
They didn't seal the works up, or keep you out of the system monitor, or hide
their documentation under an armadillo somewhere, or try to prevent you from
doing easy add-ons, enhancements, or expansions. Apple didn't force software
people to buy an expensive development system. Instead, the Apple II itself is
its own superb development tool. There's no fancy modules or other restraints
that keep anyone from getting into the Apple support business. In fact, the widest
possible number of Apple hardware and software suppliers was encouraged
from the start. And the "our engineering department not only knows best,
but they are God" attitude of other manufacturers is simply not there
with Apple.

- ... -
The garbage-to-good ratio of Apple software is skyrocketing. The quantity of

truly astoundingly atrocious Apple software is now running at least a thousand
times ahead of the useful and reasonable stuff. And, it's getting worse.

Garbage software fails to use the unique Apple resources to the utmost. This
type of software may be as snotty as most of the dino stuff. It may use fancy
packaging and/or expensive promotion to try and make up for sloppy and
poorly thought-out coding. Garbage software is usually locked, so that the user
cannot back up or modify the program to suit his own needs. It is usually slow
and awkward to boot. Garbage software also usually demands oddball codings
and disk formats that guarantee incompatibility with everything else.

Garbage software is caused by people who are greedy, sloppy, dumb, inex
perienced, in a hurry, or all five. Garbage software is not user oriented. It is
overpriced. It has miserable error recovery. It tries to solve some small specific
problem, rather than being a generalistic tool that can handle a broad class of
problems. Garbage software steals the ideas of others, but can only come up
with a second-rate result at best. It attacks problems that not only do not need
solving, but which shouldn't be solved at all with a computer.

Please, if you are going to write this sort of trash, go get yourself a different
brand of personal computer. We don't need you and we definitely don't want
you.

-... -
Any attempt whatsoever at copy protection will hack off and inconvenience

your legitimate users and will dramatically increase the number of bootleg cop
ies of your program in circulation. It will also price your program out of the
market.

A user of software demands the absolute right to make backup copies of
everything he buys, and must have the right to examine and modify all coding
in that software so he can meet his own needs. These are mandates.

The big thing about copy protection is that it doesn't. A year's effort by a
crackerjack military cryptography team can usually be undone in fifteen
minutes, between klingon zappings, by your average fourteen-year-old. And,
morality and economics aside, one fact stands out

Undoing copy protection is fun!
Not only is it fun, but cracking the uncopyable is about the most challenging

and most rewarding thing that you can possibly do with your Apple. And, the
things you learn along the way are exactly the skills that you will need to become
a really great programmer. So, I guess we should all be thankful for the copy
protection fanatics since they are giving us all this fascinating entertainment
and superb training at an unbeatable price.

Introduction 9

-... -
Today's best and brightest Apple programmers are stumbling around in the

dark. Proof of this is that a program with a Peelings rating of "AA" today barely
earns a "B" next year, and drops to a "D" or unfit-for-use "F" the next.

Surely, by now, the message is in: it is absolutely impossible to write a great
program in BASIC. Pascal, of course, is so bad that it is beyond the pale. Great
programs must execute either wholly or in part in machine language so they
can use Apple's resources to the utmost, at the fastest possible speed. Check
Softta/k's top thirty. At this writing, thirty out of thirty either execute totally in
machine language or make extensive use of machine-language sequences.

It's scary to think of what a really good programmer, who truly understands
his Apple, will be able to do with this machine. It hasn't happened yet, but watch
out. It is only a matter of time.

-... -
We are only now beginning to find out about some secrets of the Apple that

everybody should have known about way back in 1977. For instance, we know
now that we can have many different fonts of upper- and lower-case characters
without using special hardware. We know that we can easily do an SO-character
line with zero additional hardware, and that lines above a hundred characters
are possible. We know that it is easy to quadruple the HIRES virtual resolution
of the Apple. Thus, 64 lines of characters on-screen is trivial.

We know, ot course, that there are hundreds ot colors available either in
HIRES (high resolution) or LORES (low resolution). We also know that we can
mix and match HIRES, LORES, and text anyway that we like-anywhere on the
screen. We know that we can do an exact, jitter-free, software lock to video
timing for video wipes and precision light pens. Once again, these require no
special hardware. And, of course, we know we can gently and legibly scroll the
characters up the screen. We know that the early graphics mappings were much
slower than necessary. And, we know our Apple can directly interface robotics
and appliance controls-again, without special hardware.

The big question is: "How much don't we know that we should have known
back in 1977?"

- •• ,I -

This Enhancing Your Apple II ra:· series is intending to try and bring everybody
up to 1977. We want to try and understand what we really have in the Apple
11, and what its real capabilities and limits are.

Each enhancement is designed to show you something about some small
corner of your Apple. While a typical enhancement will combine some simple
new hardware with a machine-language driver or two, just about anything at all
is likely to crop up. We have tried to mix simple and advanced enhancements
together, so there will be something here for you, regardless of how much Apple
experience and expertise you now have.

We also have "unbundled" everything for your convenience and cost savings.
Each enhancement is in four pieces. The first part of an enhancement is the
complete story and listings here in this volume. Secondly, there is a companion
diskette you can order using one of the cards in the back of the book. This
diskette includes copies of all the code used in this volume and more. Ma
chine-language codings include full source documentation under your choice
of EDASM or the 5-C Assembler, while BASIC Programs include full documenta
tion. Naturally, you are free to copy, adapt, and modify this standard DOS 3.3
diskette to your heart's content, so long as you do so only for your own use.

l O Introduction

Thirdly, there is a parts kit you can order that includes everything you will
need to make all of the hardware modifications involving all the enhancements
in the entire book. Lastly, and most important, there is also a feedback card. This
card is needed for your participation in some of the enhancements. It also
registers your name for updates and corrections, and it "closes the loop" so we
can offer the best possible Apple enhancements in future volumes.

Should you be interested, we will add an on-line update and bulletin board
service to this feedback process. Let us know if you have a modem and want
to participate.

This volume was first written for the Apple II Plus. Just about everything
shown here can be done one way or another on just about any Apple, Apple
II+, Apple lie, Franklin, or other Apple clone, but some customizing may be
needed. Please check the update section in the back of the book for more
specifics.

Taking a quick look at this volume, we start out with a pair of simple glompers
that anyone can build. These solve completely the video changeover-switch
hassles that you might have when using an rf modulator. Enhancement 2 is a
software color killer. A plug-in reversible hardware mod lets you eliminate all
color fringes from black and white high resolution (HIRES) displays under soft
ware control. You can now combine color and black and white displays in the
same program without any set adjustments.

The real heavy of this volume is Enhancement 3. Here we find a method for
tearing apart someone else's machine-language program that is astonishingly fast
and super easy. It may take you years to fully explore and fully comprehend the
implications of this single enhancement.

Another heavy appears in Enhancement 4. We add a lone wire here to give
you a way to exactly lock your programs to video timing. And, we mean exact.
The locking is done jitter free, which opens up bunches of new applications,
such as video wipes and precision hardware-free light pens.

Want to mix and match HIRES, LORES, and text anywhere on your Apple
screen? This is trivially easy once you master Enhancement 5. We also see how
to tap the hundreds of available LORES colors in this enhancement. A compan
ion hardware mod called a glitch stamper appears as Enhancement 6. This
add-on makes displays that switch modes on screen operate even better.

How about a gentle scroll, where the characters move smoothly up the screen
rather than jumping up illegibly like they do now? This one's done in Enhance
ment 7. It's super smooth, and completely glitch free. The final enhancement
in this volume shows us how to pick up hundreds of different HIRES background
colors, and how to put them down seven times faster than you might think
possible.

That's about it for Volume 1. But, we have some really great stuff on tap for
future volumes. A sneak preview appears at the end of this volume. This series
is open-ended. As long as there are new things to learn about your Apple® and
new ways to do them, we will try and show you how to do them.

Oh, yes. Some legal beagle somewhere will probably get bent out of shape
if I don't tell you that Apple is a registered trademark of some outfit in California
whose name I don't recall just now, and that everything here is pretty much my
own doing, and is done without Apple's knowledge or consent.

DoN LANCASTER

This book is dedicated to "IT"

This enhancement works on all Ap
ples. It is only needed when an rf
modulator is in use.

Enhancement

TWO GLOMPERS

TWO GLOMPERS

Here's two different ways to elimi
nate the hassles caused by the
changeover switches on rf modula
tors. One glomper is portable. The
other is more or less permanent.

Have you ever been infuriated by that#$%#& changeover switch on your
Apple's rf modulator?

If you can find a flat place to stick it on the back cf your tv, it's stuck there
for good. If you can't, the switch quickly does a Kamakazi act, strangling itself
on its own leads. And, this switch is very difficult and inconvenient to move from
tv to tv.

This changeover switch is totally useless. It doesn't even do what it is intended
to do, since you can easily leave a built-in antenna in place and radiate your
video all over everywhere.

Here are two much saner antenna g/ompers that you can use instead. Either
glomper version will quickly and easily fit any tv. They are cheap and simple
enough that you can build lots of them.

I.' Enluncemt'nt I

~1ost rf modulators provide a phono plug input to the changeover switch. This
pho110 plug fits a strndard RCA phono jack. Both glompers start with an RCA
phono jack and adapt it so that it is super easy to connect to your tv.

Our glomper of the first kind is shown in Fig 1-1. This one mounts a phono
jc1ck 011 a clothespin tv antenna connector. This style glomper is best when you
are using your Apple on lots of different tv sets at different times, or if you want
to quickly switch between sets.

Glomper of the first kind is made from a phono jack and a clothespin connector.
Use it if you often change or test different tv·s.

Fig. 1-1. A glomper of the first kind.

The glomper of the first kind is also very useful if you are buying a color tv
and want to take your Apple to the store in order to compare lots of models to
see which handles Apple video the best.

Here are the parts you will need for a glomper of the first kind

PARTS LIST FOR A
GLOMPER OF THE FIRST

KIND

() Clothespin-style tv
antenna connector.

() RCA phono jack,
vertical pc-mount style.

() No. 22 stranded
hookup wire, insulated,
2 inches long.

() Solder flux (optional).

() Short piece of
electronic solder.

And here is how you build one

CLIP TURNED OVER

CUT OR
MELT

NOTCH

CRIMP
GENTLY

w
N
ui
...J
...J
::,
le,

Two Clompers 73

INSTRUCTIONS FOR BUILDING A
GLOMPER OF THE FIRST KIND

1. Try to fit a RCA upright pc phono jack to the two holes in the
clothespin antenna connector as shown. One hole is in the
metal and one is in the plastic.

If the center connection of the phono jack interferes with the
plastic handle, remove some of the plastic as shown. Use a
knife, a file, or simply melt the plastic with a soldering iron as
needed.

2. Strip 1/4 inch of insulation from both ends of a 2-inch-long
piece of No. 22 stranded wire.

Solder one end of this wire to the center conductor of the
phono jack. Make sure the phono plug fits after soldering.

3. Carefully and throughly clean both the phono jack and the
clothespin connector at the point where they are to be
soldered together. Add a drop of super-safe electronic solder
flux if it is available.

Solder the phono jack to the antenna clothespin connector as
shown. Use a soldering gun or a medium (100 watt) soldering
iron.

4. Gently crimp the unsoldered ear of the phono jack against
the plastic of the clothespin connector.

Be sure the jack has cooled before you do this.

5. Carefully clean the other side of the clothespin connector.
Add a drop of super-safe solder flux if it is available.

Solder the free end of the stranded wire to this side of the
clothespin connector.

6. Flex the clothespin a few times to be sure it works smoothly.
Remove any remaining solder flux.

This completes your assembly.

7. To use your glomper, plug the pin plug on the rt modulator
cable into the jack on the glomper, and clip the glomper on the
proper antenna terminals.

ALWAYS REMOVE ALL OTHER OUTSIDE AND INTERNAL
ANTENNA CONNECTIONS WHEN USING THIS GLOMPER!

Fig. 1-2. How to build a glomper of the first kind.

7 4 Enhancement 7

Using these tools

TOOLS NEEDED TO BUILD
EITHER STYLE GLOMPER

() Needle nose pliers

() Diagonal-cutting pliers

() Wire stripper

() Soldering gun or
medium soldering iron

() Ink eraser or steel wool

() Terminal crimper
(optional)

() Small vise or clamp

Construction details are shown in Fig. 1-2. You mount the phono jack on the
plastic handle of the clothespin connector. Be sure to use a stranded wire
between the center of the phono jack and the other arm of the clothespin. Solid
hookup wire will soon break if you flex it too often.

You will also want to carefully clean both the phono jack and the clothespin
connector before soldering. This can be done with an ink eraser or steel wool.
If you have some, a drop of "super-safe" electronic solder flux will make things
much easier. Do NOT use any other type of flux!

Glomper of the second kind is made from a phono jack and spade lugs. Use this
glomper for more permanent connections.

Fig. 1-3. A glomper of the second kind.

Our glomper of the second kind is shown in Fig. 1-3. This one is designed to
be permanently connected to a tv. It is nothing but an RCA phono jack and two
stranded wires ending in spade lugs. Here's the parts you will need

PARTS LIST FOR A
GLOMPER OF THE SECOND

KIND

() RCA phono jack,
vertical pc-mount style.

) Crimp-on spade lugs (2
needed).

() Solder flux (optional).

() No. 22 stranded
hookup wire, insulated,
5 inches long.

) Short piece of
electronic solder.

SOLDER~

vHf BE SURE
~ TO MATCH

~ ------ UHF TO UHF

------- OR

CABLE FROM
RF MODULATOR

VHF TO VHF
(SUP-R-MOD IS A

UHF MODULATOR)

Two Clompers 75

INSTRUCTIONS FOR BUILDING A
GLOMPER OF THE SECOND KIND

1. Cut two pieces of No. 22 stranded hookup wire 2½ inches
long and strip ¼ inch of insulation from each end.

Crimp and then solder one spade lug to one end of each wire.

2. Carefully polish the inside of one leg of an upright pc phone
jack. Then roll this leg over onto the free end of one of the wires.

Add a drop of super-safe solder flux if available and solder wire
to jack as shown.

3. Solder the free end of the remaining wire to the center conduc
tor of the phono jack. Make sure the phono plug fits after solder
inq.

4. Carefully inspect the wiring to be sure there is no short bet
ween the outside and the inside of the phone jack.

You might like to bend the remaining leg of the phono jack in
ward for better appearance.

5. Twist the two leads together four or five times and arrange the
lugs as shown.

This completes your assembly.

6. To use your glomper, connect the spade lugs to the tv's
antenna terminals. Plug the pin plug on the rt modulator cable
into the jack on the glomper.

ALWAYS REMOVE ALL OTHER OUTSIDE AND INTERNAL
ANTENNA CONNECTIONS WHEN USING THIS GLOMPER!

Fig. 1-4. How to build a glomper of the second kind.

Complete construction details are shown in Fig. 1-4. Again, be sure to use
stranded wire, carefully clean before soldering, and use a drop of "super-safe"
flux, if you have it available.

If you have several of your own tv sets in use, put a glomper of the second
kind on each one.

Be sure to connect the output of a uhf rf modulator (such as the SUP-R-MOD)
to the uhf antenna terminals, or the output of a vhf modulator (some others) to
the vhf antenna terminals.

Note also that there are two RCA jacks on the SUP-R-MOD. The one you
want goes down into the rectangular shielded box. The other one is not normally
used and does not output any rf signal. It pays to label these two jacks "RF OUT"
and "VIDEO THRU" by writing on the inside wall of your Apple with a Sharpie
or similar heavy pen.

7 6 Enhancement 7

Regardless of which style glomper you use, please obey this rule

DO NOT EVER CONNECT THE RF
OUTPUT OF AN APPLE SYSTEM TO
A BUILT-IN ANTENNA, OR AN
OUTDOOR ANTENNA, OR TO A
CABLE TV LINE.

If you are using both an outside antenna and a glomper, you should put the
outside antenna line on a clothespin connector as well. If you have cable service,
always unscrew the cable connector before using your Apple.

A glomper of either style must be used with an rf modulator. Just because the
Apple's baseband video output jack is also a phono jack, don't expect any useful
results if you try to feed raw video into the antenna terminals of a tv set. While
you might actually get something on the low channels if you try this, in no way
will the display be stable or useful.

There is one other minor use for your glompers. Many of the music synthesiz
er cards output via a phono jack but can directly drive a speaker. If your speaker
enclosure has a pair of screw terminals on the back, just use either style glomper
to get from the music card to the speaker a

A complete set of all parts needed
to build two glompers of each
style is induded in the companion
parts kit to this volume.

SEEDS AND STEMS

To recopy Applesoft lines without getting
big "holes" in your text, do a POKE 33,33
before listing.

A POKE 33,40 restores listing back to
normal; so does the TEXT command.

This enhancement works only on
older Apples above Revision 0. See
the Update Section for Apple lie and
Franklin info.

Enhancement

PROGRAMMABLE
COLOR KILLER

A simple, cheap, and reversible
hardware modification that elimi
nates color fringes on text and
removes unwanted color lines in
HIRES displays. You now have a
choice of black and white or color
display under program control.

PROGRAMMABLE COLOR KILLER

Did you ever wish that you could eliminate those color fringes on Apple's
HIRES text displays? Or, be able to get rid of the vertical color lines that some
times mess up an otherwise stunning white-on-black HIRES display? Or, be able
to do LORES special effects, where you switch from colors to grey patterns and
back again?

Well, it's going to cost you. Around $1.10 and 15 minutes of your time.
If both of these are within your budget, you can easily add your owQ software

controlled color killer. The mod will work on any but the oldest revision "O"
Apples, and if you are careful, it will be completely reversible and won't void
your warranty.

After the mod is completed, a single command inside your program can give
you a choice of color or true black and white displays on your color tv or color

78 Enhancement 2

monitor. The software control commands are either a simple POKE or a BIT test
and may be done in any language. The color killer shuts off on an autostart reset
and stays disabled until you activate it, so it stays invisible until you want it.

Let's do it.

What is a color killer?

All color television sets have a built-in circuit called a color killer. The color
killer decides whether the program material is being received in black and white
or full color. If it is receiving a black and white signal, then the color decoding
circuits are turned off. This keeps annoying color lines, snow, and fringes out of
black and white program material.

Fig. 2-1 shows us how the color killer inside your color tv works. In a typical
color video signal, either from a tv station or from your Apple computer, there
is a color burst following each horizontal sync pulse. This color burst usually
consists of 8 cycles of a 3.58-megahertz sine wave. When present, the color
burst is used to provide a reference for use by the color decoding circuitry
inside the television. This arrangement lets the circuitry tell one color from
another.

In a typical color signal, a color burst
is provided on the "backporch" of the
horizontal sync pulse. This burst pro
vides a color reference and deac
tivates the color killer, allowing a col
or display.

In black and white video, the color
burst is absent. This activates the
color killer in a color set and switches
to a black and white only display.

Fig. 2-1. How the color killer present in all color sets can tell color from b/w video.

The color killer looks for these bursts, and if it doesn't find them, it defeats
the color processing so that the set displays a black and white picture with no
color fringes. If the burst is present, the color killer lets the color processing
circuits do their thing, and you get a full color display.

Unfortunately for us, the color killer in your set is rather slow. It takes a fraction
of a second for it to work. The reason for this is that in a fringe reception area
where you get a weak or snowy picture, a color killer too fast or too sensitive
would continuously switch from black and white to color and back again as the
signal quality varied. This would really foul things up.

What this means is that, as Apple people, we can only expect a color killer
to be on or off. We can't expect it to switch back and forth during a single field
to give us, say, full-color mixed graphics with a true black and white four-line
message on the bottom. This we cannot do. But we can easily switch from
black and white to full color, and back again, anytime we are willing to have
the entire screen be one or the other.

Programmablf' Color Killer 7 9

The modification

As Fig. 2-2 shows us, all but the earliest Apples have an automatic color killer
circuit built into them. This circuit (Fig. 2-2A) consists of a 2N3904 transistor
(Q6) and a 4.7K resistor (R27). Whenever you are in the full text mode, the point
driving the 4.7K resistor goes positive, which turns Q6 ON, which shorts out the
color-trimming circuit. The short, in turn, eliminates the color burst from the
output. In anything but the full text mode, the point driving the 4.7K resistor goes
low, which turns transistor Q6 OFF, allowing full color.

This existing hardware color killer on your Apple works well with most better
grade color tv's, but it only works on full text displays done the "old" way. It
will not work on a text display on either HIRES page or on mixed graphics. Nor
will it work on a HIRES graphics display that is supposed to be all black and
white. Nor can it work on a LORES display.

Fig. 2-2B shows us how to add one resistor to give us software-controlled
color killing. We add a second 4.7K resistor so that it also goes to the base of
transistor Q6. This resistor comes from the source of AN 1 . Make AN 1 high, and
you kill the burst and get true black and white displays. Make AN 1 low, and you
get full color on everything but text displays.

J:2.
B12

Existing color killer circuit
in your Apple works only in
full text mode.

.!
F14

COLOR
TRIM

>--V..l'v-------------'VV'lr-.- 03
R5 R6

L1

06
COLOR KILLER
2N3904

(A} Color killer circuit.

R5
COLOR

TRIM R6
1?_
B12

>-.I\A,l\r--------.J\/l~-03

New resistor gives you
soflware·controlled color.

.1.
F14

L1

(B} Circuit modification.

06
COLOR KILLER
2N3904

Fig. 2-2. A single resistor is all you need to add a software color killer.

20 Enhancement 2

Rather than grab AN 1 at the game paddle, we get it from its source, pin 10
of Fl 4. This prevents accidental pull-outs when the game paddles are removed.

The autostart ROM always drives AN 1 low on a cold start reset. This makes
the color killer invisible until used. Note that there are errors in some early Apple
reference manuals involving what happens during a cold autostart reset. I have
found that what really happens is that ANO and AN 1 go low and AN2 and AN3
go high on a cold autostart reset. You should correct pages 36 and 143 of your
Apple reference manual if they do not agree with this.

Logically, this is a NOR circuit because switching to the text screen OR turning
annunciator AN 1 ON activates the color killer and puts the colors OFF.

Building it

Here's the parts you'll need

PARTS LIST FOR
SOFTWARE COLOR KILLER

() 16-contact quality DIP
socket, machined-pin
style.

() Pin from machined-pin
DIP socket.

() 4.7K, 1 /4-watt resistor
(yellow-violet-red).

() Short piece of
electronic solder.

And, here are the tools you will need

TOOLS NEEDED TO BUILD
SOFTWARE COLOR KILLER

() Needle nose pliers

() Diagonal-cutting pliers

() Wire stripper

() Small soldering iron, 35
watt

() Any old 14- or 16-pin
DIP integrated circuit

() Small vise or clamp

Fig. 2-3 shows us the area of the Apple's board that we are going to work with.
The color killer transistor Q6 is located above integrated circuits Fl 3 and Fl 4.

Programmable Color Killer 2 7

CD ADAPTER MADE FROM
PREMIUM DIP SOCKET APPLE II
GOES IN F14. MAIN BOARD

F13

@ PIN 10 OF ADAPTER
CONNECTS TO 06
END OF R27 THRU
NEW 4.7K SERIES
RESISTOR

COLOR
TRIM

@ EXISTING 9334
OR 74LS259
REPLUGS
INTO ADAPTER

Fig. 2-3. Pictorial shows color killer hardware additions. Single pin socket at Q6 allows
easy removal.

See the APPLE board parts locations sidebar located at the end of this en
hancement for more details on how to locate a part on your Apple's main circuit
board. There is a grid numbered from 1 to 14 across the bottom, and lettered
A through K up the left-hand side. Letters "G" and "I" are omitted to save on
confusion. Location "Fl 4" is the place where the "F" row and the "14" column
cross. Note that Fl 4 is NOT the fourteenth component in that row. Some ICs
are larger than others and other locations may not be used at all. Only the grid
location counts. Note that the numbers across the top of the circuit board (not
shown) refer to the 110 slots and have nothing to do with the grid. Note also
that there are other resistors and transistors elsewhere on the circuit board.
These have nothing to do with the color killer and must not be altered.

Your mod consists of adding an adapter socket to Fl 4 that routes a 4.7K
resistor from AN 1 to a new single-contact jack added to the transistor end of
R27. Fig. 2-4 gives the assembly details. Be absolutely certain you are using a
premium 16-pin DIP socket with machined-pin contacts. These may safely be
plugged into another DIP socket without damage. Also, be certain to keep all
solder off of the actual part of the pins that must fit the socket at Fl 4, and be
careful not to melt the plastic part of the socket.

Should you ever want to undo the color killer, just reverse the above proce
dure. If you ever need some warranty repair, carefully untack the single pin
socket as well, and clean up any remaining solder with a solder sucker or
desoldering braid. Strictly speaking, the mod does void your warranty, but you
can easily disguise the fact that it ever was made.

Note that a cold start RESET using the autostart monitor will also turn the color
killer off, but that an autostart RESET to some BASIC program usually will not.
Thus, the color killer will normally come up as OFF if you don't mess with it,
just like it wasn't there.

Remember that an "off" color killer allows colors.
Here's how to install your software color killer ...

2 2 Enhancement 2

INSTALLING THE
SOFTWARE COLOR KILLER

1. Turn the power off and
unplug both ends of the
Apple power cord.

2. Remove the 7 4LS259 or
9334 integrated circuit
at Fl 4, using an IC
puller if you have one
available.

3. Plug the 74LS259 or
9334 into the color
killer's 16-pin socket. Be
sure the notches on
both the socket and the
IC point in the same
direction.

4. Plug the color killer's

... and here's how to build it ...

16-pin socket into the
Apple mainframe at
F 14. Be sure that the
resistor points away
from you and that the
notch on both socket
and IC points towards
the keyboard.

5. Plug the floating resistor
lead into the single
contact socket at R2 7,
using needle-nose pliers.

6. Reconnect the power
cord and apply power.
Run the COLOR KILLER
DEMO program for
checkout.

INSTRUCTIONS FOR BUILDING
THE SOFTWARE COLOR KILLER

1. Take a single pin from a machined-contact socket and bend
it as shown. If you destroy a socket to get one of these pins,
melt the pins out rather than stressing them.

Plug the 4.7K resistor into the single pin socket as a temporary
"handle." Then, tin only the bent part of the socket by applying
a very small amount of solder.

Do NOT solder the resistor to the socket!

2. Find the end of resistor R27 nearest 06 on the Apple main
board and tin the lead of R27 here by applying a small amount
of solder.

Fig. 2-4. How to build your color killer.

w
N
ui
_J
_J

:::,
~

PIN 10

Programmable Color Killer 23

Then, ref low solder the "tail" of the single pin socket to the 06
end of resistor R27. The tail should point towards the
keyboard.

Remove the resistor "handle" after the solder cools.

3. Plug any old nonvaluable 16-pin DIP integrated circuit into
the 16-pin machined-contact pin socket. This will keep the con
tacts aligned should the plastic soften.

Identify pin 10 by inking the plastic.

Note that this MUST be the type of premium socket that has
small machined-pin contacts that are safe to plug into another
socket.

Secure the socket in a small vise.

4. Cut both leads of the new 4. 7K resistor to 7 /16 inch length.
Form a bend and a loop in one resistor lead as shown. Secure
the resistor in this position against the socket somehow.

Solder the resistor loop to pin 10 of the socket, EXACTLY as
shown.

Be sure that no solder gets onto the part of the pin that must
plug into the Apple, and that there are no shorts to adjacent
pins 9 and 11.

5. Remove the nonvaluable IC and set it aside and out of sight.

Position the socket as shown. Then bend the remaining
resistor lead downward as shown.

This completes the assembly.

Refer to the text for installation and checkout.

Fig. 2-4 Cont. How to build your color killer.

24 Enhancement 2

Here's how you use your software color killer ...

USING THE
SOFTWARE COLOR KILLER

From machine language -

BIT $C05B turns killer ON
BIT $COS.A turns killer OFF

From either BASIC -

POKE - 16293,0 turns killer ON
POKE - 16294,0 turns killer OFF

While a BIT test is the most "proper" way of switching AN 1 from machine
language, any old mode that addresses these locations, such as LOA $C05B or
STY $COS.A, may be used.

There could possibly be a conflict between the color killer and anything else
that is plugged into the game socket that uses AN1 as an output. Note that there
would be no conflict on a text di~.play or on a display routed to a black and white
monitor. There may not be a conflict if the other use of AN 1 is brief or rare, or
if it takes place in the text mode. Naturally, if you must have AN 1 for a conflict
ing use, you can always remove the socket and its resistor. But ...

Do NOT disconnect the color killer
resistor without removing the DIP socket!

A floating resistor lead can cause damage
if it happens to hit anything.

Program 2-1 is an Applesoft demo program that makes a pretty HIRES picture
for you and alternately switches the color killer OFF and ON every few seconds.
Watch particularly the effect on the slightly slanted lines in the middle of the
image and the color fringing on the mixed graphics. Besides the Applesoft
language, Program 2-1 needs the color killer hardware modification as described
in this enhancement.

If you hand load this program, be sure to include the space following the
"ON" in line 450. Note also that a color killer ON should give you black and
white and a color killer OFF should give you a full color display.

You can use this demo to test your programmable color killer. The program
works by first setting up a HIRES picture in the mixed graphics mode and adding
some color blocks. Then, it turns the color killer OFF by poking AN 1 to a zero,
and writing the word "OFF" to the text area. It then delays for a few seconds,
pokes ANl to a one, and writes the word "ON." The process keeps repeating
till you end the program with a CTRL-C or a RESET. Any other key reboots the
demo disk. Change line 465 if you do not want this to happen.

Some very old, cheap, or otherwise scungy color tv sets may ignore the color
burst and do their color killing based on whether there is lots of energy in the
"color band." Since Apple always has lots of energy in the "color band," these
sets will ignore any color killing commands. On a set like this, the old hardware
color killer won't work either. On these sets, you are stuck with the old method
of manually backing all the color controls off.

PROGRAM 2-1

COLOR KILLER DEMO

10 REM********************
12 REM* *
14 REM* COLOR KILLER *
16 REM* DEMO *
18 REM* *
20 REM* VERSION 1.1 *
22 REM* (11-4-81) *
24 REM* *
26 REM* COPYRIGHT 1981 *
28 REM* BY DON LANCASTER*
30 REM* AND SYNERGETICS *
32 REM* *
34 REM* ALL COMMERCIAL*
36 REM* RIGHTS RESERVED*
38 REM* *
40 REM********************

52 REM
54 REM
56 REM

COLOR KILLER DESCRIBED
IN ENHANCING YOUR
APPLE II, VOLUME 1.

100 HOME: REM CLEAR SCREEN
110 HGR: REM HIRES ON
120 POKE - 16301,0: REM MIX GR

APHICS

130 HCOLOR= 3: REM DRAW WHITE

200 HPLOT 70,40 TO 120,40 TO 123
,110 TO 168,110 TO 171,40 TO
221,40 TO 221,140 TO 70,140 TO
70,40: REM DRAW FIGURE

300 HCOLOR= l:H = 90:V = 58: GOSUB
500

310 HCOLOR= 2 :H = 90:V = 115: GOSUB
500

320 HCOLOR= 5: H = 190: GOSUB 500

330 HCOLOR= 7 :V = 86: GOSUB 500
340 HCOLOR= 6:V = 58: GOSUB 500
350 HCOLOR= 3: HPLOT 90,86 TO 99

,86 TO 99, 96 TO 90,96 TO 90,
87

360 REM DRAWS SIX COLOR BLOCKS

Programmable Color Killer 25

26 Enhancement 2

PROGRAM 2-1, CONT'D ...

400 VTAB 21: HTAB 12: PRINT "COL
OR KILLER IS";: REM PRINT
MESSAGE

410 POKE - 16294,0: REM TURN
KILLER OFF

420 NORMAL: HTAB 28: PRINT "OFF
";: REM TEXT

425 FOR KK = 0 TO 9:LL = PEEK (
49200): NEXT KK: REM BUZZ

430 FOR N = 0 TO 6000: NEXT: REM
STALL 5 SECONDS

440 POKE - 16293,0: REM TURN
KILLER ON

450 INVERSE: HTAB 28: PRINT" 0
N ";:NORMAL: REM TEXT

455 FOR KK = 0 TO 9:LL = PEEK
49200): NEXT KK: REM BUZZ

460 FOR N = 0 TO 6000: NEXT: REM
STALL 5 SECONDS

465 IF PEEK (- 16384) > 127 THEN
POKE - 16368,0: POKE - 16

294,0: PRINT: PRINT "RUN ME
NU": REM EXIT ON KP

466 REM REPLACE :PRINT: WITH
:END IN 465 IF AUTO MENU IS
NOT IN USE.

470 GOTO 410: REM DO IT AGAIN

500 FOR N = 0 TO 9
510 HPLOT H,(V + N) TO (H + 10),

(V + N)
520 NEXT: RETURN REM SUB TO

DRAW BOXES

Programmable Color Killer 2 7

APPLE BOARD PARTS LOCATIONS

Parts are located on the Apple main circuit board by use of a grid system .

,::-
_J
o._
o._
::,
(/J

a:
w
s
0
ec.

K..,I'-- 1-

J-i-- f

110 CONNECTORS ARE
NOT PART OF GRID

...l

,_

- -
,-

,_
· ..

. ·.

H-+-+---ti----.+---+--+--t---t--+---ti---+-+---+- GRID

/V~~;ATION

F -+-t---+--+--t--+-+---1--------1-----

E

D

Ee
0
f
<l
_J
::,
0
0
::;;
lL

"-

C +--+---l-+--+--+----+--11--+--+--+-t---l•r,"'"""-
f'---- GRID

1-LOCATION
C-13

B +-+--+-+--+-+----t--t--t-+--t-+-+--+-

A -t----,i---+-+--i---+--+--+--+--t--t--+----if,--t--

2 3 4 5 6 7 8 9 10 11 12 13 14

(KEYBOARD)

There are fourteen columns in the grid numbered from 1 to 14. Each numbered column goes
from front to back. There are nine rows in the grid lettered from A to K. Each lettered row goes
from left to right. Letters G and I are omitted to prevent mixups.

An integrated circuit, or IC, is located by finding the grid crossing that it is nearest to. If the IC
is a big one, the lowest grid crossing number is used as the location.

For instance, the game paddle is located at)14. The 6502 microprocessor is said to be lo
cated at H6, although it also takes up grid locations H7, HS, and H'l.

If the Apple is still in the case, you cannot see the grid numbers that run from left to right since
these are at the front of the circuit board under the keyboard. Instead, use row "C" and count the
fourteen integrated circuits from left to right. Integrated circuit Cl is a 74LS153, while integ
rated circuit Cl 4 is a 74LS32.

Note that not all rows are completely filled, and that some ICs are bigger than others. Thus,
the IC in grid location cl 4, which is a 74LS25'l or a 9334, is only the tenth or eleventh device
from the left, depending on the version of your Apple.

Note also that the row of numbers along the top of the board are the slot numbers for the 1/0
sockets and have nothing to do with the grid cal louts.

REMEMBER-To find a given location, count GRID POSITIONS and not devices.

28 Enhancement 2

Our new software color killer only kills the color subcarrier at one point in
the circuit, unlike Revision 7 and later Apple versions whose hardware color
killer nails the subcarrier twice. Thus, the software color killer may be slightly
more sensitive to the control settings.

If you get some brief color flashes during the OFF times on a better grade set,
this usually means the auto-color circuitry in the tv is hunting. Try backing the
color controls off slightly or turning the auto-color switch on the tv OFF if this
happens. Usually, a careful adjustment of controls and a touchup of the rf
modulator video level at the Apple will completely eliminate any color flashing.
On any reasonable set, you should get your choice of continuous color or
continuous black and white, after some initial adjusting tt

The Applesoft program SOFTWARE
COLOR KILLER DEMO is included
in the companion diskette to this
volume.
The program is fully copyable.

A complete set of all parts needed
to build one color killer modifica
tion is included in the companion
parts kit to this volume.

SEEDS AND STEMS

Dirty contacts on a disk controller card can
cause diskette crashes and loss of data.

Clean both the card and the socket every
now and then, using a spray can of color tv
tuner cleaner.

This enhancement works on all Ap
ples and Apple knockoffs. There are
additional monitor features available
in the Apple lie.

Enhancement

TEARING INTO
MACHINE-LANGUAGE CODE

This method of breaking down and
understanding someone else's
Apple II machine-language pro
gram is - to say the least -
unique. Here are complete details
on how to rapidly "crack" both
the form and function of any tough
program. It takes only one-tenth
of the time of orthodox methods.

TEARING INTO MACHINE-LANGUAGE CODE

Check into the top thirty Apple programs used today and guess what? At this
writing, thirty out of thirty will run wholly, or at least partly, in machine lan
guage!

So, while BASIC language people are busy foisting computer literacy off onto
the unwashed masses, and while Pascal people are stuffily trying to salvage
what scant few shards remain of the once mighty computer science theocracy,
and while FORTH people are out acting like spoiled brats ... while all of this
is happening . . .

Machine-language programmers are laughing to themselves all the way to
the bank!

JO Enhancement 3

The evidence is in and it is overwhelming. Cash on the line. If you want to
write a classic program or a best selling program, it must execute either
wholly, or in part, in machine language.

Why?
Because machine language is far and away the fastest running, the most

compact, the most flexible, the most versatile, and the one and only language
that most fully utilizes all of the Apple's resources.

The only sure way to learn machine-language programming is to do lots of
it on your own. But one thing that can help you a lot is to tear apart the winning
machine-language programs of others to see what makes them tick.

You might also like to modify someone else's machine-language program to
suit your own needs. Maybe you would like to find the scroll hooks in the HRCG
High-Resolution Character Generator. Or perhaps you want to modify the origi
nal Apple Writer to output imbedded print format commands to your daisy
wheel. Or change FID to add your own "undelete file" command. Or maybe
you have to modify a printer driver to handle HIRES graphics dumps. Or you
might need some stunning animation. Or want to know what makes an adven
ture tick. Or whatever.

At any rate, if you brute-force attack someone else's machine-language pro
gram and if the program is more than a few hundred bytes long, chances are it
will take you a very long time to crack it to the point where you think you
understand it.

I'd like to share with you a method I use that will crack any unknown machine
language program astonishingly fast. The method does odd things odd ways, but
ends up taking one tenth the time and one tenth the effort of any usual
approach.

We'll assume you already know and have done some machine-language
programming, and that the target program you want to tear into was written by
an experienced and more or less rational programmer who didn't go very far
out of his way to make things rough for you.

Let's see what is involved.

THE TOOLS

First, we'll have to put together a toolkit. You should have a tractor-feed
printer along with some heavy white paper, preferably 20-pound paper. Natural
ly, you will also need a plastic 6S02 ProgrammingCardand, of course, the 6S02
Programming Manual. The following listing gives a breakdown of the tools you
will need to effectively tear apart machine-language programs.

You will also want all the usual Apple manuals, along with a copy of the
Apple Monitor Peeled, and, if you can find one, a copy of the old red Apple
Book. I'm also laboring under the delusion that you'll find Don Lancaster's
Micro Cookbook, Volumes 1 and 2, of help (SAMS #21828 and #21829).

Try to get an Apple that has access to both an autostart ROM on a switchable
plug-in card, and the old monitor ROM, without autostart, in socket F8 on the
mainframe. This original ROM has the Trace feature, which was removed to
make way for the autostart function. More importantly, the "old" ROM gives
you the absolute control that is needed to stop any program at any time for any
reason. Ads in Computer Shopper offer this ROM for $10.00.

Note that many newer programs will not let you drop into the monitor when
you use the autostart ROM. Instead, they adjust the pointers so that they return
to themselves on a system reset. Thus, an old ROM may be absolutely essential
to let you view the target code. The Apple lie may need custom EPROMs.

Tearing Into Machine-Language Code 31

MACHINE-LANGUAGE
TOOLKIT

TOOLKIT SOURCES

() 48K Apple 11, preferably with
an old ROM in mainframe
and switchable autostart
ROM on plug-in card.

() 6502 PROGRAMMING MANUAL

Rockwell International
Box 3669
Anaheim, CA 92803
Tel: 714-632-0950

() Tractor-feed printer.

() Heavy white tractor paper.

() 6502 Programming Card.

() 6502 PLASTIC CARD

Micro Logic Corp.
Box 174

() 6502 Programming Manual.

() All Apple manuals.

Hackensack, NJ 07602
Tel: 201-342-6518

() APPLE MONITOR PEELED

William Dougherty () Apple red book.

() Apple Monitor Peeled book.

() Lancaster's Micro Cookbook,

14349 San Jose Street
Mission Hills, CA 91345
Tel: 213-896-6553 Volumes 1 and 2.

() Roll of transparent tape. () THE MICRO COOKBOOKS

Howard W. Sams & Co., Inc.
4300 West 62nd Street
Indianapolis, IN 46268

() Case of page highlighters, in
all available colors.

() Fine and regular felt-tip pens Tel: 317-298-5566
of matching colors.

() Serendipity scratch pad.

() What if? quadrille pad.

() PAGE HIGHLIGHTERS

#2500A Major Accent
Sanford Corp.
Bellwood, IL 60104
Tel: 312-547-3272
(SEARS #3KX-3272)

() A quiet workspace.

() The right attitude.

If you really get into machine-language programming, this original firmware
ROM is very, very useful. I suspect these ROMs may eventually become rare,
but with 2716 EPROMs now under $5.00, you can easily clone your own by
adding a simple CS adaptor to ROM socket F8.

You will want at least a 48K machine, and if there is extra RAM on plug-in
cards, so much the better. The big advantage to having more RAM than the
program needs is that you are free to add your own test and debug programs
co-resident with whatever target program you are tearing apart. You should have
both a cassette and at least one disk drive. The cassette can always save any
image of any part of any program at any time, regardless of whether there is a
DOS operating system there or not. Images on the tape can be split up and
relocated as needed, letting you transfer them to disk at your convenience. The
cassette can also let you introduce very small "test" and "hook" programs into
the darndest spaces.

Now, off to the office supply. Get yourself a big roll of transparent mending
tape-the kind you can write on. Then get two cases - yes, cases - of page
highlighters. Throw away all the extra yellow ones, and get as many different
colors as you can. Match each page highlighter with both a fine point and a
regular felt-tip pen of the same color.

32 Enhancement 3

Don't underestimate the importance of these page highlighters. This method
starts out real stupid like, but you will be astounded when the truth and beauty
of what's happening leaps out at you halfway through. The highlighters are
absolutely essential! Make sure these are the fat "see through" kind.

Get yourself some scratch pads as well. Label the little blank one "Serendip
ity" and the bit quadrille one "What if?".

You also have to have the right attitude, the right workspace, patience, per
sistence, curiosity, perversity, and a very distorted sense of humor for this
method to work.

It is extremely important that you do everything that follows hands-on and by
yourself. Do not, under any circumstances, let someone else or the Apple
help you with any tedious or dogwork parts. The method relies heavily on
your subconscious putting together the big picture and sewing up the loose
ends. It can only do this if it has access to everything that the tearing-attack
method needs. Do the dull stuff yourself!

THE FIRST RULE

What can we expect to find inside a machine-language program? The working
code for sure. But, besides that working code, we need files that go with that
code. In most longer machine-language programs, the files often take up far
more room than the working code does.

END ____ __,

BUU<
f'ILES

ACTION '}J
START.._ ___ __,

Fig. 3-1. A "typical" machine-language program.

STASH

CODE
MODULE

STASH

CODE
MODULE

--

Fig. 3- 1 shows your "typical" machine-language program, which is just about
as representative as your "typical" Apple owner or your "typical" rock. Any
way, we see that there are usually two main areas to a larger machine-language
program. These are the action and the bulk files.

The action is the "real" part of the program that actually does things. The
action, in turn, is made up of two different types of blocks. These blocks are
called code modules and stashes.

A code module is a chunk of working machine-language code that does
something. In most programs, most of the modules are subroutines, and are
called as needed from a very short main program. The advantages of subroutines
are that they break things down into small and understandable chunks and that
they can be accessed from several places in the main program at once.

Tearing Into Machine-Language Code 33

A stash is a short file that works directly with a module. The stash often follows
immediately after the module that uses it. Typical stash entries might be a short
ASCII string, a list of condition codes, or a table of indirect addresses. The stash
holds values needed by the module that it works with.

The bulk files are usually much longer than the stashes. Bulk files normally sit
off by themselves and usually follow the action. An example of a bulk file might
be a high-resolution character set. The action controls how and when the
character codes in the bulk-file character set go on the screen. In a medium
sized adventure, the bulk files may contain the map, the script, the objects, the
responses, the rooms, and anything else unique to one particular story line. Only
the bulk file has to be changed to change the adventure. The action can often
stay the same.

In animated games or other programs that use the HIRES features, the bulk
file may actually be the HIRES screen pages, or combinations of these pages
with extra file space.

If you are into very fancy machine-language programs, the action may, in fact,
be an interpreter acting as a special-use language. The bulk files will then contain
commands that are run under the action's command interpretation. Zork is a
classic example of this type of thing. In Zork, the action is a LISP-like interpreter
specially written in compact and fast machine-language code.

The absolute key secret to tearing into machine-language code is ...

Find out the STRUCTURE and the
FLOW of any program, and most
of the code will take care of itself!

So, never, never, never start taking apart machine-language code on a line-by
line basis. This is a total waste of time and will take forever.

Not to mention that it won't work anyhow.
The whole trick is to find out the structure of the program. Separate each

module of the program and then separate each file from everything else. You'll
find out there are very powerful hidden indicators that will leap out at you when
you look for them. These indicators will very rapidly break everything down into
simple, obvious, easy-to-understand, and self-documenting chunks.

Don't believe me? Let's try it and see. We'll use Apple's own HRCG f-Jigh

Resolution Character Generator as a target program to show you how the
method works and to illustrate key points. We'll go over the method in some
detail. Later, we'll sum everything up in one checklist. HRCG is available on
the DOS 3.3 TOOLKIT diskette, available from most dealers.

You'll get the most out of what follows by actually doing each and every step
using your own copy of HRCG as we go along. Then try the method on a target
program of your own choosing.

THE METHOD

Ready? Here we go.

GROK THE PROGRAM I
You must be thoroughly familiar with what the program does and how it

works before you start. Never try to crack a code until after you have used the
program and really and truly know it.

34 Enhancement 3

For instance, there's absolutely no point in taking apart Pyramid of Doom to
try and find the shovel. If you can't find the shovel, you just aren't cut out for
Adventure. But, you just might want to tear into it to find the last treasure you
need to replace the treasure you have to destroy to get past a certain -uh
inconvenience halfway up the pyramid. In no way will your first tearing into
Adventure tell you the last treasure is in the dressing room, but you'll learn a lot
about machine language and machine-language programs as you go along.

In the case of the HRCG, use the program and thoroughly explore all the
alternate character fonts, and all the options of each and every mode of opera
tion.

Know exactly what the program does before you try to tear into it.
One limit to this, though ...

NEVER assume a program works in
a certain manner or "has" to do
something in an obvious way!

Thus, while you are learning how to use the program, and while you may think
you have some good ideas on how the program works, reserve judgement till
later. All your good ideas will invariably turn out to be 100% wrong.

If you can, watch others use the program and look into their reactions of how
the program works and what it does. You may be missing something totally
obvious. Rap with others as much as possible.

GO TO THE HORSE'S WHATEVER I
Read every scrap of documentation that comes with the program, no matter

how badly written or misdirected it may seem. Always ask around to see if the
source code exists somewhere. Be sure to look into updates and revisions as
well. It is infinitely easier to start with the original author's source code and work
into the program, than to start with an unknown bunch of code and try to infer
what the author had in mind in the first place.

If there is no documentation or if it isn't helpful, and if the original source code
isn't available, keep checking. Perhaps others have torn into part of the code or
have made modifications on their own that seem to work. Ask around at your
club, school, computer store, bulletin board, or user group. If anything is avail
able that seems to help, try it.

Anything else that can give you a clue to where the software author's head
is and where he is coming from will be of great help. Maybe he publishes articles
and stories. Maybe he has a series of programs out that can be of use.

A few moments of asking in the right places can save you months of time.
So, always check around.

HAVE A LIMITED GOAL

Any genuinely experienced programmer will admit to this rule .

A long program is NEVER fully
debugged nor fully understood.

Nor can it ever be.

BELIEVE
IT!

I

Tearing Into Machine-Language Code 35

The entire DEW (Distant Early Warning) defense radar program was never
tested. Not only was it never tested, the DEW program was so hopelessly
complex that there was no possible way it could have been fully tested. Even
if some test method existed, the probability of it passing any test was infinitely
small.

A good and clean program simply has most of its remaining bugs fairly well
hidden and fairly well out of the mainstream. This only happens after the ninth
or tenth revision. But rest assured, there are definitely still bugs there, lying in
"deep cover" and patiently waiting.

What this says is that the original programmer did not fully understand nor
fully debug his program. If he says he has, he is either lying or else hopelessly
naive. Now, if he didn't understand his own program, why should you?

Thus, a goal "to completely understand" some program is not only unrea
sonable; it is patently ridiculous. Instead, set yourself a reasonable and realistic
goal for your first trip of tearing into machine code. Then, after you have set
this realistic goal, simplify it till it is trivial. Then, simplify that. Then, think up
some really dumb test of a small part of what is left. Something any idiot could
hack. Maybe, just maybe, you will then be in the ball park.

For the HRCG, let's use the goal of answering "Where are the scroll hooks?"
The HRCG obviously has some sort of scroll in it, since it moves characters up
the screen. The scroll on the version I received is abrupt and chunky, so it can
obviously be improved.

Or can it?
Maybe it's not so obvious. Why would such a good program have such an

ugly scroll? These are name-brand people working on this and chances are they
fumed and fretted over things quite a bit. Better stick with our original goal of
finding the scroll hooks.

When you set your limited goal, don't become obsessed with it. The tearing
method works by separating the known from the unknown as you go through
the code. The method we will use demands a lot of apparently useless side trips.

Concentrate only on your goal and you may never get there.

FIND WHERE THE PROGRAM SITS I
Before we can go on with our tearing attack method, we have to take time

out for a rather long, but most essential side trip. Ready? Here we go ...
Where is the machine-language program likely to sit? A glib answer is some

where between $0000 and $FFFF, unless they are using memory mapping to
go beyond 64K or are swapping things back and forth to the disk, or are using
auxiliary memory on the Apple lie. This assumes, of course, that the program is
not self-modifying so that it changes itself through time.

Figs. 3-2 through 3-6 show us some places we can put a program. We can
divide these into low RAM high RAM, and wherever. Let's check these in more
detail.

Low RAM

Low RAM is heavily used. As Fig. 3-2 shows us, low RAM goes from hex
$0000 through $07FF, or memory pages Zero through Seven. Most of this space
is reserved by the Apple for "system" uses. Let's check this out on a page-by
page basis

Page Zero is extremely valuable real estate for two reasons. The first is that
the 6502 has a page Zero addressing mode that is shorter and faster than most

36 Enhancement J

$07FF
(2047)

$0400
(1048)

$0300
(768)

$0200
(512)

$0100
(256)

$0000
(0)

TEXT
AND

LORES
(PAGE ONE)

SYSTEM
VECTORS

PAGES FOUR THROUGH SEVEN ARE
THE TEXT AND LORES PAGE ONE.
THERE ARE ALSO 64 RAM

/

LOCATIONS IN 8 GROUPS OF 8
EACH INTENDED FOR 1/0 USE.

PAGE THREE HOLDS THE DOS
POINTERS AND MONITOR VECTORS
AT ITS HIGH END. THE BOTTOM
OF THIS PAGE IS A POPULAR
PLACE TO PUT PROTECTED
MACHINE LANGUAGE CODE.

PAGE TWO IS THE KEYBOARD
INPUT BUFFER AND WORKS FROM
THE BOTTOM UP. SHORT
PROGRAMS CAN BE PUT AT THE
TOP OF THIS PAGE, BUT A

PAGE ONE IS THE STACK AND

1/ DANGER EXISTS OF A LONG
KEYBOARD ENTRY PLOWING THE
PROGRAM.

t-------i WORKS FROM THE TOP DOWN.
KEY-IN ~ SHORTPROGRAMSCANBEPUTAT

BUFFER
t-------i A DUAL DANGER EXISTS OF THE /

THE BOTTOM OF THIS PAGE, BUT

STACK

POINTERS
AND

PROGRAM PLOWING THE STACK,
AND VICE VERSA.

VECTORS

PAGE ZERO HOLDS CALCULATED
ADDRESSES, ALL VALUES PASSED

-------- BETWEEN PROGRAMS, AND MOST
_____ .., SYSTEM VARIABLES. THERE IS

USUALLY NO ROOM FOR ACTUAL
PROGRAM CODE HERE, ALTHOUGH
MOST PROGRAMS WILL USE THESE
LOCATIONS FOR STORAGE.

Fig. 3-2. Low RAM memory map.

other addressing modes. The second is that the two most powerful 6502 ad
dressing modes - indirect indexed and indexed indirect - demand pairs of
address locations on page Zero.

The Apple book shows how practically all of page Zero is used up one way
or another by the monitor, the DOS, or either BASIC. For instance, the locations
for the keyboard entry hooks and the print output hooks are stored as addresses
on page Zero, as are.the screen formatting controls that set the height and width
of the display. Other important page Zero locations convert line numbers into
the base addresses needed to hit a certain line of video.

We will see a list of these important page Zero locations shortly. The point
here is ...

Practically all programs need a few
locations on page Zero.
Some of these are used to pass
values into the monitor, to BASIC,
or to another part of itself.

Other page Zero locations are
used to hold calculated addresses
for the indirect addressing modes.

Thus, page Zero real estate is far too costly for program code. Instead, the
available locations are used to pass values back and forth between the system
and the target program, and to hold calculated address values.

Sometimes a target program will reassign page Zero locations for its own use.
For instance, if the target program is fully in machine language, it can borrow

Tearing Into Machine-Language Code 37

many of the locations "reserved" for Applesoft or Integer BASIC, since these
locations will never be used. Monitor locations that serve oddball purposes can
also be "redefined" provided that the monitor feature is never used, even by
accident.

Occasionally a very short machine-language sequence can be crammed into
low values on page Zero, as was done with the original tone subroutine in the
old red book. Even this got you in trouble when you switched to Applesoft. So,
putting programs on page Zero is both dangerous and dumb, but it can be done.

Another dangerous place to put programs is on page One. Page One is
intended to be used for the stack. The 6502 uses a single stack that starts at
location $01 FF and builds down. This stack is shared by the monitor, the
operating system, and the program itself. Important uses of the stack are to store
the return address of a subroutine call and both return address and processor
status on an interrupt. Advanced programmers might also use the stack as a
temporary stash of a value or two, or might even manipulate the stack to alter
the program flow.

The stack rarely gets below $0180 in normal use. It is usually possible to put
a very short machine-language program in locations $0100 through $017F. This
is dangerous, since the program can plow the stack and vice versa, if either gets
too long.

Page Two is normally used as a keyboard buffer. Key entries start at $0200
and build their way up. The average number of keystrokes stored is fairly low,
and you can sometimes cram a small machine-language program on the top of
this page. Once again, you are asking for trouble since too long a keyboard entry
will plow your program.

One sneaky and ugly trick that a programmer can pull is to put some reloca
tion or protection code starting at $0200. This code must be used before any
keys are hit, and is thus very difficult to read. The code will, of course, get
destroyed as soon as any keys are entered.

Most of page Three is available to the machine-language programmer. There
are some DOS jumps and system vectors on the high end of this page. The
vectors control the reset, interrupt, autostart return, breakpoints, Applesoft "&",
and nonmaskable interrupt jumps.

Thus, you are free to use the first 150 or so locations on page Three for your
machine-language program. This turns out to be a favorite stash for short pro
grams, since this area is automatically protected from either BASIC.

Unfortunately, everybody and his brother crams just about everything they
can think of in here, and you can often have two parts of a program, each of
which needs a different machine-language code, both trying to use this space.
For instance, a printer driver may be placed here by one program and a screen
dump by another. Try to combine the programs, and you have a turf fight.

If you have a longer machine-language sequence, you can sometimes com
bine the top half of page Two continuously with the bottom half of page Three.
Again, you have to be careful not to get bumped by a long keyboard entry and
to be sure you don't, in turn, bump into a DOS hook or other pointer.

Memory pages Four through Seven are the page One text screen and page
One LORES screen. The only difference between traditional text and LORES is
that, in text, the stored code goes through a hardware character generator while,
in LORES, the same code is directly bit-by-bit converted into a stacked pair of
colored blocks.

It seems kinda dumb to try and put machine-language code onto the display
pages. First, you will probably see it and it will look ugly. Secondly, any scrolling
or screen clearing will destroy the code. Nonetheless, in a program that does
all its work in HIRES, this space is theoretically available.

38 Enhancement 3

There are some sneaky RAM locations stashed here and there on pages Four
through Seven that are not displayed and are not erased by a properly done
scroll or clear. There are 64 of these locations. These are normally intended for
use by the I /0 slots and have intended assignments.

If you really want to be tricky, you can use these spaces any way you want
to, provided there is no 1/0 access to the same location. This is one of the bet
ter hiding places for disk verification codes and other sneaky stuff.

Summing our low RAM up, you have a few locations on page Zero available
to you that are usable to pass values to the monitor or to save calculated
addresses. The low end of the page One stack and the high end of the page Two
keyboard buffer can be used for short programs or subroutines, but use of these
areas can be dangerous. Most of the bottom of page Three can be used for a
machine-language program. This space is very popular but it can cause conflicts
between programs. Finally, pages Four through Seven are the page One text and
LORES display and are not normally available for program storage, except for
some 64 hidden locations that are normally reserved for input and output.

High RAM

As Fig. 3-3 shows us, the high RAM runs from $0800 up through the top of
installed RAM. In a 48K machine, high RAM goes from $0800 through $BFFF.
This area holds the usual locations where longer machine-language programs are
placed.

How much of high RAM is available for your use? It all depends on what other
features you are going to run along with your program, and what minimum size
Apple you want the program to run on.

We will assume that the target program needs a full 48K. Extra RAM is now
so cheap that practically all Apples either arrive with full RAM or are soon filled.
With those new 64K RAM cards, most Apples will soon have bunches of extra
memory on top of what used to be "full." A machine with a mere 48K of RAM
will soon be at poverty level.

At any rate, if you decide to use text page Two or LORES page Two, locations
$0800 through $0BFF have to be set aside and protected. Use of this text page
is relatively rare.

If you want to use HI RES page One for graphics, sprite animation, or multifont
text displays, then locations $2000 through $3FFF have to be reserved. Use
HIRES page Two and you will also have to reserve locations $4000 through
$5FFF. These locations hold an image of what goes on the screen and, thus, are
not available for both display and program use at the same time. You will
sometimes use both pages at once for effective and fast animation or to double
graphics resolution.

While there are a few unused RAM locations on these HIRES pages, these
locations get plowed every screen reset or color change. Thus, they are not
safely usable except as a very temporary stash.

We will note in passing that if the HIRES pages are not used, and you put code
in this area, you can actually watch the code executing by switching to HIRES
while the program is in action. This can be a very powerful snooping tool.
Watching a program run its own code gives you a new window into what is
happening. You can also watch code working on LORES page Two, but this is
a much smaller area and not nearly as useful.

If you are using standard DOS, the space from $9600 through $BFFF is
normally saved for the DOS system. You can sometimes "borrow" a DOS file
or two and stuff a short machine-language sequence into a small portion of this
protected space.

$BFFF ------.
(49151)

DOS
3.3

Tearing Into Machine-Language Code 39

THE DOS 3.3 OPERATING SYSTEM
SITS AT THE TOP OF HIGH RAM.
SMALL WORKING PROGRAMS CAN

$9600 a..,..,,--~....,... BE STORED HERE IN UNUSED DOS
(38400) FILE AREAS. THIS SPACE MAY

$6000
(24576)

$4000
(16384)

$2000
(8192)

$0C00
(3072)

$0800
(2048)

HIRES
(PAGE TWO)

HIRES
(PAGE ONE)

LORES (PG 2)

BE FREED UP BY GOING TO A
SMALL CUSTOM DOS OR BY
MOVING DOS ONTO A RAM CARD.

-----AVAILABLE PROGRAM SPACE.

HIRES PAGE TWO IS USED FOR
ANIMATION AND GAMES WHERE

---ONE PAGE IS DISPLAYED WHILE
,,,_.-- THE OTHER IS MODIFIED. MUST BE

PROTECTED WHEN USED.

HIRES PAGE ONE RESIDES HERE
AND IS USED FOR BOTH COLOR

~---GRAPHICS AND MULTI FONT TEXT
DISPLAYS. MUST BE PROTECTED
WHEN USED.

__-AVAILABLE PROGRAM SPACE.

---- LORES AND TEXT PAGE TWO.
VERY RARELY USED.

Fig. 3-3. High RAM memory map.

A lot of programs provide their own smaller and simplified versions of DOS.
This gives a measure of copy protection and makes more room for the rest of
the program.

Thus, a machine-language program could go from $0800 to $BFFF. Subtract
the range $9600 through $BFFF for DOS at the top, the range $4000-$5FFF for
HIRES page Two, the range $2000-$3FFF for HIRES page One, and, if used, the
range $0800 through $0BFF at the bottom for text and LORES page Two.

Many machine-language programs start at $0800 and work their way
upwards as needed. If they are about to crash into the HIRES pages, they skip
above HIRES and continue as far as they have to.

Combining programs

Things get much more complicated if machine-language subroutines have to
interact with Integer or Applesoft BASIC programs. Each BASIC language works
differently and needs a different way to "protect" an area for its machine
language routines. The protection is needed to keep the BASIC from overwriting
the machine code and vice versa. Fig. 3-4 shows us more detail.

In Integer BASIC, HIMEM is a high-memory pointer that points to the end of
the Integer program. The program starts at HIMEM and builds its way down
ward. Every new program line gets put in its place, automatically moving every
thing else down and leaving you with the end of the program listing at HIMEM.
String variables start at the low-memory pointer LOMEM and build their way
upwards.

The usual way to tie a machine-language program into Integer BASIC is to start
the machine-language sequence at $0800 and set LOMEM to at least one space
above the end of the machine-language code. This LOMEM can be set as the

40 Enhancement 3

first instruction of an Integer BASIC program. It takes an "illegal" command, but
it is easily done with a single POKE command. Should you also be using the
HIRES pages, you still would start your machine-language program at $0800, but

$9600

?

$0800

INTEGER
BASIC

PROGRAM

LOMEM SET
J--------f- TO TOP OF

MACHINE
MACHINE CODE + 1

CODE

!A) Integer BASIC no HIRES.

$9600

?

?

$0800

-
00S

MACHINE
CODE

APP LESO FT
STRINGS AND

VARIABLES

APPLESOFT
PROGRAM

LINES

TEXT 1

-

HIMEM SET
- TO BOTTOM

OF MACHINE
CODE --1

-LOMEM

START OF
PROGRAM

-POINTER
SET TO 2048
(TXTAB)

(CJ Applesoft BASIC no HIRES

$9600

$4000

$2000

$0800

INTEGER
BASIC

PROGRAM

-----~-- LOMEM SET TO 16385

HIRES
PAGE 1

MACHINE
CODE

TEXT.1

18! Integer BASIC using HIRES 1.

$9600

?

$4000

$2000
?

$0800

,-
DOS

MACHINE
CODE

APPLESOFT
STRINGS AND

VARIABLES

HIRES
PAGE 1

APPLESOFT
PROGRAM

LINES

TEXT1
- - - -

HIMEM SET
_ TO BOTTOM

OF MACHINE
CODE -1

- LOMEM SET
TO 16385

START OF
PROGRAM

-POINTER
SET TO 2048
(TXTAB)

(0) App/esolt BASIC using HIRES 1.

Fig. 3-4. Usual ways of combining BASIC and machine-language programs. Note that
machine code goes above Applesoft or below Integer.

Tearing Into Machine-Language Code 4 7

you would most likely reset your LOMEM pointer to one location above the
highest HIRES screen location needed. This is shown in Fig. 3-4B.

Applesoft does things quite differently than Integer Basic. Applesoft programs
start at a start-of-program pointer TXTAB and build their way up, while the string
variables start at HIMEM and work down.

It is not normally possible to change the start-of-program pointer during a
program since the program is already located in memory and is not movable.
Thus, while you can, in theory, put a machine-language program below this
pointer, the only way to do it is to change the start-of-program pointer before
you load your final Applesoft program.

Note that this start-of-program pointer is not LOMEM! It is called TXTAB and
sits at $0067 (low) and $0068 (high). LOMEM in Applesoft is actually in the
middle. LOMEM points to the beginning of the variable space and often marks
the end of the program lines.

You will usually put your machine-language program above Applesoft by
setting HIMEM before you run your Applesoft program. HIMEM may also be
set early in the program. Details on this are shown in Fig. 3-4C.

For more program room, you also have the option of setting HIMEM to one
less than the start of your machine-language program, and LOMEM to one more
than the highest HIRES location in use. The start-of-program pointer remains at
$0800. This lets you put program lines from $0800 up through the start of the
HI RES page, and place the strings and variables from the top of the HI RES space
to the bottom of your machine-language code. This is shown in Fig. 3-4D.

So, we see that machine-language programs running with Applesoft normally
go above HIMEM, while machine-language programs running with Integer
BASIC normally go below LOMEM.

You can also play all sorts of pointer games to tow a short machine-language
sequence along inside an Integer BASIC or Applesoft program. One way you can
do this is to put the machine-language stuff between two BASIC statements. The
parsed code on the first BASIC statement is then altered so it jumps over the
machine-language part to get to the next expected instruction. These pointer
schemes are tricky and really get hairy if you make any changes, but some
authors use them to "protect" their programs or "hide" their fast machine code.
The advantage of this is that you can use one cassette loading to enter both
machine and BASIC codings. With a disk it is much simpler and saner to let one
program load the other one by using a second disk command.

Mainframe RAM usually only goes up to 48K. What is in the other 16K of our
64K Apple? Figs. 3-5 and 3-6 complete the picture for us.

There are sixteen pages located from $C000 through $CFFF that are reserved
for I /0. As Fig. 3-5 shows, the bottom half page ($C000 to $C07F) is used for
all the screen switches, the push buttons, the paddles, speaker, cassette, key
board entry, and the keyboard strobe. The next half page ($C080-C0FF) is used
to pass address locations to each slot. There are sixteen locations reserved for
each slot one through seven.

Above that, we see seven location blocks that are one page of 256 words
each. These usually will hold the "control" PROM or ROM for a given card and
are addressed as shown. A final 2K space is reserved from $C800 through $CFFF
that can be used by any 1/0 slot that wants it, as long as all the slots take turns,
and only one slot is active at a time.

There is usually very little RAM in the 1/0 space. These locations are impor
tant, though, for they are how we control the on-board things like the screen
modes, speaker, paddles, keyboard, and so on. They are also the way we
interact with any working card. If a plug-in card is involved with the code you
want to tear into, you will have to pin down exactly what codes goes where.

42 Enhancement 3

If we now turn to the uppermost 12K of address space on the Apple, we see
that there are six ROM sockets on the Apple mainframe. Each socket can hold
a 2KX8 bytewide ROM or RAM. Fig. 3-6 shows us the usual setup for Integer
BASIC or Applesoft machines. A 2K monitor ROM needs the top or $F8 socket.
There are two possible monitors, the old or absolute reset one, and the newer
autostart one.

$CFFF

$C800

$C700

$C600

$C500

$C400

$C300

$C200

$C100

$C080

$COOO

2K ROM
OR RAM

USABLE BY
ANY SLOT.
PROVIDED
THEY TAKE

TURNS

SLOT 7
ROM

SLOT 6
ROM

SLOT 5
ROM

SLOT 4
ROM

SLOT 3
ROM

SLOT 2
ROM

SLOT 1
ROM

CARD 1/0

BUILT-IN 1/0

53247
(- 12289)

51200
I - 143661

50944
I - 145921

50688
)-14848)

50432
(-15104)

50176
I - 153601

49920
(- 15616)

49664
I - 158721

49408
(-16128)

49280
I -162561

49152
I - 163841

Fig. 3-5. 1/0 map.

Continuing down our ROM sockets, Applesoft uses the bottom five, while
Integer BASIC uses the middle three, along with an optional programmer's aide
that fits in the bottommost or "DO" socket. The uppermost Integer ROM at
"FO" also holds the extremely useful mini-assembler code, along with the old
floating-point package, and the "Sweet 16" 16-bit machine pseudocode. None
of these machine-language test and debug features are available in the
Applesoft ROMs.

This area is all ROM and cannot normally be written to. But the locations in
this area are useful to interact with the monitor or either BASIC language.

The entire top of the machine can be bypassed by any plug-in card through
the INH line. This can let a plug-in ROM card give you the switched choice of
either BASIC, or it can let a RAM card do darn near anything it wants to, in
cluding running other languages, holding DOS, or giving you extra RAM space.

$FFFF

$F800

$F400

$EOOO

$D800

$0000

MONITOR

ASSEMBLER

INTEGER
BASIC

INTERPRETER

UNUSED

PROGRAM·
MER'S AIDE

(A) Integer BASIC

65535
(-1)

63488
1- 2048)

62464
(- 3072)

57344
(-8192)

55296
(- 10240)

53428
(- 12288)

Tearing Into Machine-Language Code 4 J

$FFFF 65535
1- 11

MONITOR
63488

$F800 1- 2048)

APPLESOFT
BASIC

INTERPRETER

53428
$0000 1- 12288)

/B) Applesoft.

Fig. 3-6. High ROM maps. A plug-in ROM or RAM card can deactivate these and
substitute its own code.

Note that many software programs placed on RAM cards may deny you ever
gaining access to the monitor ROM in mainframe socket $F8. This can make
intercepting a running program rather tricky.

Many machine-language programs will start at $0800 and work their way
upwards, but you can expect any program to go just about anywhere, depending
on what other resources of the Apple are being tapped.

One ultrasneaky trick is to start your machine code at the bottom of the
keyboard buffer at $0200, with a jump, and then run up through everything in
between there and the end of your machine-language program. This neatly hides
the "real" starting address of your program and also gives you an attractive page
One text or LORES display while the rest of the program is loading.

You must, of course, find out where the program is before you can attack it.
Let's start with a very obvious fact

OBVIOUSLY
You cannot tear a program apart
that is not already in the machine
and capable of running.

What this says is that any program that uses a disk may not have that part of
the program in which you are interested sitting in the machine at any given time.
This rule also says that any program must be placed in the machine exactly
where it normally will run, and it must be started off on exactly the first instruc
tion location.

So, be sure you have that part of the program that you want to analyze in the
machine when you attack it.

The other side of the coin has the good news ...

BUT,
THEN
AGAIN

At any given time, any working
program MUST have everything it
needs in the machine so it can
continue.

So, if there is no disk whirring between where you are and what you want
to analyze, it all has to be there in the Apple somewhere, somehow.

But, where is where?

44 Enhancement 3

You must pin down all of the exact locations a target program uses before you
can tear into it. There are at least four good ways to do this

FINDING PROGRAM
LOCATIONS

() Read the instructions.

() Ask DOS to tell you.

() Infer from use.

() Empty, then fill the machine.

The first and most obvious way is to see if the author didn't tell you some
where just exactly where the program sits. For instance, the loading instructions
for the Adam's Adventures 0-12 tell you these go from $0800 through $57FF
and that the starting point is $0800. Being told ahead of time where the program
starts and resides is the easiest and best method, so always look around carefully
for loading information.

The second way to find where a machine-language program goes is to let
DOS tell you. On a 48K machine BLOADed under standard DOS 3.3, the start
ing address ends up in $AA72 (low) and $AA73 (high). The program length is
stashed in $AA60 (low) and $AA61 (high). After loading, you reset, do a call
-151 to get into the monitor, and, then, inspect these locations. The old moni
tor ROM might be needed to force reset back into the monitor.

DOS can also give you some hints. If you can read the catalog, the type of
file and its length should be obvious. Even listening to the number of track
clicks during a load should tell you something about how long the program is
and which disk tracks it lies on. Take off the disk drive cover, and you can
actually watch the drive move from track to track. With some practice, you
will be surprised how much this can tell you. This process, when formalized, is
called boot tracing.
where the program sits from what it has to do and what it has to interact with.
Our HRCG gives us a good example here. We can't directly find where HRCG
sits since it is an "R", or relocatable, rather than a "B", or binary file.

But, the Applesoft Toolkit book tells us HRCG fits under DOS and moves
HIMEM down to protect itself and its alternate character fonts from Applesoft
incursion. There's a simple and easy-to-use BASIC program called LOADHRCG
that comes with the HRCG program. In it is a variable called ADRS which equals
HIMEM. Run this one with no alternate character sets, and we see that ADRS
ends up as $8DFE. Run it with one alternate character set, and HIMEM moves
three pages lower to $8AFE. Two alternate sets and HIMEM drops three more
pages lower to $87FE, and so on. This special example is shown in Fig. 3-7.

So, by inference, HRCG sits from $8DFF through $95FF. This will include the
HRCG action and the bulk file used for character set Zero, the default ASCII set.
Other character sets build downward three pages at a time, with the lowest
numbered set on the bottom and the highest set always at the top, again as
shown in Fig. 3-7.

You can find this out on your own by carefully studying a printout of the
LOADHRCG Applesoft program and then doing loadings and finding the value
of ADDR, otherwise known as HIMEM. The same study should show you how
the alternate character sets are filled in.

Tearing Into Machine-Language Code 45

The final method of pinning down a large program works even if all other
methods fail, and should be used as a check even if you are absolutely sure
where the target program sits. This final method is a sledgehammer. You empty
the machine completely, and then refill it only with your target program. Then,
you casually flip through memory, a page at a time, till you find the program.
The next tearing step gives us full details on this.

$9600

$8DFF

$BAFF

$87FF

$84FF

-

DOS

HRCG

ALT SET 3

ALT SET 2

ALT SET 1

USSR RAM

CHARACTER SETS BUILD DOWN
FROM HRCG. THE HIGHEST SET J ALWAYS GOES JUST BELOW HRCG.
HIMEM MOVES DOWN AS FAR AS l NEEDED TO MAKE ROOM FOR
MORE SETS.

APPLESOFT HIMEM
- POINTER $84FE

(FOR 3 ALT SETS)

Fig. 3-7. Location of HRCG program and alternate character sets in a 48K Apple II.

We have now seen how an Apple's memory is arranged and the methods we
need to use to find where a program sits. Let's now return to the mainstream
of our tearing attack.

You can use any method you like to pinpoint exactly where the target program
lies. Try reading instructions, and then try letting DOS tell you. Then, try infer
ence from what the program does and how it interacts with the Apple. If none
of that works .

EMPTY THE MACHINE I
There is nothing more infuriating than to find out you are really analyzing

interpreted BASIC code left over from last Tuesday's 4 AM breakout game,
instead of your target program.

To prevent this from happening, you will want to completely and absolutely
empty your machine of everything old and unneeded before you begin. There
are two very good reasons for this. One is that you won't be wasting your time
analyzing something that is not part of your target program. The second is that
an empty machine that has just been filled is one sure way to find or verify the
location of your target program.

You should always clear your Apple of old stuff before attacking a target
program. But, how do you empty a machine?

Even a just repowered Apple will come up with random garbage in most all
of the RAM locations. The trick is to load each and every memory location with
an obvious value that is very easy to spot, particularly when it is scrolling by.
The value $00 is dangerous since it is also a Break command, and it is hard to
read on the fly. I use the value $11 instead. On a listing, you get an unmistakable
string of continuous lines on anything that is still empty. This pattern is readable
even during an abrupt scroll.

The following steps show us how to empty your Apple. It's very easy to do
from the monitor. You put a $11 somewhere and, then, move it as far up in
memory as you want, recopying it over and over again. If you are using DOS
3.3, you should empty locations $0220 through $03CE, and $0800 through

46 Enhancement 3

$95FE. Be sure to empty your machine after booting DOS. Do things the other
way around and the DOS boot code will return to haunt you.

If you are not using DOS, then you can go ahead and empty $9600 through
$BFFF as well. You might also like to empty page One from $0100 to $0180.
But, don't try to empty page Zero, the top half of page One, the first few loca
tions of page Two, the top of page Three, or anything above $C000. Erasing
any of these locations will bomb the machine or cause other problems.

To empty your Apple, put an "empty" symbol in some location. Then, use
the monitor to move a block of memory-starting at that location and moving
up by one.

A good empty symbol is "$11 ".
A. To empty user RAM except for DOS:

*0800: 11 < er>

*0801 < 0800.95FEM < er >

B. To empty all user RAM:

*0800:11 <er>

*0801 < 0800. BF FEM< er >

C. To empty most of pages $02 and $03:

*0220: 11 < er >
*0221 < 0220.03CEM < er >

To get into the monitor from either BASIC language, do a CALL -151. Once
again, do not try to empty page Zero, the top half of page One, the first few
locations on page Two, page Three above $03CF, or anything above $C000.

Some target programs will try to prevent you from ever going into the moni
tor. Switch to the old (nonautostart) monitor ROM if this happens.

When your machine is empty, snoop around everywhere to see what it
looks like. From the monitor, do a 0800.BFFF < er > and watch the "elev
ens" go streaming by.

You'll next want to load and verify the locations of the HRCG program from
$8DFF through $95FF. Try adding alternate character sets, one at a time, and
see what happens.

Always start with an empty machine and always return to one anytime you
get confused as to what is happening.

LIST THE PROGRAM I
After you have emptied the machine and loaded your target program, go

ahead and list it. Make two copies on the heaviest white tractor paper you can
find. You list a program from the monitor by typing the starting address and,
then, the character "L" eighty times and, then, a <er>. Each L command gets
you twenty lines of disassembled code. Use too few L's and you will have to
retype them in the middle of your listing. Too many and you simply hit RESET
when you get to the end of the target program.

Tearing Into Machine-Language Code 47

Keep three clean white pages before and after the listing. Do NOT take the
listing sheets apart. Instead, carefully reinforce every tear line, tractor holes and
all, with transparent tape. Actually, you would be best off having a welder
transcribe a copy of the listing by burning it into quarter-inch steel plate for you.

No matter how rugged you make it, it won't be enough. The object here is
to keep the listing in one piece and legible after handling and rehandling over
and over again. So, don't spare the tape.

Label the top sheet with the name of the target program and the date you
started attacking it. Don't forget the year and version number. The second copy
is a backup to be used when the first one falls apart or gets totally illegible.

You will also want to make two copies of a hex dump of the target program.
For HRCG, you get in the monitor, type 8DFF.95FF, reach over and move the
printer paper up a space or two, and, then, hit <er>. Incidentally, on both the
listings and the hex dump, use the printer's skip-over-margin feature if you have
it available.

Most of our tearing apart will be done on the listing sheets. The hex dump
sheets will sometimes show us a pattern in a file or will give us some other
pictorial information or other visual clues that can be of enormous help.

Yes, you might have to list and hex dump the entire machine for really fancy
programs, and this will take bunches of paper and, maybe a ribbon or two. But
this isn't nearly as bad as it seems, and it must be done if you are to crack the
program.

Well, we finally have completed our preliminaries. It sure took a long time to
get here. Now the fun starts. Ready?

SEPARATE THE ACTION FROM BULK FILES I
Carefully look at your listing. Not for detail, but for overall vibes. Anytime you

think something may be helpful, jot it down on one or another of the pads.
But, once again, do not jump to conclusions and do not attempt to analyze

any part of the code in detail. At this stage in the game, we are interested only
in the flow and pattern of the big picture.

The first thing we want to do is isolate the action so that we can work with
it separately. As you go along, you will gain a feel for what I call "rational" code.
Rational code has a flow to it, with reasonable commands used in reasonable
ways. At this point, we don't want to pass judgement nor force conclusions as
to what is which. But see if you can't separate obviously "rational" code from
everything else.

Now, we told our lister to list-assuming that it would be handling working
machine-language code. The lister will also try to list a file, or random garbage,
as if it was rational code. So, we can expect lots of visual clues as to whether
we are working on real code or file values. Here are some sure signs ...

FILE CLUES DURING A LIST

() Lots of question marks.

() Break commands ($00).

() Dumb repetition.

() Rare commands in odd mixes.

48 Enhancement 3

The question mdrk medns thdt the lister thought it had found an illegal op
code, something that the 6502 microprocessor does not know how to use as
an instruction. Now, there are times and places where you will get an occasional
question mark in the middle of working and valid code. This has to do with the
"lister" getting out of whack on the first instruction, or it may (rarely) be a value
or two d programmer has put between working code segments. But, lots of
question marks are a good sign of a file.

The break or $00 commdnd is d very enigmatic one. BRK is a very heavy
debugging tool and one of the most powerful commands that the 6502 micro
processor has available. But, a break command is only rarely allowed to appear
in working code as a valid instruction' Why? Because the break command
immediately forces a debugging interrupt, or else, it might very rarely be used
for dn error trap or a program restart.

Dumb repetition is another clue. Say you push the processor status on the
stack with a PHP command. That's fine. But, why on earth do it fifteen times
in a row? Now, that is irrational. As you go dlong, you will get a feel for what
is rational code and what is not.

Do it. Start through your HRCG listing. There's a few question marks at the
beginning and a few breaks, but mostly it is rational code. Chances are these are
stashes that go with the code modules. As you go along, you get lots of rational
code. Continue some more. Page after page of rational code.

Then, suddenly, around $92DF, things get weird and stay that way, all the way
to the end of the program. Lots of question marks, breaks, and really dumb code.
Let's take a guess and say that our bulk file goes from $92FF to $95FF.

Now, it looks like there's some garbage, maybe a stash below $92FF, but we
definitely have at least three pages of bulk file at the top.

Let's speculate. Three pages should ring a bell. Check into the HRCG Man
ual and you'll find it takes three pages for an alternate character set. Appar
ently, we have the default ASCII character set here. We absolutely should NOT
jump to conclusions this early in the game, nor should we try a detailed analy
sis of the bulk files, but maybe just a little peek won't hurt

Check the hex dump for these pages. See the pattern? Hold it up to the light.
Every eighth row almost, but not always, is all zeros. Except for the lower case
g, p, and a few other exceptions, most characters would leave one dot row out
of eight blank.

Strong evidence.
But, not strong enough. Later, we will tear into this bulk file and verify exactly

what it does. We will also find out exactly where it starts. For now, let's draw
a bright red line across the listing page between $92FD and $92FF. Label the
area below this line "BULK FILE." On your serendipity pad, sketch something
like Fig. 3-8, that is used to show us with an HRCG action from $8DFF through
$92FE and a bulk file from $92FF through $95FF.

$92FF

$8DFF

BULK
FILE

!-<OLDS oo; PATTERNS
,.__ FOR DEFAULT

CHARACTER SET

HOLDS CODE MODULES
ACTION - AND ST ASHES USED

BY c<RCG

Fig. 3-8. Separating the action from the bulk files.

Don't worry, just yet, about the extra question marks we have above the bulk
file. Somehow, these look "different" from the code in the bulk file. As you gain
practice, these slight differences will leap out at you. But, our goal, here and

HELPFUL HINT

Use your page highliters to
color the grey stripes shown
on the next few pages.

Use the colors called for.

I
QI

I
I

01 8ElE-
I
I

01
I
I

Tearing Into Machine-Language Code 49

now, is only to separate the action from the bulk files, nothing more. In HRCG,
this roughly cuts our task in half. In other programs, the bulk files may be the
lion's share of the code.

PAINT ALL SUBROUTINE RETURNS GREEN I
No matter what code you write or how secretive you are, there is an Achille's

heel you have to contend with. This is the 60 RTS or Return From Subroutine
command. RTS is our first and foremost attack point into unknown code. It is
the chink in the armor, the pry point, the skeleton key. Let's split off the subrou
tines and watch how fast the code breaks up.

Go through your code and at every "rational" place that you find a 60 RTS,
use a high liter to put a green bar through all of the code except the address.

Something like this ...

lo
I

:o
I

:o

Do this for every 60 RTS you see in the action. If you aren't sure whether the
60 is rational or not, then color only the RTS green, rather than the entire line.
Generally, question marks below a 60 RTS are allowed; those close above are
suspect.

If you do this on HRCG, you should end up with 35 "definites" that are
greenlined all the way across, and one "maybe" located at $8F85 that is only
boxed.

Do not try to analyze any of this code yet. We will let the code analyze itself
later on.

We have just identified the end of every subroutine in the program. Since
properly written machine-language programs will be mostly subroutines, we
already have nearly all our code modules isolated! All that with several strokes of
a fuzzy green page highliter!

Now, things start to get interesting

PAINT ALL SUBROUTINE CALLS ORANGE I
Next, get yourself an orange page high liter and go through the action. Identify

every rational JSR and its address in orange.
Do this two ways. If the JSR goes to a local address inside the action, paint

only the JSR and the address. If the JSR goes out-of-range to some other part of
the memory, paint the JSR, the address, and one inch more, and "half'' an
arrowhead.

50 Enhancement 3

Like so for a local JSR ...

I

01
I
I

01
I
I

01
I

$8E0E- 20 lF 8E

This subroutine call is in range, so we color only the JSR and the $8E1 F.
For an out-of-range or "long distance" call, do it like this ...

I
01

I
I

QI
I
I

01
I

$8El6- 20 ED FD

E

You use the arrowhead to identify an out-of-range call. Should you have a
questionable or possibly irrational subroutine call, color only the JSR mnemonic
for now. (The reason for only half an arrow is that you might get two arrows
side-by-side. If this happens, make one point "up" and the other "down.")

Orange is a nice color, so let's use it some more. For each and every local
JSR call, find out where the JSR goes to, and color the very start of that line
orange. Go only through the address, starting a quarter of an inch to the left.

For instance, at $8EOE, you have a local call of JSR $8E1 F. Go to the start of
line 8E 1 F and do this ...

o:
I o: A9 74 LDA #$74

I o:
I

This tells us that we are starting on some "live" and rational code, and that
what follows will be a useful and worthwhile subroutine. Once again, we do not
want to analyze any code just yet.

I

lo
I
I
10
I
I
IQ
I

I
10
I
I
10
I
I
10
I

I

lo
I

lo
I

lo
I

I
QI

I
I

Q'
I
I

QI
I

$8El6-

Tearing Into Machine-Language Code 5 7

Two fine points. If there is already an orange stripe here, or one of another
color, just put an orange "ear" or small black dot on the existing stripe. Each
new time this happens, add a new black dot.

This will give you a "popularity poll" of your subroutines. We probably won't
use this voting result for our HRCG analysis, but in a large program, the populari
ty of a subroutine can tell you how important that sub is and how much effort
you should spend in understanding it.

A second possibility is that your JSR seems to go to the middle of an op code,
instead of just the start. The most likely reason for this is that the lister got off
on the wrong foot. See the "WILL THE REAL LISTING PLEASE JUMP OUT"
sidebar at the end of this enhancement for details on this. What happens is that
the lister starts off with a value or two in a file and assumes it is a valid part of a
program that can be disassembled. Op codes normally take one, two, or three
bytes. If the first byte is wrong, the listing will also be wrong.

If you get a "JSR to the middle of ... ", try relisting from the JSR address to
see if you get rational code. This will help clarify the boundaries between stashes
and code modules. We will see an example of this later.

Should your JSR want to go to your bulk file, you guessed wrong! Either the
bulk file has a code module in it, or else your JSR really is a random "20" in
a stash somewhere. Pay careful attention to loose ends like this, for pinning
down exact code and file beginning addresses can save you hours of frustration.

After all of your local subroutines are taken care of, try to identify the out-of
range ones. They must go somewhere. Somewhere is most often a monitor sub
routine, or some DOS subroutine or subs in either BASIC.

Table 3-1 shows us the most popular locations needed by the monitor, DOS,
and I /0. Try to get a match between Table 3-1 and each out-of-range subroutine
call. Label this match with a brown felt-tip pen. We have purposely kept this list
down to the more popular locations. We may look at Applesoft, Integer BASIC,
and DOS internals in a future enhancement. Most user libraries have very
extensive memory listings if you get into something out of the ordinary.

For instance, in $8E16, we have a JSR $FDED. A check of Table 3-1 shows
us that it is one of the most often used monitor routines called COUT. This
routine takes what is in the accumulator and outputs it as a character. This output
goes to whatever is connected to the character output hooks. The code should
now look like this ...

20 ED FD cour

BROWN F TIP

I

'Q
I
I

:Q
I

:Q
Notice that this immediately tells us that the code module is used to output

characters. This very much pins down how the module is used and its place in
the big picture. And we still haven't analyzed any code.

Sometimes a JSR call will point to a different part of user RAM. This usually
means that the target program is in more than one piece. Each piece, of course,
will eventually have to be dealt with. The Wizard and the Princess is a good
example of a program that has code modules all over the lot.

52 Enhancement 3

Table 3-1. Important Monitor, DOS, and 1/0 Locations

PAGE $00

Hex Decimal Mnemonic Use

$20 l2 WNDLFT Left side of scroll window
$21 u WNDWTH Width of scrol I window
$22 34 WNDTOP Top of scroll window
$23 l5 WNDBTM Bottom of scroll window

$24 l6 CH Cursor horizontal position
$25 l7 CV Cursor vertical position
$2b 38 GBASL LORES graphics base low
$27 39 CBASH LORES graphics base high

$28 40 BASL TEXT base address low
$29 41 BASH TEXT base address high
$2A 42 Bi',S2L Scroll temporary base low
$28 43 BAS2H Scroll temporary base high

$30 48 COLOR Holds the LORES color value
$32 50 INVFLG Normal/Inverse/Flash mask
$33 51 PROMPT Holds prompt symbol
$34 52 YSAV Temporary Y register hold

$36 54 CSWL Output character hook low
$37 55 CSWH Output character hook high
$38 56 KSWL Input character hook low
$39 57 KSWH Input character hook high

$45 69 ACC Accumulator save
$46 70 XREC X register save
$47 71 YREG Y register save
$4[3 72 STATUS Flag register save

$49 73 SPNT Stack pointer save
$4E 78 RNDL Veybounce random number low
$4F 79 RNDH Keybounce random number high

PAGE $03

Hex Decimal Mnemonic Use

$03D0 976 Re-enter DOS
$03EA 1002 Reconnect DOS 1/0 hooks
$03FO 1008 BRKV Break vector low address
$03Fl 1009 Break vector high address

$03F2 1010 SOFTEV Warm start vector low address
$03F3 1011 Warm start vector high address
$03F4 1012 PWRDUP Warm start EOR AS checksum
$03FS 1013 AMPERV Applesoft "&" Jump Code

$03F8 1016 USRADR Control Y vector Jump Code
$03FB 1019 NMI NMI vector Jump Code
$03FE 1022 IRQLOC Interrupt vector low address
$03FF 1023 Interrupt vector high address

Tearing Into Machine-Language Code 53

Table 3-1 Cont. Important Monitor, DOS, and 1/0 Locations

PAGE $CO

Hex Decimal Mnemonic Use

$CO00 -16384 IOADR Keyboard input location
$C010 -16368 KBDSTRB Keyboard strobe reset
$C020 -16352 TAPEOUT Cassette data output
$C030 -16336 SPKR Speaker click output

$C040 -16320 STROBE Game 1/0 connector strobe
$C050 -16304 TXTCLR Graphics ON soft switch
$C051 -16303 TXTSET Text ON soft switch
$C052 -16302 MIXCLR Full screen ON soft switch

$C053 -16301 MIXSET Split screen ON soft switch
$C054 -16300 LOWSCR Page ONE display soft switch
$COSS -16299 HISCR Page TWO display soft switch
$C056 -16298 LORES LORES ON soft switch

$C057 -16297 HIRES HIRES ON soft switch
$COSS -16296 Annunciator 0 OFF soft switch
$C059 -16295 Annunciator 0 ON soft switch
$C0SA -16294 Annunciator 1 OFF soft switch

$C0SB -16293 Annunciator 1 ON soft switch
$COSC -16292 Annunciator 2 OFF soft switch
$C0SD -16291 Annunciator 2 ON soft switch

$COSE -16290 Annunciator 3 OFF soft switch
$COSF -16289 Annunciator 3 ON soft switch
$C060 -16288 TAPEIN Cassette tape read input
$C061 -16287 PBO Push button 0 input

$C062 -16286 PBl Push button 1 input
$C063 -16285 PB2 Push button 2 input
$C064 -16284 PDL0 Game Paddle 0 analog input
$C065 -16283 PDL1 Game Paddle 1 analog input

$C066 -16282 PDL2 Game Paddle 2 analog input
$C067 -16281 PDL3 Game Paddle 3 analog input
$C070 -16272 PTRIG Reset analog paddle inputs

54 Enhancement 3

Table 3-1 Cont. Important Monitor, DOS, and 1/0 Locations

MORE PAGE $CO

Hex Decimal Mnemonic Use

$C080 - 16256 Disk stepper phase O OFF
$C081 - 16255 Disk stepper phase O ON
$C:082 -16254 Disk stepper phase 1 OFF
$C083 - 16253 Disk stepper phase 1 ON

$UJ84 -16252 Disk stepper phase 2 OFF
$C085 -16251 Disk stepper phase 2 ON
$C086 - 16250 Disk stepper phase 3 OFF
$C:087 -16249 Disk stepper phase 3 ON

$C088 -- 16248 Disk main motor OFF
$C089 -16247 Disk main motor ON
$C08C -16244 Disk Q6 CLEAR
$C08D - 16243 DiskQ6SET

$COSE -16242 Disk Q7 CLEAR
$C08F -16241 DiskQ7 SET

Q7 Q6 ACTION

clear clear READ
clear set SENSE
set clear WRITE
set set LOAD

PAGES $F8 - $FR

Hex Decimal Mnemonic Use

$F800 -2048 PLOT Plot a block on LORES screen
$F819 -2023 HLINE Draw a horizontal LORES I ine
$F828 -2008 VLINE Draw a vertical LORES line
$F832 -1998 CLRSCR Clear full LORES screen

$F836 -1994 CLRTOP Clear top of LORES screen
$F847 -1977 GBASCALC Calculate LORES base address
$F85F -1953 NEXTCOL Increase LORES color by three
$F864 -1948 SETCOL Set color for LORES plotting

$F871 - 1935 SCRN Read color of LORES screen
$F941 -1727 PRNTAX Output A then X as hex
$F948 -1720 PRBLNK Output three spaces via hooks
$F94A -1718 PRBL2 Output X spaces via hooks

$FA43 -1469 STEP Single step (old ROM only!)
$FAD7 -1321 REGDSP Display working registers
$FB1E -1250 PREAD Read a game paddle
$FB2F -1233 INIT Initialize text screen

$FB39 -1223 SETTXT Set up text screen
$FB40 -1216 SETGR Set up LORES screen
$FB4B -1205 SETWND Set text window to normal
$FBC1 -1087 BASCALC Calculate text base address

$FBD9 -1063 BELL 1 Beep speaker if ctrl G
$FBE4 -1052 BELL2 Beep speaker once
$FBF4 -1036 ADVANCE Move text cursor right by one
$FBFD -1027 VIDOUT Output ASCII to screen only

Tearing Into Machine-Languaie Code 55

Table 3-1 Cont. Important Monitor, DOS, and 1/0 Locations

PAGES $FC-$FD

Hex Decimal Mnemonic Use

$FC10 -1008 BS Bi1cbpi1Ce screen
$FC1A -998 UP Move screen cursor up one
$FC22 -990 VTAB Vertie ill screen tab using CV
$FC24 -988 VTABZ Vertical screen tab using A

$FC2C -9BO ESC1 Process escape movenwnts A--G
$FC42 -958 CLREOP Clear text to end of ,creen
$FC5B -936 HOME Clear screen and home cursur
$FC62 -926 CR Carriage return to screen

$FC66 -922 LF Line feed to ,creen on iv
$FC70 -912 SCROLL Scro I I text ,creen ur one

$FC9C -B68 CLEOL Clear text to end of line
$FCA8 -856 WAIT Time delay ,et by d(cumulator

$FD0C - 756 RDKEY Get input character vi.i hooks
$FD1 B -741 KEYIN Read the Apple keyboc1rd
$FD35 -715 RDCHAR Get key and prncc>ss ESC A--F
$FD62 -670 CANCEL Cancel keyboard line entrv

$FD67 -665 GETLNZ CR, then get kbd input line

$FD6A -662 GETLN Cet input line from keyboard
$FD6F - 657 CETLN1 Get kbd input, no prompt
$FD8B -629 CROUT1 Clear EOL then CR via hooks

$FD8E -626 CROUT Output return via hooks
$FDDA -550 PRBYTE Output f u 11 A in lwx to hooks
$FDE3 -541 PRHEX Output low A in hex to hooks

$FDED -531 COUT Output character vic1 hooks

$FDFO -52B COUT1 Output character to S(reen

PAGES $FE - $FF

Hex Decimal Mnemonic Use

$FE2C -468 MOVE /v\ove block of memory
$FE36 -458 VERIFY Verify him k oi rnernorv
$FE5E -418 LIST Disassemble 20 in<:tructions
$FE63 -413 L\ST2 Disassemble A instru(lions

$FEBO -384 SETI NV Print inverse text on screen
$FE84 -380 SETNORM Print norm a I text on screen
$FE93 -365 SETVID Crab output hooks fo, screen
$FEBO -316 XBASIC Co to BASIC, destroying old

$FEB3 - 333 BASCON Go to BASIC, continuing oid
$FEC2 -318 TRACE Start tracing (old ROM onlv 1)

$FECD -307 WRITE Save to cassette tape
$FEFD -259 READ Read from cassette tape

$FF2D -211 PRERR Print "ERR" to output hook
$FF3A -198 BELL Output bel I via hooks
$FF3F -193 IORESR Restore all working registers
$FF4A -182 IOSAVE Save all working registers

$FF59 -167 OLDRST Old reset entry, no autmtart
$FF65 -155 MON Enter monitor and beep spk,
$FF69 -151 MONZ Enter monitorquretly

56 Enhancement 3

As you tear into your target program, go through each and every subroutine
call and find out what it points to. If there are a few locations that are unexplain
able, wait till later on these. Just be sure that you pin down as many subs as you
can.

Now is a good time to start a separate list of which addresses go where. Label
this list "Cross References" and show the sources of all subroutine calls. As you
go along, any time that one part of the code refers to another part, add it to this
list. Once again, do this by hand, even if you have an automatic cross
reference and disassembly program available. Eventually, you will want this list
in numeric order, but for now, just list addresses as you run across them.

PAINT ALL ABSOLUTE JUMPS PINK I
Ready fora new color? Get the pink highliterand add a pink line for any abso

lute)MP code ($4C) or relative JMP code ($6C). Draw the pink line all the way

across the sheet for in-action jumps starting just beyond the address. Draw the
pink line from the machine code to only about an inch past the operand for
absolute jumps that go out of the action. End these lines with half an arrow
head like you did with the subroutine calls.

If the jumps are inside the action, then also put a pink line showing where the
jump hopped to, just like you did with the subroutines. The jumper and jumpee
may be connected vertically along the left-hand edge, but do this only if the two
are less than twenty lines apart. Also "vote" on the most popular jumps, with
dots if you see more than one jump going to a single location. Add all jumps
to your cross-reference sheet.

If the jump is outside the action, use Table 3-1 to try and find out where the
jump is going to. Then, label the jump using a brown felt-tip pen.

Here are the two steps that are involved in pinning down an inside-the-action
Jump ...

I o:
I

01
I
I

O'
I

and ...

I

o' I
I

QI
I
I

o,
I

$8DFF-

20 lF BE JSR $FDED

I :o
I

:o
I

IQ
I

I

'O I
I
IQ
I
I
10
I

I

o' I
I

o:
I

o' I

0

0

0

0

0

$9020-

9208-
920A-
920C-
920F-
9211-
9213-
9216-
9219-
921B-
921D-
9220-

cs 23
90 11
2C 65
70 08
C6 25
20 21
4C 70
AS 22
85 25
20 24
60

BE

92

Tearing Into Machine-Language Code 57

An outside-the-action jump looks like this ...

clear

ROWN F p

I :o
I

:o
I
I :o
'

Notice what is happening? The flow and structure of our program is rapidly
becoming obvious. We already have all sorts of hints as to which part of the
action does what. But, we are still nowhere near ready enough to tear into the
code.

On an indirect jump using the ($6C) code, go to the address shown in
parentheses and identify this as an indirect address, and show the location that
is using it for the indirect jump.

Let's hack away at our structure some more.

SHOW THE BRANCHES IN BLUE I
Get out the blue page highliter and paint each branch (BCC, BCS, BMI, BEQ,

BNE, BPL, BVC, BVS, but not BIT or BRK) and its address blue. Then, go to that
address and enter a blue line on the left. Finally, if the branch is less than
twenty lines up or down, show the branch action with a light blue felt-tip pen.
Show the direction of each branch, and keep any branch lines from crossing.

Here is an example ...

0
CMP $23
BCC $921D
BIT $8E65 0
BVS $9219
DEC $25
JSR $9221 0

FC JMP $FC70
LDA $22

0 STA $25
FC JSR $FC24 (monitor VTAB Z)

RTS
0

If you find branch lines that try to cross each other, draw the problem line
up the right-hand side of the address column or elsewhere as needed. It is very
important to be able to glance at the listing and tell immediately which branch
goes where.

58 Enhancement 3

We are really into our structure now. Here, the arrows jump forward, condi
tionally skipping part of the code. Often, the arrows will go backwards, outlining
a block of code called a loop. The loops visually leap out at you. Check the big
one at $9298. Note that there can be more than one tail connected to any given
arrow.

Three refinements. The first thing is to watch out for possibly irrational code.
If you are in doubt, paint only the mnemonic blue. The second is to label
branches directly to RTS as an RTS, rather than showing the arrows. Finally, very
long branches should show each end separately, to keep from getting too many
lines on the sheets.

SEPARATE THE CODE MODULES
FROM THE STASHES

Now, carefully, look over the action and identify each "holistic" and "ration
al" code module. A code module should have at least one obvious entry point
and at least one obvious exit point. Any question marks or lister mixups at the
beginning of each module should be resolved so that we can exactly identify the
boundary of each code module.

Then, label carefully in red all the external entry points that you know about,
and anv locations that the instructions refer to. Our "cold" entry point is appar
ently "0R" which translates to the first code byte at $8DFF. The "warm" entry
point is apparently "3R", or $8E02. The version number is at "6R", or $8E05.
We see an "(fJA'' here, which apparently stands for version 1 .0.

The "R" mentioned above may be new to you. The "R" means "relative" and
is used with relocatable programs. "0R" is the first byte in the program, regard
less of where it sits; "3R" is the third byte, and so on.

By the way, if some of our example codes don't exactly fit your listing,
compare the version numbers. Usually, a different version will move parts of the
code up or down a few slots from where they first were.

Here's what this new stuff looks like ...

I
QI F p~

I $8DFF- 4C OE BE JMP $8EOE COLD ENTRY
I $8E02- 4C lF BE JMP $8ElF WARM ENTRY

01 $8E05- OA ASL
I $8E06- FF ???
I $8E07- 92

QI
I B

Note that the ASL mnemonic is meaningless since we have a very short stash
here holding the version number. A mnemonic is only meaningful when applied
at exactly the right place in working code.

While you are labeling outside entry points, be sure to check the top of page
Three for warm start, breakpoint, IRQ, NMI, and RESET vectors. These may
point to important starting or recovery portions of your code. Many newer
programs will RESET to themselves, rather than to the monitor. The RESET and
soft start pointers can be a great help in showing you where the "high level"
code sih.

I :o
I

:o
I

:o
I

Tearing Into Machine-Language Code 59

Since HRCG is a utility or a service type of support program, it doesn't mess
with the page Three hooks. But this is an exception, so always check.

OK. Separate your modules and identify all the external access hooks. Identify
everything else that you know for certain from the program instructions.

What is left in the action consists of code modules as yet undiscovered-dead
code, garbage, stashes, or oversights.

Dead code is code that is never used. Don't throw any away just yet, because
it will most likely come to life later. This can happen because you have yet to
discover some address entry points or else have missed coloring something
along the way.

A lot of programmers will leave dead code in their programs so that the next
code module or file can start off nice and neat on an even page boundary. Dead
code may also be some location that will be written to later by DOS. Dead code
will usually be completely rational, but it won't seem to tie in with the rest of
the program.

Do not prejudge garbage. It may become most meaningful later on. Most
programmers try to shorten their code as much as possible, so if it looks like lots
of garbage is left, chances are you haven't gotten as far as you think.

Stashes are short code files that have meaning. We will attempt to identify
many of them in the next section.

And oversights/ of course, are your own doing.
We now should have identified all of the working code modules, and should

be able to find most of their access and entry points, their interaction, and their
exits. Now, we could actually start to think about tearing into the code.

But no, not yet. Lots of details still remain. Remember that the longer you hold
off on finding out exactly what the code does, the easier the job will get, and
the less of it you will have to do.

Let's see what the stashes and files have to say

IDENTIFY FILES AND STASHES I
We have a sort of a chicken-and-egg problem. We can't tell yet what the files

are up to since we don't know yet how the program works. And, since we don't
know how the program works, the program can't tell us yet what the files are
up to.

Fortunately, there are several file filters you can apply that can isolate most
of the stashes and bulk files and tell you their meaning and intended use. Crack
your files and you have made a tremendous progress.

Even if you can only crack a few files now, doing so is definite progress, and
allows moving bytes from the unknown to the known. This is very much like a
big jigsaw puzzle. Not only does each piece fit somewhere, but it also gets
removed from the pile of unknown remaining pieces. This makes identifying
and using the rest of the pieces easier since there are now less of them.

Let's isolate all the rational code modules and assume that everything left is
a stash. Things may not be nearly this simple, but let's try it anyway. Fig. 3-9
shows us the remaining stash locations.

When you think you have a stash identified, put a narrow yellow stripe up
the extreme right-hand margin, going over the tractor holes. Eventually, you
want to end up with a continuous wide line up and down the right-hand side,
wide yellow for fully known and understood stashes, and wide green for fully
known and understood code modules. When the last of the white right margin
disappears, you have conquered your target program.

60 Enhancement J

$92FE

$92EB

$92DF

$8F7D

$8F48

$8E73

$8E5F

$8E42

$8EOB

$8DFF

GARBAGE

HIRES
BASE FILE

WORKING
FLAG FILE

ASCII
HEADER FILE

USER
SUB FILE

Fig. 3-9. Separating HRCG stashes from
code modules.

We see a two-slot stash at $8E05, and then another obvious one starting at
$8E42 on your listing. But wait. The "vibes" of our stash change dramatically
at $8E5 F. Let's assume we have a second stash starting there. Put a brown dotted
line all the way across between $8E5C and $8E5F to remind us we think we have
two separate files. The second stash apparently ends with $8E73, since $8E7 4
holds what looks like rational code, even though this code doesn't seem to be
isolated yet.

We have a long stash starting at $8F48, obviously consisting of lots of question
marks and the patently excessive use of BCC branches to dumb places. Where
does this stash end? It's not obvious at first, but let's guess that it ends with
$8F81. The code starting at $8F82 (that we aren't supposed to be reading yet)
says to put something in $8E60 and then return. This is rational thinking, particu
larly since $8E60 is a slot in another stash and it might end up as a flag in a flag
file.

Another stash starts at $92DF, identified by lots of zeros. Again, notice a
change of vibes at $92EB. The first twelve locations are in three groups of four
each and all end in zero. The remainder of the stash is strange. Let's call it two
separate stashes and, once again, add a dotted brown separation line.

Now comes the tricky part. First, we want to guess what each location in each
stash is used for, and, then, we want to nail each location down for sure.

To do this, make yourself up some file and stash filters. A stash filter is some
test for some pattern that makes sense to you and to the particular target pro
gram you are attacking. The filter is valid if its answer leaps out at you and is
then clinched by some independent test.

Tearing Into Machine-Language Code 6 7

Normally, you will have to design these filters yourself. Do so very carefully.
Your choice of filters will vary with the target program and how long it is. Here
are some obvious filters to try first

STASH AND BULK FILE
FILTERS

() Is it something obvious?

() Is it an ASCII string?

() Is it a table of addresses?

() Is it a group of flags?

() Is it a conversion table?

() Is it DOS related?

() Does it fill a program need?

These are the usual filters I try first and the order in which I try them. The HRCG
is very accommodating in its stash uses. The early tests will tell you a lot about
each stash. Other programs may not be so easy.

We attack the chicken-and-egg problem this way. First, we filter the stashes
and bulk files as best as we can to find out as much about them as we are able.
Then, we take this information back to the code modules and see what new thing
this tells us about the modules. Then, we look into the modules and see what
they tell us about the remaining unknown files.

Three or so trips round and around and we should have things pinned down
fairly well. Now, if you are into an Adventure or something else really heavy
with stashes and bulk files, it won't be this simple, but file filtering always
makes a very good starting point toward further understanding.

Let's try these filters one by one and see what they tell us.
One example of an obvious file is any code on a display page. This might be

$0400-$07FF for text or LORES page One, $0800-0BFF for the less common
text or LORES page Two, $2000-3FFF for HIRES page One, or $4000-$5FFF
for HIRES page Two. If any of these pages are in use, the bytes stored here have
to correspond to the image on the screen.

Note that the screen images will change as the program is used. What you
see is the code for the display pages at the exact point in the program where
you did your listing. Chances are that text page One got messed up by the listing
process itself.

Besides their obvious location, the HI RES color bytes tend to be mostly $00,
$2A, $55, $7F, $80, $AA, $05, and $FF bytes. In HRCG, we can often ignore
these for a while, since they are the result of the program and not a part of it.

Another example of obvious code happens when you are reading inter
preted BASIC statements. We'll save details on this for another time. But note
that the byte patterns in BASIC are distinctive, starting with a line number,
the location of the next program line, and, then, followed by a parsed code
using token keywords and ASCII symbols, and, finally, ending up with an
end-of-statement symbol. You can check into the LOADHRCG Applesoft
program for a quick example. Do this by hex dumping machine code starting
at $0800.

Usually, the BASIC code tells you that you are looking in the wrong place. But,

62 Enhancement J

machine language is sometimes stuffed inside BASIC programs and, at other
times, it will interact directly with the BASIC statements. This happens in the case
of fast sort routines, variable locators, cross-reference programs, and so on.

As a much simpler and shorter example of an obvious file, look at $8E06. It
is two bytes long. Is it an address? The address is $92FF. Is there anything special
about $92FF? There sure is.

This is the location of the start of the bulk file that we think is an alternate
character set. Since we obviously need a pointer like this and since a pointer
would be early in the program, let's assume this stash is the pointer to the
character set start.

Make sure any "obvious" evidence is very strong. Don't make wild guesses,
and don't make too many guesses at once. Above all, don't force things to fit
your pet theories about what a stash "has" to be. In this case, guessing an
address and having that address reinforce our guess is reasonable.

Next, try some ASCII filters. The ASCII code is the standard way of stashing
letters, numbers, and punctuation in your Apple. Table 3-2 shows us the ASCII
code. An ASCII-coded stash will be mostly code starting with $CX or $DX, will
have a few $AO spaces thrown in, and will often end with a $80 carriage return.
This assumes, as most Apple programmers do, that the ASCII most-significant
bit is set to a 1. If the MSB is not set, then an ASCII file will be mostly values
in the forties and fifties, with a $20 for each space, and with a $00 carriage
return ending. If the file is mostly lower case, then the code will be mostly "EX"
and "FX" values for a set MSB and "sixties" and "seventies" for a cleared MSB.

The actual display code used by the Apple on its upper-case-only old text
screen differs slightly from ASCII. This code is shown in the Apple manual. The
code provides for no control characters and offers normal, inverse, and flashing
upper-case-only characters.

Programmers rarely use this video display code inside their programs. In
stead, they usually will use ASCII, and set and clear the flashing and inverse flag
(location $0032) as needed. The video display code can only be written directly
to the screen and must not be output to any other device via the output hooks.
The code would get used in a program only if the text display needs a wildly
changing mix of flashing, inverse, and normal characters, and, then, only if the
upper-case-only text screen is the only intended output.

Note that ASCII text is automatically converted to video display code by the
usual monitor routines as it goes onto the screen.

Now, any file will give you some message back if you filter it for ASCII. The
key test is whether the message says anything meaningful. You can ASCII filter
all your stashes and bulk code, but it pays to pick only the most promising ones
first.

In the case of the HRCG, we see that the stash beginning at $8E42 looks the
most promising. ASCII filter this code and you get ...

<die> HI-RES CHAR GEN VERSION 1.0 <er>

This is obviously the prompt message that first appears under H RCG. The odds
of it being anything else are insanely small.

Note as you "crack" a stash, that it no longer belongs to the unknown.
Further, a cracked stash will greatly simplify tearing apart the actual code, for
we can now assume the code module directly above it on the listing will be
involved in printing out this message.

As you get practice, you'll be able to immediately spot stashes and bulk files
that will yield useful messages under ASCII code. Be sure to do this by hand a
few times until you get the feel of this powerful filter.

0 1 2

u 0 or 8 NUL SOH STX
p
p 1 or 9 OLE DCl DC2
e
r 2 or A space !

,,

h 3 or B 0 1 2
e
X 4 or C @ A B

d 5 or D p Q R
i
g 6 or E ' a b
i
t 7 or F p q r

Tearing Into Machine-Language Code 63

Table 3-2. ASCII Code

lower hex digit

3 4 5 6 7 8 9 A B C D E F

ETX EOT ENQ ACK BEL BS HT LF VT FF CR so SI

DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS us

$ % & I () * + - I
'

3 4 5 6 7 8 9 : ; (=) ?

C D E F G H I J K L M N 0

s T u V w X y z l \ l A
~

C d e f g h i j k I m n Cl

s t u V w X y
I

z { I } - DEL

We may look at some short and powerful ASCII "snoop" programs in a
future enhancement. Commercial programs that list ASCII strings can also be
used. But, watch out that loading the snoop program doesn't bomb part or all
of your target code. For now, do your ASCII snooping by hand till you are able
to spot an ASCII file at a casual glance.

The acid test of an ASCII filter is whether you get a message back or not. Once
again, don't force things. If the filter doesn't hit you over the head with the
answer, try something else.

If the message seems fragmented or disjointed, possibly you are looking at an
area that gets written repeatedly by DOS-putting message upon message on
top of each other. A copy of the keybuffer from $0200-$02FF may also look
the same way. In either case, you are far more interested in the use of this file,
rather than its contents.

Our next trial stash filter should answer the question, "Do we have a list of
addresses?" Look at the stash starting at $8ESF. A bunch of zeros, with a $92FF
in it. Recall that 92FF points to the start of the default character generator. Do
we have a file of alternate character sets here?

It doesn't look like it, but those zeros suggest a test. Let's run the HRCG and,
then, let's load nine alternate character sets. Then, we will see how and if this
stash changes.

Try it and there's no change! This should teach us several things. First, always
be sure you have what you think you have in the machine. Second, be sure and
try any trick you can think of, even if it doesn't work.

Third, and most importantly, NEVER force anything to fit your pet theories.
The address filter clearly fails on this file. We'll discuss this stash in more detail
later.

Let's try an address filter on the next stash starting at $8F48. Every second
entry is either a $8F or a $90. Look at it on the hex dump and the addresses
leap out at you. Color every second address pair yellow on your hex dump. Note
that the addresses sit backwards on the dump, with the high byte second and
the low byte first. This low-byte-first style is typical of most 6502 machine
language addresses.

64 Enhancement 3

It looks like we definitely have a table of addresses. For the clincher, check
to see if the addresses all go somewhere rational. And, we have another surprise!
Each and every address goes right in the middle of the code all right, but each
one seems to point to an extremely dumb place!

Let's break our rule on tearing into code for a moment and see what code we
find immediately above this address table. In this code module, we take a value,
multiply it by two and, then, use it as an X index to get the high address in $8F3C.
This high address gets shoved onto the stack. Then, we get the low address at
$8F40 and shove it onto the stack also. Then, we return from the subroutine.
What we have really done is we have faked an indirect jump to the selected
module.

Now, what does a subroutine return do? It pops the stack twice and goes to
the address it thought it came from. Only we just changed that with the address
low and address-high stack pushes. Note that two pushes and two pops left the
stack exactly where we started. Our new code module is, therefore, at the same
level that we were before, so we have done an indirect jump, rather than a JSR.

Ah! But, a subroutine return does not return to the address on the stack. It
returns to the address on the stack plus one! This quirk is from the 6502
Programming Manual. Now, let's try adding one to each address and see what
happens

etc ...

$9046 + 1
$8F7D + 1
$8FA9 + 1
$8FD1 + 1
$8FEC + 1
$901A + 1

= $9047, an immediate RTS.
$8F7E, a royal mess.

= $8FAA, the start of a subroutine!
= $8FD2, the start of a subroutine!

$8FED, the start of a subroutine!
= $901 B, the start of a subroutine!

Keep this detective work up, and we find that each address, except for the
first two, points to a subroutine. The first one, an immediate return, looks as if
it is a mistake.

What about the royal mess? Here is a classic example of our lister getting off
on the wrong foot. Right now, the lister says ...

I o: $8F7D- 91 BO STA (BO), Y
I $8F7F- 24 A9 BIT $A9

01 $8F81- 80 ???
I $8F82- 8D 60 SE STA $8E60
I $8F85- 60 RTS

01
I

We know the first part of this is wrong, since we have stashed addresses and
not working code here. We suspect the end of the listing may be right, since it
seems rational. Our problem address is trying to point to $8F7E, so let's let it
do so. Relist things starting with $8F7E, and you get ...

I
I
10
I
I
10
I
I
IQ
I

I

01
I

$8F7E-I BO 24

QI $8F80- A9 80
$8F82- 8D 60 BE I $8F85- 60

I
01

I

Tearing Into Machine-Language Code 65

I
10

$8FA4
I

BCS I
LDA #$80 10 STA $8E60
RTS I

I
10
I
I

And this is a nice and rational little subroutine. Our problem mess was solved
by making sure our lister had something worth listing as its first entry.

Wow, what a bit of detective work. Our filter has found 27 addresses that lie
in the middle of our code, all of which point to valid and workable subroutines,
except for the first one that immediately returns.

Let's carry this further to see what an address stash will tell us about those
subroutines. Now, 27 is one more than 26, the number of letters in the alphabet.
Look at the ASCII code given back in Table 3-2, and we see a sequence of
@ABCDEF ... that jumps out at you. If the program was using a pointer that
started with @fora 00 value, we would have 27 values, the last 26 of which
would be the alphabet in order. Naturally, @ wouldn't be used, so it would
immediately return.

Let's take a wild guess that @ = Address 0, A = Address 1, B = Address
2, and so on. Now, let's see if this heads to any place that is useful.

Back to the HRCG manual. We have two sets of A to Z commands. This
strongly suggests trying to fit the menu selections to the subroutines we already
have. Right now, this is sort of a wild guess. But, if it works, and if we can prove
it absolutely, we will have chopped mucho time off of our target-program attack.

Let's look further. Put a brown arrow at each subroutine's starting address that
we think does something from A to Z. We get strong reinforcement right off the
bat since all of them start off on a new code module.

We also notice something rather strange. Each and every module starts off
with either BCS or BCC.

Odd.
But, remember that there are two alphabets needed in H RCG, one for the

main menu selection and one for the option selection. Let's continue, since
everything has been reinforced so far. Apparently each subroutine is a subrou
tine pair, one of which handles the "main" menu selection and one of which
handles the "option" menu selection. Further, the condition of the carry flag tells
us which way to go.

Which is which? To find out, we'll need more detective work.
Note that we have a function selection "E" but no option selection "E". Note

also that we have an option selection "R", but no function selection "R". Go
to the sixth address on the list (E is the sixth character starting with @), and we
see a BCS to RTS. Apparently a cleared carry is a function and a set carry is an
option.

Even more important, look at that monitor subroutine clear-to-end-of-screen
leaping out at you at $9028 on your program listing. This is a solid and complete
ly independent check on what these addresses are used for.

As a final check, we look at entry "R" (the fourteenth address), and we see
a BCC to RTS, verifying that the carry flag decides which alphabet to use. The
code at "R" should "Reverse the overlay" for us. A quick look at this code

66 Enhancement 3

shows it setting two flags for us-another confirmation. This confirmation is
much weaker than the first one, but support is support.

So, go through all your code addresses and label their uses with a brown
felt-tip pen. Use fairly large letters. $8F7E should be labeled "(A) function
SELECT N". Check the BCS branch location and the code starting at $8FA4 gets
labeled "(A) option PAGE 1 PRIMARY".

Continue through the list. The modules that use the cleared carry are func
tions, and the ones that use a set carry are options.

Note the power of the address filter. We now know the meaning and use of
well over half of the code modules, without tearing into the code at all. HRCG
is very friendly with its menu-driven selections. In other programs, you may not
be able to immediately tell one address-code module from another. But the very
fact that you can break up the modules into little chunks is extremely valuable
and a major time saver.

The usual clue to filtering address tables is that every second entry is the same
and the backwards entry pairs seem to be working through a range in a usually
increasing order.

The HRCG stash at $8F48 seems to be the only table of addresses we have,
so we will try some new filters.

Our next trial stash filter asks, "Do we have a group of flags?// A flag is some
location that the program refers to so that it can decide what it is going to do
next. In the HRCG, we can expect flags for the display page, the primary page,
the working alternate character-set base address, the display mode, and so on.
In an "adventure" program, the group of flags can show what is in which room,
whether the giant armadillo is asleep or awake, whether the golden clockwork
canary can be wound, and similar conditional things.

A flag file will often be mostly zeros, with a few FF's thrown in here and there.
Other hex bytes in a flag file may have only a single bit set, such as $01, $02,
$04, $08, $10, $20, $40, and $80. Flag files may also hold an occasional
address or two.

One good way to verify a flag file is to find some stash that looks reasonable,
and then lightly scan nearby code modules to find if there are references to
these locations. In the HRCG, we see a likely file starting at $8ESF. A check
through some of the option code shows lots of them working with locations
$8ESF through $8E73.

There's usually a two-step process involved in understanding a flag file. First,
you prove the flag file is there and that it is used. Then, later, when you are
checking into the variables of the program in the next section, you attempt to
put specific meaning onto each and every flag.

Pinning down flag meanings can be quite a challenge. The original program
mer started with his flag definitions and locations and, then, built his program
around them. You have to do the opposite, taking strange code and inferring
what the flags originally stood for.

Our "Is it a conversion table?" filter is one that takes some experience to use.
A conversion table relates addresses to data in some manner. Table lookup is
a very fast way to do things, compared to calculating values. The stash starting
at $92DF "looks" somewhat like a conversion table that somehow "seems" to
be involved with HIRES (high resolution) base addresses. We'll keep this one a
"maybe" for now.

Other examples of conversion tables are the shape tables and sprite maps
used in HIRES graphics. A shape table holds a bunch of drawing directions, as
needed, to directly write on the HIRES screen, using Apple's graphics routines.
A sprite map will hold an image of what is to be remapped onto a HIRES screen.
A character from an HRCG character-set file is an example of a sprite map.

Tearing Into Machine-Language Code 67

Let's continue down the file filter list. Many machine-language programs
create their own DOS, or else, use DOS variations for protection, access, and
so on. In these cases, there are some DOS filters you can apply to your stashes.
These DOS filters do not seem to help us here on the HRCG.

A file involving DOS may consist of bunches of code always ending in $XO
or $X8. These are used in the DOS nibble encoding. DOS code modules will
often use header constants of $D5, $AA, $96, markers of $DE, $AA, $EB, and
a trailer of $DE, $AA, and $EB. These values will jump out at you once you tune
yourself into them. DOS code will also repeatedly use LOA $C08C,X com
mands, followed by a BN E back to itself. "X" here is the slot number. This looks
real dumb when you first see it, but it is a sure sign of DOS read activity.

Another way to filter a file is to ask, "Does it fill an obvious program need?"
You'll have to design suitable filters for each and every target program. Let's take
a closer look at our bulk file and see what we can find out about it from its
structure alone.

Visual clues can help bunches here, such as the frequency of repetition of
some marker. In Zork, the vocabulary file has a zero and, then six bytes, over
and over again. The "objects" file takes nine bytes and is in the form of seven
flags and an address. Look for these patterns. Break up a file into several smaller
files whenever you see any change in these patterns.

Even if you don't have the foggiest idea about what is in the file or how it is
used, deduce as much as you can about the file structure, for this will be a great
help later.

We suspect our bulk file is a default character set. All right. That means that
the bits should look like characters if you arrange them just right. We know the
characters are arranged in 7 X 8 squares from the ANIMATRIX program. So,
a reasonable "Does it fill a program need?" filter on this bulk file is making sure
to look at each and every bit and see if there is some visual pattern that looks
like character dots. Let's start at $9F00 ...

($00)

($00)

($00)

($00)

($00) -

($00)

($00) -

($00)-

Now, that one is singularly uninformative. Yet, it is the first character and we
know that the first noncontrol character in ASCII is a space. Let's try another one
at $9307.

($08) - -C· • !

($08) - cc•Ji
($08) - ,f.'-C!_

($08) - o~•.- i.

($08) - -' ·-••>
($00)-

($08) - .:_)/•-(<

($00)-

68 Enhancement 3

Now, that looks like an exclamation point, the second printing ASCII charac
ter. But, things are still weak. Let's try to predict a quote for the next one, starting
at $930F. And, sure enough ...

($ 1 4) - c:c«::«:xJ

($ 1 4) - c:c«::«:xJ

($1 4) - c:c«::«:xJ

($00) - CXXXXXD

($00) -~

($00)-~

($00)-~

($00)-~

Apparently the characters are in the character file in order, just like they go
on the screen. Only, we may be jumping to conclusions. Let's try several more
characters. There are 96 characters, each of which takes up 8 bytes, so we can
expect 768 bytes total, or exactly 3 pages. Thus, we would expect the numbers
and punctuation to start at $92FF, the upper-case alphabet at $93FF, and the
lower-case alphabet at $94FF.

To prove this, we would expect a capital" A" to be at $93FF + $08 = $9407.
Try it, and lo and behold . . .

($08) - c:x::::c«x::o
($ 1 4) - c:c«::«:xJ

($22) - ce:::xx*J

($ 22) - ce:::xx«)

($3E) - ceeHI~
($ 22) - ce:::xx«)

($ 22) - ce:::xx«)

($00)-~

So, obviously, we know everything that we should know about the bulk file
now, right?

Wrong!
One very important rule

No matter where you are in
cracking a file, there is ALWAYS
one surprise remaining between
where you think you are and
where you really are.

THE FINAL
SURPRISE IS
THAT THERE ARE
NO MORE SURPRISES!

Always, check things as independently and as completely as you can before
convincing yourself that something is so. In the case of our bulk file, the surprise
comes on the next character.

Tearing Into Machine-Language Code 69

($1E)-~

($22) - c«XX«)

($22) - c«XX:.J

($1E)-~

($ 22) - c«XX«)

($ 22) - c«XX«)

($1E)-~

($00) - CXXXXXD

Uh - whoops. That's a B all right, but why is it backwards? All the rest are
obviously frontwards, aren't they? Let's try the next character ...

($1 C) - 0::::...::::0

($ 22) - c«XX«)

($02) - cxxxx::«)

($0 2) - cxxxx::«)

($0 2) - cxxxx::«)

($ 22) - c«XX«)

($ 1 C) - 0::::...::::0

($00) - CXXXXXD

Hmmm ... , the "C" is also backwards. But why would some characters be
frontwards and some backwards?

They wouldn't.
The first three characters that we looked at just happen to look the same

frontwards or backwards. That's the prize we find in this particular box of
Crackerjacks.

Apparently all of the characters are "backwards" with the least-significant bit
going out to the display first and the most-significant bit going out to the display
last. Think about this for a while and you'll remember that a backwards entry
is also how all of the HIRES color routines work, so we should have expected
something like this.

Fig. 3-10 shows us the final arrangement of the default character set in the
bulk file. We can safely assume that all other character sets will behave the same
way, even though they are located elsewhere in memory.

Now, a visual bit-by-bit check of a long file may turn out to be totally worth
less. But, it also may be a sure clue that will permit quickly cracking most of
the program code. It all depends on the program and how creative your crack
ing approach is. What you have to do is make up a "Does it fill a program
need?" filter that might show you something. But, keep trying things that are
geared to the target program until something leaps out at you and hits you over
the head.

There is one ultimate file filter

THE ULTIMATE FILE FILTER

Fill the file with water and
see where it leaks.

70

$95FE

$94FF

$93FF

$92FF

Enhancement 3

LOWER
CASE

LETTERS

UPPER
CASE

LETTERS

NUMBERS
AND

SYMBOLS

FORMULA TO FIND ANY CHARACTER

STARTING ADDRESS = $92FF + 8•(ASCII - $20)

(WHERE ASCII= HEX ASCII VALUE OF CHARACTER)

EACH CHARACTER IS STORED AS EIGHT SEQUENTIAL BYTES.
THE FIRST BYTE HOLDS THE DOTS FOR THE TOP ROW OF THE
CHARACTER. THE LSB OF EACH BYTE IS THE LEFTMOST
DOT ON THE CHARACTER. THE MSB IS USED FOR OPTIONAL
HALF-BIT SHIFT OR COLOR CH ANGE AND IS NOT DISPLA YEO.
BOTTOM BYTE IS USUALLY BLANK. EXCEPT FOR LOWER
CASE DESCENDERS.

MSB
t

$9396

$938F

THAT'S A ··2··

Fig. 3-10. How the HRCG default c:haracter set is stored in the bulk file.

If all else fails, and you are making reasonable progress elsewhere in your
attack, try changing some or all of the contents of a file and see what changes
take place in the program.

Usually, the program will bomb on random file changes. But, by finding out
where and when it bombs and, then, zeroing into one or two locations in our
target file, we can sometimes find out lots of things in a hurry.

Suppose we didn't know our bulk file was an alternate character set. If you
made the first eight bytes all $FF's instead of $00's, then all the spaces in any
message would be white boxes, but nothing else would change. Now, this would
immediately tell you that the file was a character set and that the first entry was
a space.

Another neat example of this is to go through the movable object file in an
Adam's Adventure and change all the room numbers to $FF. You are now
carrying everything!

The only unexplained file left in HRCG is the stash starting at $92EB. Now,
this code seems downright wei1'd and has failed all the other tests. The code
could be garbage since it is at the very end and since the character generator
sets all have to start at the same base address.

Fill this file with $FF's and what happens?
Nothing.
There is no change in any part of HRCG that is immediately obvious. So call

it garbage.
At this point, you should have all your stashes and all your bulk files separated

and many of them fully identified.

I

o:
I

o:
I

o' I

$8ElF- A9 74
$8E21- 85 38

Tearing Into Machine-Language Code 71

Back to the code modules

ATTACK VARIABLES AND CONSTANTS I
Start a fresh page on your quadrille pad and head it "LIST OF VARIABLES."
Now, go through the code modules line by line, and each time you find an

address used for loading, storing, BIT testing, logic operations, or whatever, paint
the variables pink and the constants green.

Note that the constants will always have a # symbol in front of them. Page
Zero addresses will be two hex digits but no #. Absolute addresses will be four
hex digits, again with no #.

As an example, an LOA $05 puts what is in page Zero memory location $0005
into the accumulator. This is a variable. It is a variable since the contents of
$0005 can have any of 256 values ranging from $00 through $FF. But, an LOA
#$05 puts the value hexadecimal $05 into the accumulator. This is a constant
equal to "five" of something.

Watch for that# symbol! It will get you every time if you ignore it.
Our first code module starts at $8E1 E. Your variable and constant lines should

look like this ...

I

:o
I

:o
I
I

B F p IQ
I

As you identify variables and constants, you can start tearing into code. But,
if something isn't immediately obvious, go on elsewhere. Our first object here
is getting a list of all locations that get used for target-program variables. Howev
er, if we can find the meanings at the same time, we are just that much further
ahead.

The code starting at $8E1 Fis very easy to read. First, we set the input hook
to $8E74 and, then, we set the output hook to $8F18. Next, we reconnect DOS
to internalize these hooks. Then, we switch to the full graphics and pick the
HIRES mode. Continuing, we restore the default display parameters and, then,
we switch on the graphics mode. Finally, we exit.

How did we figure all that out? Look back at what we know about these
variables

$38 and $39 are the KSW switches in the monitor.

FROM TABLE 3-1
OR PREVIOUS

$36 and $37 are the CSW switches in the monitor.
$03EA is the DOS reconnect hook.
$C052 is the full screen switch.

RESULTS $C057 is the HIRES switch.
Sub $9158 is named "Restore Default Parameters."
Sub $900D is named "Display Primary."
$C050 is the GRAPHICS switch.

72 Enhancement 3

Usually, you won't be so lucky on your first try. We now understand that this
code module is the initialize portion of HRCG. We also now see what it does.
We add all the above variables to our variables list, and color everything that
we understand reasonably well pink for a variable or green for a constant.

Since this module is so obvious, we can also color the right tractor margin a
solid wide green.

We also found out something new. All keyboard inputs go to $8E14 and all
character outputs go to $8F18. So, label these locations in red. Do this and two
more large code modules now have labels. Call these KEYBOARD ENTRY and
CHARACTER OUTPUT.

Continue through the code modules and identify every variable. If you can
tell exactly what the variable is used for, so much the better. If not, just put the
variable on the list. The variable will most likely crop up later in another code
module that may clarify its use.

Don't go overboard on analyzing code. If something is obvious and simple,
go ahead and crack the code. If it is not, just record all the variables. Do not
color any variable or constant till you understand what it is used for. But, be sure
to get all of them on the list.

Pay particular attention to variables inside parentheses. A set of parentheses
means that you are doing a jump indirect or using one of the indexed indirect

ADDRESS

$0020
$0021
$0022
$0023

$0024
$0025
$0028
$0029

$002A
$002B
$0035
$0036

$0037
$0038
$0039
$004E

$004F
$00EB
$00EC
$00ED

$00EE
$00EF
$00FF

$0104

$03EA

Table 3-3. List of Variables for HRCG

MNEMONIC

-page $00-

WNDLFT
WNDWDTH
WNDTOP
WNDBTM

CH
CV
BASL
BASH

BAS2L
BAS2H
YSAVl
CSWL

CSWH
KSWL
KSWH
RNDL

RNDH

-page$01-

-page $03-

USE

Left end of scrolling window
Width of scrolling window
Top of scrolling window
Bottom of scrolling window

Text screen cursor horizontal
Text screen cursor vertical
Text screen base address low
Text screen base address high

Dot row HIRES base address low
Dot row HIRES base address high
Temporary Y register save
Character output hook low

Character output hook high
Keyboard input hook low
Keyboard input hook high
Keyboard delay low

Keyboard delay high
Temporary X register save
HIRES base address low
HIRES base address high

Character set base address low
Character set base address high
Temporary accumulator save

JSR stack source pointer (,X)

Hook to reconnect DOS

Tearing Into Machine-Language Code 73

Table 3-3 Cont. List of Variables for HRCG

ADDRESS MNEMONIC USE

-page $BE-

$8E06 Default character set base low
$8E07 Default character set base high
$8E08 Jump to user sub A
$8EOB)ump to user sub B

$8E42 Pointer to header message
$8ESF Escape key flag
$8E60 Alternate character set flag
$8E61 Primary page flag

$8E62 Inverse video flag
$8E63 Transparent video flag No.
$8E64 Transparent video flag No. 2
$8E65 Scrolling flag

$8E66 Case flag
$8E67 Character set in use base low
$8E68 Character set in use base high
$8E69 Save of $8E61 while block mode

$8E6A Save of $8E62 while block mode
$8E6B Save of $8E63 while block mode
$8E6C Save of $8E64 while block mode
$8E6D Save of $8E65 while block mode

$8E6E Save of $8E66 while block mode
$8E6F Save of $8E67 while block mode
$8E70 Save of $8E68 while block mode
$8E71 Block mode flag

$8E72 CH Horizontal cursor position
$8E73 CV Vertical cursor position
$8F48 Function address file base low
$8F49 Function address file base high

-page $92-

$92DF Start of HIRES pointerfile
$92FF Defau It character file start

-page$C0-

$C000 IOADR Keyboard ASCII input
$C010 KBDSTRB Keyboard strobe reset
$C052 MIXCLR Full graphics soft switch
$C054 LOWSCR Page 1 soft switch

$COSS HISCR Page 2 soft switch
$C057 HIRES HI RES soft switch
$(050 TXTCLR Graphics soft switch

-page $FC-

$FC22 VTAB Vertical tab from CV sub
$FC24 VTABZ Vertical tab from accumulator
$FC42 CLEEOP Clear to end of page sub
$FC58 HOME Home text screen monitor sub
$FC70 SCROLL Scrol I text monitor sub
$FC9C CLREOL Clearto end of line sub

74 Enhancement J

modes. These are among the most powerful commands the 6502 microproces
sor has available, so it pays to very carefully understand how these are used.
It really gets challenging when you get into the double or even triple indirect file
manipulations that are involved in the longer Adventure programs.

Don't worry too much about fuzziness and loose ends. Identify what you can
and crack what code you can, but keep moving! And, every time you get a new
piece of checkable information, go back and plug it in everywhere it seems to
fit. The ripple effect when you do this is often astounding.

Our flag file bytes get identified as you go along. Note that $8FA4 puts a $20 in
8E61 to display the primary page and that $8FCC puts a $40 in $8E61 to display
the secondary page. We can then conclude that $8E61 is the page flag.
You can continue this reasoning for the other flags. The block mode ends up
using the bottom half of the flag file.

You should end up with a complete list of all variables, some of the code
completely cracked, and lots of new hints that will help you elsewhere in your
attack.

After your list is nearly complete, recopy it legibly in numeric order. Table 3-3
shows a list of the variables used in HRCG. Use this as an example.

PAINT THE HOUSEKEEPING YELLOW I
Next, go back through the code. Every code line that uses an implied address

ing mode should be painted yellow once you understand it. Implied mode
instructions use a single op code byte and are not qualified by a value or an
address. Examples are INX, DEY, TXA, CLO, SEC, TSX, and so on.

If you happen to have code that uses the stack to hold a value for you, this
will show up with a PHA, some operations, and, then, a restoring PLA. Show
these in yellow just like any other implied instruction. But if, and only if, the PHA
and PLA are irrevocably paired as a temporary store, connect them with a
yellow bracket.

Like this ...

I o: 8E87- Bl 2A LDA ($2A),Y
I 8E89- 48 PHA

01 BESA- E6 4E INC $4E
I BEBC- DO OB BNE $8E99
I BEBE- E6 4F INC $4F

0 8E90- CA DEX
8E91- DO 06 BNE $8E99
8E93- 49 7F EOR #$7F

0 8E95- 91 2A STA ($2A),Y
8E97- A2 50 LDX #$50
8E99- 2C 00 co BIT $C000

0 8E9C- 10 EC BPL $BESA
8E9E- 68 PLA
8E9F- 91 2A STA ($2A), Y

0 8EA1- BA TSX

0

0

0

0

0

0

Tearing Into Machine-Language Code 75

Once you understand how a yellow line is used, add comments in brown to
explain it. Should you get paired PHP and PLP commands, these should also get
bracketed in yellow, but only if they always work together.

What you are after here is to have a color on each and every line, a comment
on each and every line, and, on the right margin of the page, a solid green area
for each module that is understood, and a solid yellow area for each stash that
is cracked.

WRITE A SCRIPT I
Where you are right now depends on your experience and how tough and

how long the program is. If you try this method on a target program that is only
a few hundred words long, you should be done by now. You should not only
have met your limited goal, but should have the rest of the entire program
completely cracked. On longer programs, the chances are there is lots of white
space remaining. These white spaces point to uncracked code and unbroken
stashes and bulk files.

The next step is to write a script. Explain in people-type words what each and
every known stash, bulk file, and code module does.

A complete script of HRCG appears in Table 3-4. Use this as an example. If
you have to leave blanks for now, do so.

CUSTOMIZE YOUR ATTACK I
Hopefully, you will know what to do next at this point. Go on your own vibes

in the most obvious direction.
Obviously, all machine-language programs are different. Some will involve

themselves a lot with DOS. Others will use only the HIRES screens for game
actions. Still others will interact with a host BASIC program, and so on.

What you now want to do is customize the attack to fit the program. How
you do this is up to you. Here are some things I sometimes try ...

CUSTOM ATTACK METHODS

() Look for built-in diagnostics.
() Use breakpoints.
() Try flowcharting.
() Attack indirect addressing.

() Add hooks.
() Gain partial control.
() Use the cassette.
() Single step and trace.

() Chip away at it.
() Attack the fundamental subs.
() Ask for help.
() Use partial boots.

() Detect changes.
() Alter files.
() Put program on an assembler.

() Attack a similar program.
() Decipher special codes.
() Try something easier.

76 Enhancement J

That's sure a long list. Not every idea will work on every program, though.
Let's look at a few of these in more detail, after a page or two.

Table 3-4. Complete Script of HRCG

ADDRESS COMMENTS

$8DFF Hard entry point. Clears screen and
prints header, connects HRCG hooks.

$8E02 Soft entry point. Connects HRCG but
does not clear screen.

$8EOS Version number x 10.

$8E06-8E07 Base address of default character
generator set. Defaults to $92FF.

$8E08-8E09 User subroutine A starting address
called by option Y. Defaults to
subroutine return RTS.

$8E0B-8EOC User subroutine B starting address
called by option Z. Defaults to
subroutine return RTS.

$8E08-8El E Hard entry routine. Sets 1/0 hooks,
then reconnects DOS. Switches to
HIRES full screen. Restores DOS
and default parameters. Displays
primary. Switches to graphics.

$8E42-8ESC Stash holding ASCII-coded title
and version. Used during cold entry.

$8E42-8E73 Stash holding all working flags-

$8ESF - $80 if previous key ESC
$00 otherwise

$8E60 - $80 if alternate characters
$00 if defau It characters

$8E61 - $20 if page 1 primary
$40 if page 2 primary

$8E62 - $00 if normal video
$7F if inverse video
$80 if overstrike video
$CO if complement video

$8E63 - $80 if transparent mode
$00 otherwise

$8E64 - $60 if transparent mode
$00 otherwise

$8E65 - $00 if scrolling
$FF if wraparound

$8E66 - $00 if caps lock
- $80 if lower case
- $CO if single capital

$8E67 - Base add low of set in use
$8E68 -Baseaddhighofsetinuse

$8E69 - Saveof$8E61 while block
$8E6A - Save of $8E62 while block
$8E6B - Save of $8E63 while block
$8E6C - Save of $8E64 while block
$8E6D - Save of $8E65 while block
$8E6E - Save of $8E66 while block
$8E6F -Saveof$8E67whileblock
$8E70 - Save of $8E68 while block

Tearing Into Machine-Language Code 77

Table 3-4 Cont. Complete Script of HRCG

ADDRESS COMMENTS

$8E74-8EAC

$8EAD-8F17

$8F18-8F27

$8F48-8F7D

$8F86-8FA3

$8FA4-8FA9

$8FAA-8FCB

$8FCC-8FD1

$8FD2-8FDE

$8FE2-8FEC

$8FED-900C

$900D-901A

$901B-9022

$8E71 - $00 if normal display
$FF if in block mode

$8E72 - CH horizontal position
$8F73 - CV vertical position

Enter HRCG via keyboard hook. Save
A, X, BASH, and BASL. Debounce keyboard
and flash cursor till key is pressed.
Reset keyboard strobe.

Check keyboard for ESC or CR. If
a CR, process via sub $928D. If
an ESC, process I, J, K, M for
cursor motions. Then, clear EOL if
E or clear EOS ifF. Process A, B,
C, and D cursor motions.

Enter HRCG via output hook. Save
A, X, and Y. If a number and
preceded by ESC, change character
set number via $8F86. If a control
command, clear Carry if a function
and set Carry if an option. If a
letter from @ to Z, process by
getting address from stash $8F48
and doing an indirect jump.

Stash of 27 addresses for menu
selections A-F. Selection@ does
an immediate RTS. Address picked
by $8F28.

Function A. Alternate character set.
If a number from 0--9, calculate new
base address and store in $8E67.

Option A. Put #$20 in flag $8E61 to
switch to primary page 1.

Function B. Begin block display if
not al ready there. Put$#FF into
flag $8E71. Move flags $8E61
through $8E67 to $8E69 through $8E70
as temporary save. Move CV and CH
into flags $8E72 and $8E73.

Option B. Put #$40 in flag $8E61 to
switch to primary page 2.

Function C. Carriage return. If
not below bottom, do CR via $9204.

Option C. Complement display by making
flag $8E63 a #$CO and $8E64 a #$00.

Function D. Block display off. If
in block mode, move flags back to
$8E61-8E68. Reset block flag and
CH flag to zero, CVflagto bottom.

Option D. Display primary. Switch
to page One. Check primary flag
and switch to primary flag page.

Function E. Clear HIRES page to EOL
using$928D. Then, clear text page
using monitor CLEOL.

78 Enhancement 3

Table 3-4 Cont. Complete Script of HRCG

ADDRESS COMMENTS

$9023-902A

$9028-903F

$9040-9047

$9048-904F

$9050-9057

$9058-9072

$9073-907A

$9078-9082

$9083-908D

$908E-9095

$9096-909E

$909F-90AD

$90AE-90BA

$90BB-90C2

$90C2-90C8

$90C9-90D5

$90D6-9103

$9104-9124

Function F. Cle,ir HIRES page to EOS
using $927 A. Then, clear text page
using monitor CLEOS.

Function H. Backspace. Go left
one character if entry at $9028. If
screen left, go up one line.

Function I. Set inverse video flag
by putting #$75 into $8E62.

Function K. Set caps lock flag by
putting #$00 into $8E66.

Function L. Set lower-case flag by
putting #$80 into $8E66.

Unsupported function M. Apparently
a scroll diagnostic, once reached by
CTRL-S, CTRL-C

Function N. Set normal video flag
by putting #$00 into8E62.

Function 0. Set option flag by
putting #$40 into $8E60. Next key
wi 11 complete option corrnnand.

Option 0. Pick overstrike mode by
#$00 into 8E63 and #$00 into 8E64.

Function P. Clear HIRES page via
$9270 and text page via monitor
HOME.I\Jotethatan image of the
HIRES screen is put on text page 1.

Option F'. Pick print mode by
putting #$00 into $8E63 and $8E64.

Function Q. Home cursor inside
text window. Move upper-left values
to CH and CV. Then, reset text
screen via monitor VTAB.

Function R. Reverse overlay by putting
#$CO into $8E63 and #$60 into $8E64.

Function S. Shift next character by
putting #$CO into flag $8E66.

Option S. Pick scroll mode by
putting #$00 into flag $8E65.

Option T. Set transparent mode by putting
#$80 into $8E63 and #$60 into $8E64.

Function V. Text window, upper left,
by resettingWNDLFT and WNDTOP
after check for on-screen values.
Transfers vertical position to CV
flag if not in block mode.

Function W. Text window, lower right,
by resettingWNDWDTH and WNDBTM
after check for on-screen values.

Tearing Into Machine-Language Code 79

Table 3-4 Cont. Complete Script of HRCG

ADDRESS COMMENTS

$9125-912A

$912B-914E

$914F-9151

$9152-9177

$9178-917A

$917B-9196

$9197-91C4

$91CS-91F7

$91 FS-9220

$9219-9220

$9221-926F

Option W. Set wrap mode by putting
#$FF into $8F65.

Function Y. Open tofu 11 text
screen by putting #$00 into WNDLFT
and WNDTOP and #$28 into WNDWDTH
and $#18 into WNDBOTM. Save as
CH and CV flags if not block mode.

Option Y. Call user subroutine A
by jumping to jump command stored
at $8E08. Defaults to RTS.

Function Z. Restore defaults.
Reset all flags to #00. Set full
text window. Pick default character
set. Display primary page. Reset
user subs to RTS.

Option Z. Call user subroutine B
by jumping to jump command stored
at $8EOB. Defaults to RTS.

Begin character entry. Exit RTS if
option flag set. Cheek case mode
and change to upper case or reset
shift flag if needed.

Continue character entry. Calculate
character location and save as $EE
and $EF. Calculate screen base
address location and save as $EC and
$ED. This is the top dot row for any
character position. The running dot
row address gets held in $2A and $2B.
Then, the character is saved on page
One text screen. Like so.

$28-29 - text screen base address
$2A-2B- HIRES dot row address
$EC-ED- HIRES base address
$EE-EF -Character-set base address

Continue character entry. For eight
dot rows, get the character dots and
inverse if needed. Get the dots
already on the screen; then, AND or OR
with character dots if needed. Then,
return result to the screen. ,Next,
calculate the address of the next
lower dot row and repeat ti 11 a 11 of
the characters have been entered.

Move cursor. Go one to the right
unless at extreme right of the window.
Ila CR is needed, go down one line
unless at extreme bottom of window.
If at bottom, check flag for scroll
or wraparound, and continue.

Wraparound mode. SetWNDTOPtotop
of text window. Do a monitorVTABZ
to recalculate base addresses.

Scrolling mode. Dot line source is
$2A-$2B. Destination is address

80 Enhancement 3

Table 3-4 Cont. Complete Script of HRCG

ADDRESS COMMENTS

$9270-9279

$927A-928C

$928D-92CA

$92CB-92DF

$92DF-92EA

$92EB-92FE

$92FF-96FE

$EC-$ED. Destination is eight dots
above source. Starting atthe top
of the screen, scroll downward,
loading from ($2A) and storing at
($EC). Y register handles CH
position, stepping from WNDWDTH
downward. X register handles
position of eight rows per character.
One> entire dot row is entered, then
another until done. After a line is
remapped, the base address of tbe
next I ine is calculated, making the
old source the new destination, and
calculating a new source. This
continues until the entire screen is
mapped .. The bottom line is then
cleared via $8E63.

Clear screen. SetCVtoWNDTOP
and CH to WNDLFT and continue via
$927E.

Cleartoendofscreen. From
prc>sent CH and CV, clear to EOL
via $9291 as often as needed to
empty screen.

Clear to end of line. For eight
dot rows, calculate address, then
remove character from screen.
Inverse background if needed. Y
register works from CH to WN DWDTH
doingonedotrowatatime. X
register handles dot rows, working
from top of character down.

Calculate HIRES base address.
Divide CV by two. Go into the
table in $92 DF-92 EA and lookup base
address value. Process this value
and store in $2A and $2B.

A stash of table lookup values used
to calculate HIRES base addresses
needed by $92CB or $92CD.

Apparently unused garbage.

Bulk file of default character set.
Holds dot patterns of all ASCII
characters. The seven least
significant bits hold the horizontal
dot pattern IN REVERSE for one dot
line. Eight successive bytes hold
the dot pattern for one character,
arranged from top to bottom.
Locations $92FF-93FE hold numbers
and symbols. $93FF-94FE hold
upper-case alphabet, and $95FF-96FE
hold lower-case alphabet. Bottom
dot row is blank except for
descenders. 96 characters total.

If you are attacking a very complicated target program, chances are the
original author may have had some of the very same problems you did, And,

Tearing Into Machine-Language Code 87

if he was smart enough, he just, possibly, may have built in some problem
solving diagnostics.

For instance, the Adam adventures have a "Possible" and a "Did" tracing
debugger that you can access with two keystrokes. Zork includes a hook that
lets you stop the action after each code module, and print out whatever you like,
such as the files just accessed. Zork will also give you a complete list of rooms
with just a few keystrokes. A few minor changes to Wizard and the Princess
and you get a guided picture tour of all the rooms.

Be on the lookout for any diagnostic helps that may be built into the program.
Then, see just how you can tap them.

Breakpoints are another way to tackle a program. What you do is reach into
the target program at a place where you want it to stop, and insert a $00 or BRK
command. When the Apple reaches this point in the program, it will stop and
immediately do a software interrupt.

What happens next is decided by which monitor ROM you have in use. If you
have the old ROM, the break puts you in the monitor and displays all of the
working registers. If you have the autostart ROM, the BRK command does a
jump indirect to the address contained in locations $03F0 (low) and $03F1
(high). You can go from this address into the monitor, or else, directly to another
snoop program that spells out what each and every pointer and indirect address
is up to.

There is one clinker in the works when you use BRK. You might need the old
ROM to gain control of the program so that you can change $03FO and $03F1,
and then switch to the autostart one. A "protected" program under autostart will
never let you get down into the monitor or change any locations. Use of either
ROM card with a hardware change-over switch often can get you out of this
bind.

A breakpoint can be used as anything from a scalpel to a cannon, depending
on what you want to do and how large a hole you want to blast in the target
program.

Drawing a flowchart may help you. I don't use that method too much since
it sounds like something the dino people would want you to do.

The addressing modes that give the 6502 microprocessor its extreme power
are the indirect ones. These include jump indirect, indirect indexed, and the
rarely used indexed indirect. All of these are identified by an address in paren
theses following the mnemonic. A lot of setting up is needed to use these
locations. Most often, an address pair on page Zero has to be set up ahead of
time.

Understanding the real address used for an indirect instruction can be the key
to cracking tough codes. It pays to spend lots of time being sure you know
exactly where these addresses are going to and the reasons that they are doing
so.

Things really get interesting when you get involved in double and triple in
direct addressing, as is common in adventure programs. The code may go to
some base address, pick an address pair out of a file there, and use that address
as an indirect pointer in another instruction. If the files happen to be longer than
256 bytes, then double indirect is needed, rather than a simple indexed instruc
tion.

Patience and practice are essential to cracking indirect codes. If all else fails,
replace the indirect op code with a BRK command. On the break, get into the
monitor and check the locations used to hold the indirect address.

Hooks are attachments you make to the program to gain partial control. You
might write your own small "host" program and let it "borrow" subroutines off
the target program. This is one possible way to dump files off protected disk

82 Enhancement 3

tracks. Once you are able to use and control key subroutines in the target
program, you are well on your way to solving everything else.

The tape cassette is often ignored. Yet the tape system is a very valuable tool.
One "protection" scheme used involves putting a program in the same space
where Apple DOS 3.3 would normally reside. A custom DOS is then put
somewhere else and there is no immediate way to save the program entered
under DOS 3.3, since booting the DOS 3.3 overwrites and, thus, destroys the
program.

But, the cassette doesn't care. It can save any code in any location at any time.
One thing you can do is move the target code down in memory below DOS,
save it to cassette, and then boot the DOS. Save this lower version on DOS and,
then, add a "move" command that puts it back where it wants to sit.

Cassettes are also useful in upgrading between various DOS versions. They
are slow, unreliable, and unwieldy, but they just might work if all else fails.

The single-step and trace features on the old monitor are very useful on some
parts of some programs, particularly if you dump them to a printer. But watch
out that you don't try to trace a delay loop, such as the one that waits for a disk
drive motor to come up to speed. The trace operation slows things down some
10,000 times from normal speed, so a two-second delay will take several days
and miles of paper to print. Sometimes you can break into the loop, reset the
counter locations, and continue. Other times, you'll have to combine single step
or trace with breakpoints. Run the code till you hit the breakpoint, and then
single step from there.

Tracing to a printer is one very good way to crack indirect addresses to find
the files that they work with.

Beware of tracing parts of programs that read the screen, since tracing and
displaying can interact. For instance, a clear-to-end-of-screen will hang during
a trace, since trace keeps resetting the screen locations. If you are printing, defeat
the screen echo during these times.

Another custom attack method is to chip away at the target. Your goal may
seem to be hopelessly buried in the middle of stuff that seems so complicated
that it will take you forever to understand. If all else fails, attack the easy stuff
on the outside. Do this even if the easy stuff seems to have nothing at all to do
with your goal. The parts of the code that outputs characters or inputs data are
usually easy to read. Continue carving away on anything that looks like it might
shake loose. What this indirect attack does is reduce the size of what is left to
a point where you can hack at it directly.

A big plus for the indirect attack is that it can show you the program author's
style and where his head is at. Does he use self-modifying code? How does he
handle multiple choice addresses? Does he use the indirect commands effective
ly and gracefully? Is he using mostly branches, or mostly jumps? How elegantly
or how clumsily does he handle 16-bit addresses and long files? Does he exten
sively use the existing monitor, DOS, and BASIC subs, or is he reinventing the
wheel? How clean is his organization? Is the program designed from the ground
up for an Apple, or was it obviously modified from a program originally designed
to run on some inferior machine? Answers to these questions can simplify very
much the cracking of the rest of the code, since most decent programmers tend
to be consistent in how they do things.

If the code seems ridiculously obscure, attack the fundamental subroutines.
These subroutines are the ones that won the popularity poll (the ones with all
the dots). The subs to hit first are those that will not call any other subroutines,
but will go ahead and do direct and obvious things. Common things that funda
mental subroutines will do include searching a long file for a value, calculating
an address, or making a hex-to-decimal conversion.

Tearing Into Machine-Language Code 83

Once you understand these fundamental subroutines, you don't have to
go through them each time they crop up, since you know what they do.
Create meaningful names for these fundamental subroutines and they will help
you a lot in your attack. Then, "ripple" this new information back through the
listing.

Asking for help is an obvious thing to do. There is nothing more infuriating than
having an 8-year-old boy, just in from off the street, make some casual comment
that completely sums up what it just took you months to find out the hard way.
So discuss the target program and its attack. Don't only do it with "experts,"
but rap about it to anyone who will listen. Chances are their heads are in other
places and might put things in a new light for you.

The python force feeder takes some special hardware, but it can be very
effective. A force feeder is some hardware and software modifications that
include a super-powerful bus driver, say a 74S245, or maybe three of them in
parallel. When you tell it to do so, it substitutes its own code for what the
computer is supposed to be working with.

For instance, even the old monitor ROM can't help plowing part of the display
page, the first few keybuffer locations, and part of page Zero when it is activated.
A sneaky programmer can hide things in plowable locations. But not so with a
force feeder. Besides being able to force a monitor reset any time you like, a
force feeder can substitute anything at any place in the program. It can also
move copies of plowable locations to unplowable ones for analysis.

As a much simpler example of force feeding, consider the "top display line''
copy protection hoax. What you do is switch to HIRES and, then, put a key jump
or some other "magic" code that you want "hidden" on the top line of text
display page One, starting at location $0400. This code is called early in the
program and the program bombs if the code is not there. Naturally, the code
gets erased immediately after use.

This, in theory, makes any messing with the program impossible. Any tamper
ing at all will scroll up the display page and destroy the magic code. Sounds both
bulletproof and infuriating.

In reality, this is only a "seven-second" copy protection. What you do is force
feed the Apple by making it display only text page One, and this "hidden" code
actually leaps out at you, shouting to be heard. To force feed the page One dis
play on older Apples, remove integrated circuit Fl 4 and ground pin No. 6 of
the socket at Fl 4. The hidden bytes will appear in Apple video-screen code,
rather than op code, but if you got this far, that just adds to the fun.

Similar force-feeding games can be played with most of the Apple soft switch
es that are needed for analysis or debug.

Another handy debug trick is the partial boot. Instead of letting the target
program completely boot, you only let it go so far and, then, analyze what you
have. This catches code modules before they are moved to cover DOS, and so
on. For instance, the program, Pool 7.5, is generally considered to have excep
tionally good, or "three-hour," copy protection. But, use a partial boot and the
"three-hour" protection drops down to a much more convenient "eighteen
minute" protection. More elegant "boot tracing can also be done.

The trick here is to carefully watch the disk drive with the cover off and time
the different parts of the loading and protecting process.

By the way, there's one sure-fire way to read any disk at any time. Just glomp
a logic analyze0 with a 6502 personality module in it, onto the CPU and you
are home free. Unfortunately, you can buy a dozen Apples for the price of one
better grade logic analyzer, so this ultimate weapon does not see much use.

Change detection is another interesting attack method. However, I haven't
fully explored this one. What you do is dump part of memory, run a portion of

84 Enhancement J

the target program, and then see what changed. By finding out how, when, and
why that change took place, you can often gain all sorts of insight into what is
going on.

Some day, I would like to build the ultimate change detector. This would take
a OMA modification to the Apple that would let a second Apple or some type
of dedicated hardware give you an instant and separate picture of memory
activity while the main program was running. One display would show what the
program was doing, while the second would show you each and every memory
location of interest. Ideally, such a program should present any location or any
block of locations that you want and would clearly identify them. With this
ultimate change detector, you could actually watch the program while it was
doing its thing.

A variable-speed feature would also be nice here, so you could slow down
or stop key activities without waiting forever for them to get through a delay loop
or whatever.

We've already seen how altering files can tell you lots of things in a hurry
about your program. Sometimes you are shooting in the dark since some file
locations may only rarely be used or might be used only in an obscure way. File
changing is certainly worth a try.

If you are going to change the target program or interact with it, it might pay
to put the program on your own assembler and create your own source code.
This lets you add your own hooks and make changes of your own choosing
inside the target program. The EDASM on the DOS Toolkit is ideal for this.
Assembling your own source code backwards from the object program is quite
a hassle, though, and you shouldn't try it unless you have pretty much cracked
everything else. Disassembler programs, such as RAK-WARE's DISASM, are
also available that will "capture" code for your favorite assembler.

Sitting on your program is often overlooked. Just walk away from the attack
for hours or days, and things that should have been obvious all along will leap
out at you. Let your subconscious work on the puzzles that are holding you up.

It works.
Another thing that can help is to try attacking a similar program, either by the

same author or by one that does the same thing in a simpler or easier-to
understand way. The insights you get from one program will help you attack the
other program.

Deciphering special codes may be needed in longer adventures. These codes
are more often used to make code more compact than they are to purposely
"hide" the meanings of what they hold. The trouble is that most compaction
schemes used also do a most thorough job of masking everything that the file
holds.

For instance, in Zork, the ASCII strings are compacted so that two bytes hold
three characters. Some newer adventures use paired letter or similar codes to
remove the redundancy from text messages so that long text files will fit inside
the machine. This is how the Collossia/ Cave adventure from Adventure Interna
tional manages to get everything that once demanded a mainframe dino into a
48K Apple without needing repeated disk access.

About the only way to attack these codes is to go into the code modules that
decipher them. Then, decipher the decipheree. Single step, trace, or breakpoint
access code modules till they show you how to read the file. Usually, there will
be some obscure command or program feature that will do things a lot faster
or simpler than the others. Trace this command or feature out and let it crack
the code for you. The last resort, of course, is to give up. Go back and attack
something that is simpler.

My first machine-language attack of a major program was Adam's Pyramid

Tearing Into Machine-Language Code 85

of Doom. This was done on a wilderness firetower using nothing but a 6502 poc
ket card. It literally took all summer, but it led to this attack method, and there is
no better way to learn machine-language programming.

CONVERGE ON YOUR GOAL

Just as soon as you have the structure pretty well defined and as soon as you
have cracked most of the code modules, return to your original goal and solve
that particular problem.

Our goal in HRCG was to find the scroll hooks. By now, they should leap out
at you.

Just as the cursor is about to go off screen at $9208, a check is made to see
whether scrolling or wraparound is to be used. If scrolling is active, $9213 does
a jump to the scroll subroutine starting at $9221. Specifically, $9214 will hold
the /ow address and $9215 will hold the high address of the scrolling subroutine.

just change these hooks enough so that you can use your own scrolling
subroutine.

Summing up ...

Easy, wasn't it?

The HRCG scroll hook is at $9214.
$9215 holds the address low of

the scroll subroutine.
$9216 holds the address high of

the scroll subroutine.
The existing scroll subroutine starts

at $9221 and ends with
$926F.

If not, go through a few practice target programs and see how fast and
powerful this method can be.

WRITE IT DOWN!

Surely you don't want to go through all this a second time on the same target
program. So, carefully write down everything you learned in some form that
works for you.

I

Make a clean copy of your analysis on the second listing you made. Also,
make a neat new table of variables, a new cross-reference, and write a complete
new script. Put most of this information onto disk so that you can have print
able and updateable copies for later use. Use your word processor.

The insight that you have now will be long forgotten in a month. Be sure that
you will be able to later recover what you already have done, and will be able
to do so both quickly and hassle free.

Resist the urge to pull a "EUREKA! I have found it!" and run off with only your
limited goal met. Do so, and the key information will disappear down the tube
somewhere and all will be lost.

The following outline sums up all the steps involved in tearing into machine
language code. Go back over them, and you'll find three parts to the attack. First
you prepare yourself, then you attack the target program, letting it reveal itself
through its form and structure. Finally, you follow up the attack to reach your

goal.

86 Enhancement 3

Here is a quick summary of the tearing method

TEARING INTO
MACHINE-LANGUAGE

CODE

PREPARATION

() Assemble the toolkit.
() Grok the program.
() Go to the horse's whatever.
() Set a limited goal.
() Empty the machine.
() Find where the program sits.
() List and hex dump the program.

ATTACK
() Separate action from bulk files.
() Paint subroutine returns green.
() Paint subroutine calls orange.
() Paint absolute jumps pink.
() Paint relative branches blue.
() Separate modules and stashes.
() Identify files and stashes.
() Attack variables and constants.
() Paint housekeeping yellow.

FOLLOW UP

() Make a list of variables.
() Write a script.
() Customize the attack.
() Converge on your goal.
() WRITE IT DOWN!

Practice makes perfect. Try it.
An obvious second program for your tearing attack would be FID on the

DOS System master diskette. Try this one on your own and see how far you
get. As a specific goal, find out how to use the code that tells you how much
space you have left on a diskette a

Tearing Into Machine-Language Code 87

WILL THE REAL LISTING PLEASE JUMP oun

There arc times when the disassembler in the Apple monitor lies like a rug.

A disassembler always assumes it is working with valid op codes. It starts with the first code
byte it finds and, then, decides what operation the Apple is to do. Depending on the p;irtirnlar
op code, one, two, or three bytes will be needed to complete the operation.

For instance, the CLC or clear carry command is an implif'd addressing instruction handled
with a single byte. No further information is needed. The LDX #05 immediate command takes
two bytes, one to tell you what to do and one to answer "How much I" The STA $4050 com
mand uses absolute addressing and takes three bytes, one to tell us whdt to do and two bytes to
answer "Where?" by giving us dddress low and, then, dcklress high values.

Thus, a disassembler will automatically jump one, two, or three bytes to get to thc0 start of the
new instruction. The disassembler always assumes it is working with valid code from a legal
starting point.

If either the starting point is wrong or if what is being disassembled is not legal code, the "lis
ter" starts lying.

Suppose' we have these bytes stashed in memory .

$0800- 80 SD AD 02 AS 18 EA

Here is what you get if you try to disassemble this code from various starting pointo.

$0800- 80
$0801- SD AD 02
$0804- AS 18
$0806- EA

?/?
STA $02AD
STA $18
NOP

$0801- 8D AD 02 STA $02AD
$0804- AS 18 STA $18
$0806- EA NOP

$0802- AD 02 A5 LOA $A502
$0805- 18 CLC
$0806- EA NOP

$0803- 02
$0804- AS 18
$0806- EA

/1/
STA $18
NOP

We see that we get a different disassembly every time, depending on where we st.irt from.
Which one is correct?

The correct disassembly is the one that begins with the first valid op code on the list. Tlw first
valid op code is often pointed to elsewhere in the program by a jump, a branch, a subroutin('
call, or an external entry point.

You can expect the "lister" to lie about one-half of the time when it comes out of a file or dead
code and starts into legal code.

Usually the "lister" will correct itself after two or three wrong entries. So, you usudlly onlv
have to worry about the first few entries into valid code.

If what you have just listed seems dumb, try listing from one above or one below where you
think the legal code starts. Most of the time, there will only be one rational and sensible starting
place dnd the valid code will leap out at you.

But remember that the "lister" will only tell the truth when it has both true code and a true
starting point to work with.

8 8 Enhancement J

SEEDS AND STEMS

To extend the life of a game-paddle
connector that gets used a lot, plug the
paddles into a 16-pin, premium machined
contact DIP socket. Then plug this socket
into J14 on the Apple mainframe.

It pays to put sockets on all of your
joysticks, paddles, and whatever, as well.
Should a pin bend or break, repairs are far
easier.

SEEDS AND STEMS

To edit a comment line in EDASM without
having big holes chopped in it, use the "T"
command to eliminate all tabbing.

To restore EDASM back to normal, either
reboot, or else, use a "Tl 4, 19, 29"
command.

Tabs must be restored before assembly.

This enhancement is for use on older
Apples. The Apple lie has a simpler
and better method, while the Frank
lin details change. See the Update
Section.

Enhancement

FIELD SYNC

FIELD SYNC

A one-wire hardware modification
that makes for stunning new ani
mation and graphics action ef
fects. Now, you can exactly lock to
video timing for split screens,
high-accuracy light pens, and
much more.

This enhancement is so horrendously powerful that it's scary.
It is a one-wire plug-in modification to your Apple that gives you field sync

and opens up so many mind-blowing new possibilities that we can't even begin
to hint at them here. What field sync does is lock your display to your program.
You can now flip soft switches, update display screens, or change pages while
the screen is on its vertical blanking return trip. You can also keep ahead of or
behind the live scan lines to keep your display from mixing "old" and "new''
stuff at the same instant.

And, we will show you a brand new and incredibly powerful software method
to lock to your video field timing that is exact to a fraction of a microsecond.
This exact sync lets you mix and match display modes, both dynamically and
"on the fly" for splits or wipes in any direction. Exact sync also can eliminate

90 Enhancement 4

90% of the parts and the hassle needed for a fast and precision light pen or for
a touch screen.

So, what else is field sync good for?
For openers, gone forever are any glitches, flashes, and garbage that whip by

at any time that you ch'"nge an Apple screen mode. Field sync is the key to
smooth, glitch-free animation without any collision or dropout effects. Here is
the path to smooth-moving gentle scrolls that let you read things as they move
up the screen. Here, also, are spinners and other action animation made totally
continuous and smooth acting.

Want 3-D graphics? Want lots of different single-line colors in HIRES that cross
and overlap in any combination? Want to mix LORES and HIRES? Or, want to
mix and match text and LORES all over the screen? Or, all three? How about
a mixed graphics mode with the text at the top? Or, in the middle? Or, graphs
with quickly changed labels in both the X and Y direction?

Are you into animation? Field sync lets you compute and display at the same
time on the same page without any glitches, dropouts, sugar, or other hassles.

What about some video wipes that smoothly move one page off the screen
to reveal a second hidden page, done in any direction, at any speed, in any
combination? Or, a choice of hundreds of LORES colors? How about a bomber
flyby or a road race, smooth, fast, and alias-free?

Need some grey scale? Sure thing. How about some game symbols that mix
a pair of ordinary text characters into a single symbol? Text over color? Naturally.

Maybe you would like a full color HIRES adventure where the text optionally
"floats" in front of the graphics display. This is trivial with field sync.

All these only scratch the surface. We haven't even begun. And, it's real
spooky to even think about what will happen when a really good programmer
gets his hands on this mod.

And, best of all, it is back to the drawing board for you Atari people. Apple
wins this round of "Whose-got-the-best-color-graphics?" bytes down.

In this enhancement, we will look at what a field sync modification is and how
you can make one. We will also give you some very simple yet powerful support
software. We'll then spend much of the rest of the book exploring a few of the
more blatantly obvious uses of field sync.

Total cost of the enhancement is around $2 .00 and can be done in a few
minutes. The modification will not void your Apple warranty and is completely
removable. The support software, even that needed for an exact lock, takes only
a few machine-language bytes and is easily reached from any language.

WHY SYNCHRONIZE?

Every personal computer designer faces the dilemma of how to compute and
display video at the same time. The timing and video signals sent to your monitor
or color tv are extremely critical and must be there all the time. Even the briefest
mixup or delay, and you end up with a twisted, torn, or missing picture.

Apple solved this dilemma in a brilliant way. Check into the 6502 micro
processor timing and its memory-access activities, and you find out that the CPU
only accesses memory on one half of each of its clock cycles. The Apple's clock
cycle is slightly under one microsecond. Of this time, the 6502 microprocessor
used as the Apple's CPU must have unrestricted memory access for only half
of each microsecond.

On the other half of each clock cycle, the 6502 CPU and the rest of the
Apple's computing circuitry couldn't care less what the main RAM memory was
up to.

Field Sync 9 7

So, an elaborate hardware circuit called a multiplexer was set up that gives
memory access to the Apple's computing circuitry for one half the time and gives
the Apple's video-display circuitry memory access for the other half. Each is
happy with its half of the access, and each piece of circuitry gets its access each
and every microsecond.

The result is glitch-free and flicker-free video that is totally independent of any
computing activity. Most importantly, this is done using the main memory rather
than a separate video display memory. This means that no time or effort is
needed to get between a result and putting that result on the screen. No wait
for video memory access is ever needed. Nor is any time ever taken away from
the critical video display waveforms. The operation is fully transparent and
totally invisible.

Both the thinking and the design that went into the Apple's video timing
circuitry was brilliant; it is a totally independent video that is immediately acces
sible to all.

But, they overdid it.
The video display timing is completely independent from the computing

timing, although both are derived from common signals. This means that there
is no immediate way for the computing circuitry to tell where the video-display
circuitry happens to be in its timing cycle.

Field sync gets around this total independence by taking a sample waveform
from the video display timing and routing it back into a location where you can
test it with software. We will use part of the cassette read circuitry as an input
to feed back this timing signal for us.

Let's take a closer look at the Apple's video timing and see if we can't find
a good waveform to give us field sync.

Timing waveforms

A simplified block diagram of the Apple's timing chain is shown in Fig. 4-1.
There are three main parts to this chain. These are the video rate timing, the
horizontal rate timing, and the vertical or field rate timing.

The video-rate timing is the fastest. It starts with a 14.318-megahertz crystal
oscillator that is the master timing reference for everything in your Apple. This
master reference is divided by four to get the standard color subcarrier frequen
cy of 3.579 megahertz. The master reference is further divided by 3-1 /2 to get
a CPU clock frequency of 1.023 megahertz.

This CPU clock frequency also sets one horizontal character time on the
screen. The horizontal character time is equal to seven video dots. In HIRES,
these seven dots equal the least significant seven bits in the data word, arranged
backwards. In standard text, these seven dots consist of two blank undots and
five horizontal dots from the output of a dot matrix character generator. The
character generator receives the bits in the data word and then converts them
to the proper dot patterns for you.

Either way, seven dots go on the screen in one CPU clock cycle. These seven
dots equal three and one-half color clock cycles of 3 .58 megahertz each. The
color of the dot will be decided by the position or the time delay of the dot with
respect to the phase of the color-reference signal.

The video rate timing does several other things for us. The two clock phases
needed by the CPU are split out with this timing. The video timing automatically
gets the seven dots lined up in the right place in the right time for us. And it
automatically takes care of the multiplexing needed so that the memory can be
shared between the display and the CPU. This memory multiplexing is more
complicated than it would seem at first since the memory chips used make each

92 Enhancement 4

VIDEO
TIMING

HORIZONTAL {
TIMING

VERTICAL {
TIMING

+ 3-1/2

+ 65-1/7

~ 262

MASTER CRYSTAL
14.318 MHz

DOT RATE = 7.158 MHz

COLOR RATE = 3.579 MHz

CHARACTER RATE = 1_023 MHz
AND CPU CLOCK

H LINE RATE = 15,700 Hz

V FIELD RATE = 59.92 Hz

Fig. 4-1. Details of Apple's timing chain.

RAM address pin do double duty. Thus, the multiplexer has to go through four
steps each clock cycle and not just two.

The CPU clock frequency of 1 .023 megahertz is the lowest frequency needed
by the computing side of the Apple. All of the rest of the timing chain is mainly
involved in video display timing. Outside of their sharing the same high-frequen
cy timing, the computing side and the display side of the Apple are more or less
independent.

The horizontal rate timing sets the line length and the horizontal sync rate for
us. There are 65 possible character positions in a horizontal line. Of these, 40
are "live" video slots and 25 are "blank" video slots. A live video slot can hold
seven HIRES dots, a horizontal portion of a 5 X 7 dot matrix character, or a
color pattern needed as part of a LORES color block.

Fig. 4-2 shows us the waveform of a single horizontal line. We start with the
blank character positions. Into these blank character positions, we put a "blacker

------ONE H LINE------

1-+-----65-1/7 CPU CLOCKS----•

1-40 CPU CLOCKS-

,< S~1111~,-C-O,-._L~O~R~~~'---LI-V"C"E\-V~ID-E~O-'-, ~------~~ .• ~;~:

PULSE BURST 40 CHARACTERS
OR 280 DOTS

Fig. 4-2. Horizontal rate timing display is black or off screen except for live video time.

Field Sync 93

than black" horizontal sync pulse, followed by a reference burst of a number
of 3.58-megahertz color-reference cycles. The exact number and position of
these reference cycles depend on the version of your Apple. Some older Apples
would not give you color on certain video recorders or on a few oddball brands
of premium tv sets. The Revision 7 upgrade seems to have eased this.

After the horizontal sync pulse and the color burst, we have some more blank
character locations. These are followed by the 40 live characters per line.

There is one tiny but crucial detail added in the horizontal timing. The line is
an odd number of CPU clock cycles in length. Each clock cycle equals 3.5 color
cycles, which means that when you get to the start of the next line, the color
reference will be half a cycle off. To !c!et around this, the video timing is delayed
by half a color clock cycle once each horizontal line. Thus, every sixty-fifth CPU
clock cycle will be wider by half a color cycle, or around 140 nanoseconds
wider than usual.

This handles a key difference between commercial color-tv broadcasts and
Apple signals nicely. In commercial color tv, you want the color subcarrier to
cancel each successive horizontal line so that the subcarrier doesn't interfere
with the luminance video. In the Apple, though, the subcarrier is the video, so
you want its phase to be the same on each line. If you did'n't do this, a green
dot on one line would be a violet one immediately below, and so on.

At any rate, our horizontal line consists of 25 blank locations followed by 40
live locations. One of these blank locations is slightly wider than the others to
keep the colors in step. Our horizontal sync frequency ends up at 15,750 hertz.
This compares with the 15,735 hertz of a color commercial tv broadcast or the
15,750 hertz used for black and white commercial tv broadcasts.

The horizontal-rate timing also is used to refresh the dynamic RAMs. The
timing is arranged to exercise the RAMs in such a way that they continue to hold
valid data for us. This refresh is invisible and "free" since it automatically takes
place as part of the normal display timing.

The vertical-rate timing takes the horizontal timing and divides it down by a
factor of 262, giving us the vertical waveforms shown in Fig. 4-3. There are 192
live lines and 70 blank lines. The 192 live lines are sequentially scanned in
HIRES. In LORES, the 192 lines are clustered into 48 groups of 4 lines each, one
for each LORES block on the screen. In TEXT, the 192 lines are arranged into
24 groups of 8 lines each, one for each of the possible vertical dot positions
needed in a 5 X 7 plus blank dot matrix character.

A vertical sync pulse is provided in the middle of the vertical blanking time.
This vertical sync pulse is much wider than a horizontal sync pulse. This lets the
tv separate its vertical sync locking command from its horizontal sync locking
commands.

ONEVFIELD~

------- 262 H LINES H LINES--I

V SYNC H SYNC LIVE VIDEO,
PULSE PULSES 192 H LINES

Fig. 4-3. Vertical-rate timing waveforms. Any mapping or soft switching done during
blanking or retrace will be invisible.

94 Enhancement 4

Since there are 65 CPU cloclk cycles per line and 262 lines total, there are
apparently 65 * 262 = 17,030 clock cycles per field. The field frequency is
59.92 hertz. This compares with the 60 hertz of a black and white commercial
broadcast or the 5 9. 94-hertz vertical rate of a color broadcast.

Let's sum up some of these magic numbers ...

APPLE SYSTEM CONST ANTS

The CPU clock frequency is 1 .023
megahertz and has a time width of
0.978 microsecond. Every sixty-fifth
clock pulse is slightly longer.

A horizontal line takes 65 CPU clock
cycles and consists of 2 5 blank and
40 live cells. Each cell holds seven
HI RES dots or one row of dots from a
dot matrix character.

Horizontal frequency is 15,700 hertz.

A vertical field takes 262 horizontal
lines and consists of 70 blank and
192 live scans. Live scans are used by
eights for text, by fours for LORES,
and by ones for HI RES.

Field frequency is 59.92 hertz.

There are 17,030 CPU cycles per
field.

The timing waveform we want for field sync will have a rising edge at the
beginning of the vertical blanking time and a falling edge at the start of the next
field. If we look at the timing waveforms immediately off the timing chain, we
see that this waveform is not available. Waveform VS could be used, but it is
only six horizontal lines wide, and, also, it is backwards from what we really
want.

Instead, there is a vertical blanking waveform derived by an AND gate in B11.
The magical signal outputs on pin 8 of B 11. (See the sidebar at the end of
Enhancement 2 for details on the Apple's parts locations.) We've shown this
waveform in Fig. 4-4.

This particular integrated circuit is pretty much buried under the keyboard.
Check the schematic, though, and we find its output goes to pin 4 of Cl 4. This
point is much easier to reach.

c_;oEs TO A "1" AT
BOTTOM OF SCREEN

J
BLANK AND

fffTRACE

GOES TO A "O AT
TOP OF SCREEN

I

/ I
.._____, _I

LIVE VIDEO

Fig. 4-4. Vertical blanking waveform used for field sync appears on pin 4 of C14.

Field Sync 95

Fig. 4-5 shows us the "schematic" of the field sync modification. We connect
the vertical blanking waveform to a point in the cassette receiver circuitry that
sometimes sees use as a "phantom" fourth push-button input. Electrically, this
means that we jumper pin 4 on Cl 4 to pin 4 on H 14.

Fig. 4-5. "Schematic" of the field sync
modification. One wire does it.

VBNK SW3
4/C14 0-----------0 4/H14

Our vertical blanking waveform is low for the 192 live scan lines and high for
the 70 blank scan lines used for vertical retrace. If we can find the leading edge
of this waveform with some simple software, we will have the entire blanking
time to do things to the screen that will not show up till the next field. Also, if
we can find the trailing edge, we can find out exactly when the next field will
begin.

Many of the uses of field sync will simply flip a soft switch or two at any old
time during the vertical blanking interval. Other uses may want to use every
available microsecond of the vertical blanking time to remap an animated
sequence. Yet others will need to find the exact start of a field for mixed field
displays, or for use with either a precision light pen or a touch screen.

Building it

The field sync modification consists of a pair of sockets with a jumper wire
between them. The mod plugs into the Apple main board. You can easily
remove the modification later if the unit must be sent in for warranty repairs or
whatever.

The modification also has to be removed if you use the cassette playback
circuitry or if you use an external game paddle add-on that needs a "fourth"
push-button input SW3.

These are the parts you will need ...

PARTS LIST FOR
FIELD SYNC MODIFICATION

1 - 16-contact quality
DIP socket,
machined-pin style.

1 - 14-contact quality
DIP socket,
machined-pin style.

- piece of No. 24 solid
wire, insulated,
7 -1 / 2 inches long.

- short piece of
electronic solder.

96 Enhancement 4

And, here are the tools you will need ...

TOOLS NEEDED TO MAKE THE
FIELD SYNC MODIFICATION

() Needle nose pliers

() Wire stripper

() Small soldering iron, 35 watt

() IC puller (optional)

() Any old 14- or 16-pin
integrated circuit

() Small vise or clamp

Fig. 4-6 gives us the complete construction details. Be absolutely sure to use
high-quality machined-pin style DIP sockets here, since these are the only kind
that can easily and safely be plugged into another DIP socket.

The "dummy" integrated circuit you plug into the socket helps prevent the
plastic from melting and keeps the pins aligned but you still have to be care
ful. When soldering to these sockets, be sure to prevent any shorts between
adjacent pins 3 and 5, and be careful not to heat soften and distort either

socket.
A pictorial of the field sync modification is shown in Fig. 4-7. If you

decide to make your sync mod more or less permanent, you may want
to tack the wire to the board with hot glue, silicon rubber, or some other
"semi-permanent" gunk. Be careful not to get any glop on the socket pins.

Should you ever want to remove your field sync modification, just reverse the
process that is shown. While this modification does, in fact, void your Apple
warranty, if you are very careful not to bend any pins or get any ICs mixed up,
you should be able to remove any signs that the modification was ever

in use.

SUPPORT SOFTWARE

Interpreted Applesoft is far too clumsy and way too slow to directly use field
sync. You'll find field sync is best handled by short and fast machine-lan
guage subroutines. These subroutines can be called from any language you
like.

Program 4-1 gives us six simple field sync utility subs, while Program 4-2 is an
Applesoft routine that will test your field-switch modification for you and give
you an alternating text and HIRES display.

The field-switch modification routes a copy of the vertical blanking waveform
of Fig. 4-4 into the cassette circuitry at "SW3 ." SW3 is software tested in
location hex $C060. When you are in the live portion of the scan, a zero or low
level gets routed to the most significant bit of $C060, and a test of this location
will show a positive number in 2's complement signed binary. When you are
in the blank portion of the scan, a one or high level gets routed to the most
significant bit of $C060, and a test of this location will show a negative number
here, again in 2's complement signed binary.

~
'lcooP'sorn ENDS

16 PIN
SOCKET

TOP VIEW

TOP VIEW

14 PIN
SOCKET

INSTRUCTION FOR BUILDING
THE FIELD SYNC MODIFICATION

Field 5 ync 9 7

1. Cut a piece of insulated No. 24 solid wire to a length of 7½
inches. Then strip ¼ inch insulation off each end.

Form a tight loop in each end as shown.

2. Take a 16-pin machined-contact DIP socket and identify pin
No. 4 by inking the plastic. Plug any old nonvaluable in
tegrated circuit you have on hand into this socket. This will
keep the pins aligned should the plastic soften. Secure this
socket in a vise so you can work with it.

Note that this MUST be the type of premium socket that has
small machined-pin contacts that are sate to plug into another
socket.

3. Solder one end of the ?½-inch wire to pin No. 4 of the 16-pin
DIP socket EXACTLY as shown. Be careful not to melt the
plastic.

Be sure that no solder gets on the part of the pin that must fit
into socket H14 on the Apple main board and be sure that
there is no short to adjacent pins 3 and 5.

4. Take the 14-pin machined-contact DIP socket and identify
pin No. 4 by inking the plastic. Move the nonvaluable in
tegrated circuit into this socket.

Secure this socket in a vise just like you did the earlier one.

5. Solder the remaining end of the ?½-inch wire to pin No. 4 of
the 14-pin DIP socket EXACTLY as shown.

Again, be careful not to melt plastic, get solder on the pin, or
short adjacent pins.

6. Arrange the field sync modification as shown. Note that the
wire goes past pin No. 1 on the 16-pin DIP socket and past pin
No. 7 on the 14-pin DIP socket.

7. If you want to, add a dab of silicon rubber. epoxy, or other
glop to the wire where it leaves each socket body. This will act
as a strain relief and keep the wire from breaking.

Remove the integrated circuit to complete your field sync
modification. Put this IC away and out of sight. Refer to text for
installation and checkout.

Fig. 4-6. How to build the field sync modification.

98 Enhancement 4

Here is how you install your field sync modification.

INSTALLING YOUR
FIELD SYNC MODIFICATION

1. Turn off the Apple and unplug
both ends of the line cord.

2. Verify that no other use is being
made of the cassette read circuitry,
such as a "fourth" push button
SW3 add-on.

3. Remove integrated circuit Cl 4, a
74LS32, using an IC puller if you
have one.

4. Plug the 14-pin end of your field
sync mod into Cl 4. Make sure the
wire is to the right and the notch is
pointing towards the keyboard.

5. Plug the 7 4LS32 into the 14-pin
socket now at Cl 4. BE SURE
NOTCH POINTS TO KEYBOARD!

6. Remove integrated circuit H 14, a
74LS151 or74LS251, using an IC
puller, if you have one.

7. Plug the 16-pin DIP end of the
field sync mod into H 14. Be sure
that the wire goes to the right and
the notch points towards the
keyboard.

8. Plug the 74LS151 or 74LS251 into
the 16-pin socket now at H 14. BE
SURE NOTCH POINTS TO
KEYBOARD!

A machine-language command called a BIT test will automatically transfer
the MSB of $C060 into the N flag for you, allowing easy branching. The only
confusing part is that the blank time gives you a positive voltage and a 1 to the
game connector which, in turn, is read as a negative number. The live scan
time gives you a zero voltage and a Oto the game connector which, in turn, is
read as a positive number. This oddball turn of things is caused by the 2's com
plement signed binary used by the 6502's branch testing.

Anyway ...

Your field sync is tested at location
$C060 by the command BIT
$C060, or "2C 60 CO".
This test CLEARS the N flag during
live scan times and SETS the N flag
during vertical blanking times.

Fig. 4-7. Pictorial shows field sync
modification.

Field Sync 99

COLOR TRIM

@EXISTING 74LS151 OR
74LS2 51 PLUGS INTO
ADAPTER.

3 JUMPER WIRE
CONNECTS PIN 4/C14
TO PIN 4/H14

TACK WITH
HOT GLUE

(OPTIONAL)

n n o @)ADAPTER MADE FROM Li u O PREMIUM 14 PIN

D12 D13 0~4 e DIP so_CKET GOES
IN C14

U D 4 @EXISTING 74LS32
".I I REPLUGS INTO

C12 Cl3 C14 ADAPTER.

In Program 4-1, we will show you six simple ways to use your field sync.
These are shown as program modules 1 through 6. These short machine-lan
guage modules are all separately located on memory page $03. You can easily
relocate them in any protected place in your machine that you want.

Examples of protected space in your Apple are the lower part of page 3 (when
available), any locations set aside below LOMEM in Integer BASIC, any locations
set aside above HIMEM in Applesoft, or one of the slots intended for optional
character set that are used in H RCG.

For simplicity, we will show all the examples starting at separate locations on
page $03. You can relocate these modules anywhere that they won't get plowed
by something else.

Our first subroutine is the simplest, being all of six bytes long. It is called
CRUDE and is just that. We enter this subroutine whenever we want to find the
vertical blanking time. If we are in the vertical blanking time already, the BIT test
will immediately give us a set N flag, and the BPL branch test will immediately
fail, giving us a fast return. If we are in the live scan time, the BIT test will clear
the N flag, and the branch will then try again. We keep trying, once each seven
CPU cycles, till we finally reach the blanking time. Then we exit.

With this sub, you can always be sure you will return sometime during the
vertical blanking interval. But, notice that you must not try recalling CRUDE
more than once per field. If you have a fast machine-language program, calling
CRUDE could return several times in the same field and really foul things up.

The big disadvantage of CRUDE is that you never know exactly how much
time you have available before the next scan begins. Three times out of four,
you will have the full blanking time. But every now and then, you will catch the
blanking at the last possible instant. This only leaves you with a dozen or so
useful microseconds before the next live scan starts.

For instance, say you happen to sample on the very last CPU clock cycle of
the blank portion of the field. Two more CPU clock cycles will be taken up by
the branch test, which fails, and six more CPU clock cycles will be needed for
the RTS. This actually puts you into the first live scan line by 7 CPU clock cycles.

JOO Enhancement 4

PROGRAM 4-1

FIELD SYNC UTILITY SUBS

LANGUAGE: APPLE ASSEMBLY NEEDS FIELD SYNC MOD

0300:
0300:
0300:
0300:
0300:
0300:
0300:
0300:
0300:
0300:
0300:
0300:
0300:
0300:
0300:
0300:
0300:

0300:
0300:
0300:
0300:
0300:

0300:
0300:

FCA8:
C050:
COOO:
C063:
C051:

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

22
23
24
25
26

28
29

31
32
33
34
35

* *
* FIELD SYNC *
* UTILITY SUBS *
* ($300.392) *
* *
* VERSION 1.0 *
* (7-15-81) *
* *
* COPYRIGHT 1981 *
* BY DON LANCASTER*
* AND SYNERGETICS *
*
*
*
*

ALL COMMERCIAL
RIGHTS RESERVED

*
*
*
*

THESE SIX MACHINE LANGUAGE
MODULES ACCESS THE FIELD SYNC
MODIFICATION DESCRIBED IN
ENHANCEMENT #4 OF ENHANCING
YOUR APPLE, VOLUME l.

MODULES MAY BE RELOCATED IN
ANY PROTECTED SPACE.

DELAY EQU $FCA8 MONITOR DELAY SUB
GRAPHIC EQU $C050 GRAPHICS SCREEN SWITCH
KEYBD EQU $COOO KEY PRESS CHECK
SYNC EQU $C060 VBLANK VIA "SW3"
TEXT EQU $C051 TEXT SCREEN SWITCH

PROGRAM 4-1, CONT'D ...

0300:

0300:
0300:

0300:

0300:

0300:
0300:

0300:2C 60 CO
0303:10 FB
0305:60

0310:

0310:

0310:
0310:

0310:

0310:
0310:

0310:2C 60 co
0313:10 FB
0315:2C 60 co
0318:30 FB
031A:60

38

40
41

43

45

47
48

MODULE #1 -- "CRUDE"

THIS MODULE RETURNS SOMETIME DURING
THE VERTICAL BLANKING INTERVAL.

Field Sync 7 0 7

TO USE, JSR $0300 FROM MACHINE LANGUAGE

DO NOT USE MORE THAN ONCE PER FIELD!

THIS MODULE MAY BE USED EVERY FIELD.
IT WILL HANG IF FS MOD IS ABSENT.

50 CRUDE
51

BIT SYNC
BPL CRUDE
RTS

LOOK FOR BLANKING
AND REPEAT TILL FOUND

THEN EXIT 52

55 ORG CRUDE+$10

57 MODULE #2 -- "FEDGE"

59 THIS MODULE RETURNS AT START
60 OF NEW FIELD WITH

62 TO USE, JSR $0310

64 THIS MODULE MAY BE
65 IT WILL HANG IF

67 FEDGE
68
69 BLANK
70
71

BIT SYNC
BPL FEDGE
BIT SYNC
BMI BLANK
RTS

FS

SLIGHT JITTER.

FROM MACHINE LANGUAGE

USED EVERY FIELD.
MOD IS ABSENT.

LOOK FOR LIVE SCAN
AND RETRY TILL BLANK

LOOK FOR BLANKING
AND RETRY TILL LIVE

THEN EXIT

l 02 Enhancement 4

PROGRAM 4-1, CONT'D ...

0320:

0320:

0320:
0320:

0320:

0320:
0320:

0320:2C
0323:30
0325:2C
0328:10
032A:60

0330:

0330:

0330:
0330:
0330:

0330:
0330:

0330:
0330:

0330:

60
FB
60
FB

co

co

74

76

78
79

81

83
84

86
87
88
89
90

93

95

97
98
99

101
102

104
105

107

ORG CRUDE+$20

MODULE #3 -- "BEDGE"

THIS MODULE RETURNS AT START
OF VBLANK TIME WITH SLIGHT JITTER.

TO USE, ,JSR $0320 FROM MACHINE LANGUAGE

THIS MODULE MAY BE
IT WILL HANG IF FS

BEDGE BIT SYNC
BMI BEDGE

FIELD BIT SYNC
BPL FIELD
RTS

ORG CRUDE+$30

USED EVERY FIELD.
MOD IS ABSENT.

LOOK FOR BLANK
AND REPEAT TILL LIVE

LOOK FOR LIVE SCAN
AND REPEAT TILL BLANK

THEN EXIT

MODULE #4 -- "ALTFLD" --

THIS MODULE ALTERNATES BETWEEN
TEXT AND GRAPHICS FIELDS. IT
EXITS ON ANY KEY PRESSED.

TO USE, JSR $0330 FROM MACHINE LANGUAGE
OR CALL 816 FROM EITHER BASIC

THIS MODULE DISPLAYS CONTINUOUSLY
TILL ANY KEY IS PRESSED.

IT WILL HANG IF FS MOD IS ABSENT.

Field Sync 103

PROGRAM 4-1, CONT'D ...

0330:20
0333:BD
0336:20
0339:BD
033C:2C
033F:10
0341:60

0350:

0350:

0350:
0350:
0350:

0350:
0350:

0350:

0350:
0350:

0350:
0350:

0350:2C
0353:10
0355:2C
0358:30
035A:EA
035B:10
035D:A9
035F:20
0362:A9
0364:20
0367:A9
0369:20
036C:2C
036F:10
0371:60

10
50
10
51
00
EF

60
FB
60
FB

00
3B
AB
34
AB
01
AB
60
EC

03
co
03
co
co

co

co

FC

FC

FC
co

109
llO
lll
ll2
113
114
115

118

120

122
123
124

126
127

129

131
132

134
135

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

ALTFLD JSR FEDGE FIND FIELD START
STA GRAPHIC SWITCH GRAPHICS ON
JSR FEDGE FIND FIELD START
S.TA TEXT SWITCH TEXT ON
BIT KEYBD HAS KEY BEEN PRESSED?
BPL ALTFLD CONTINUE IF NO KEY
RTS EXIT ON KEYDOWN

ORG CRUDE+$50

MODULE #5 -- "EXACTF" --

THIS MODULE EXITS EXACTLY SEVEN
MICROSECONDS INTO THE START OF A
NEW FIELD WITH ZERO JITTER.

UP TO SEVEN FIELDS MAY BE
NEEDED TO ACQUIRE EXACT LOCK.

TO USE, JSR $0340 FROM MACHINE LANGUAGE

ONCE LOCKED, MAIN PROGRAM MUST
CONTINUINE LOCK TILL DONE.

THIS MODULE MAY NOT BE USED EACH FIELD.
IT WILL HANG IF FS MOD IS ABSENT.

EXACTF BIT SYNC FIND BLANKING TIME
BPL EXACTF

BLENK BIT SYNC FIND FIELD START
BMI BLENK WITH JITTER
NOP STALL FOR 2 CYCLES
BPL STALL STALL FOR 3 CYCLES

STALL LDA #$3B DELAY FOR 17029
JSR DELAY CLOCK CYCLES TOTAL
LDA #$34 USING THE MONITOR
JSR DELAY DELAY ROUTINE AND
LDA #$01 THIS LOOP TIMING.
JSR DELAY
BIT SYNC HAVE WE BACKED TO START?
BPL STALL NO, GO BACK ONE MORE
RTS EXIT ON EXACT LOCK

704 Enhancement 4

PROGRAM 4-1, CONT'D ...

0380:

0380:

0380:
0380:
0380:

0380:
0380:

0380:

0380:
0380:

0380:
0380:

0380:2C
0383:30
0385:2C
0388:10
038A:EA
038B:30
038D:A9
038F:20
0392:A9
0394:20
0397:A9
0399:20
039C:2C
039F:30
03Al:60

60
FB
60
FB

00
3B
AB
34
AB
01
AB
60
EC

co

co

FC

FC

FC
co

154

156

158
159
160

162
163

165

167
168

170
171

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

ORG CRUDE+$80

MODULE #6 -- "EXACTB" --

THIS MODULE EXITS EXACTLY SEVEN
MICROSECONDS INTO THE BLANKING OF A
NEW FIELD WITH ZERO JITTER.

UP TO SEVEN FIELDS MAY BE
NEEDED TO ACQUIRE EXACT LOCK.

TO USE, JSR $0370 FROM MACHINE LANGUAGE

ONCE LOCKED, MAIN PROGRAM MUST
CONTINUINE LOCK TILL DONE.

THIS MODULE MAY NOT BE USED EACH FIELD.
IT WILL HANG IF FS MOD IS ABSENT.

EXACTB BIT SYNC FIND LIVE SCAN TIME
BMI EXACTB

BLUNK BIT SYNC FIND BLANKING START
BPL BLUNK WITH JITTER
NOP STALL FOR 2 CYCLES
BMI STAUL STALL FOR 3 CYCLES

STAUL LDA #$3B DELAY FOR 17029
JSR DELAY CLOCK CYCLES TOTAL
LDA #$34 USING THE MONITOR
JSR DELAY DELAY ROUTINE AND
LDA #$01 THIS LOOP TIMING.
JSR DELAY
BIT SYNC HAVE WE BACKED TO START?
BMI STAUL NO, GO BACK ONE MORE
RTS EXIT ON EXACT LOCK

Field Sync 7 05

But, each live scan line starts off with its 25 blank CPU clock cycles used for
horizontal retrace, sync, and the color burst. The net time we have left is only
25- 7 = 18 CPU clock cycles.

Note that a clock cycle is slightly less than a microsecond. We could say
"microsecond" when we really meant "CPU clock cycle" and wouldn't really
be off that much. At any rate, 18 CPU clock cycles is more than enough time to
flip a few screen switches, but is far too short to do the extensive graphics
remapping needed for animations or game graphics.

You use the CRUDE module as you would any old subroutine. Just do a JSR
$0300 from a machine-language program.

Note that most of these code modules will hang up on an unmodified Apple
that does not have field sync installed. High-level user software should have
some extra test included to make sure the field sync mod is in place before any
of these modules are called. For an example subroutine, see "SEEDS AND
STEMS" at the end of this Enhancement.

Module number 2 is named FEDGE and finds the start of a new field for us.
What we do is wait till we are sure we are on the blanking part of the scan and,
then, look for the instant that the live scan starts. This software tool is called an
edge detector. If you happen to enter during the live scan time, the first BIT test
spins its wheels till you reach the blanking time. Timing then drops through to
the second BIT test which also spins its wheels till the start of the live scan time
that tells us a new field has begun.

On the other hand, if you happen to enter during the blanking time, the first
test fails immediately, and you drop through to the second BIT test that loops
till the start of the next field.

The advantage of this FEDGE module is that it will always exit near the
beginning of the live scan time. Since this module is edge sensitive, it always
waits till the start of a new field before exiting.

Like CRUDE, module FEDGE can be used over and over again, once per field,
as needed. After you exit FEDGE, you can go on and do anything you want with
the machine.

There are several disadvantages to using FEDGE. The first disadvantage is that
this routine will hang up on an unmodified Apple, since SW3 has to change to
allow an exit. The second disadvantage is that there can be a jitter of up to 7
CPU clock cycles on the exit. This jitter is trivial compared to the jitter of
CRUDE, but it is still not acceptable for precision field sync uses. Another
disadvantage of FEDGE is that almost an entire field can be spent stuck in the
subroutine if you aren't careful. This means you should adjust the rest of your
program so that its length doesn't compound the time that it has to waste in the
subroutine.

We can easily "inside out" our FEDGE sub to give us a BEDGE subroutine.
This one is shown as module number 3 and exits on the start of blanking on the
first available field. If you happen to enter during the blanking time, the first BIT
test keeps retrying till the live scan time. Then, the second BIT test keeps retrying
till you reach the start of the blanking time. Then you exit. You exit on the start
of blanking plus one to seven CPU clock cycles. This leaves you with 70 full lines
or some 4350 CPU cycles to do good stuff with before the start of the next field.
This is more than enough time for simple animation where only a portion of the
screen is to be remapped.

The BEDGE subroutine is best used when a medium amount of remapping is
needed, while the FEDGE subroutine is best for flipping a single soft switch or
two, or else, when used for remapping so extensive that you are using two HIRES
pages and taking the entire field or more to update. Otherwise, the two subs
have the same advantages and disadvantages.

106 Enhancement 4

Our fourth module is called AL TFLD and will automatically switch you from
text on one field to graphics on the next. The module works by calling FEDGE,
switching to graphics, calling FEDGE again, and, then, switching to text. It then
looks for any key pressed and loops if there is no response. The display will mix
text and HIRES for you as long as you like.

You can reach AL TFLD by a JSR to $0330 from a machine-language program.
Unlike our earlier modules, it is also feasible to directly reach AL TFLD from
either BASIC. CALL 816 does it. We will see an example of this in Program 4-2.

This is a very simple field alternator. We may look at fancier field alternators
in a future enhancement. We've included a simple field alternator here so that
we have a way to test your field sync mod, and so that you can get started very
simply and quickly on your own.

Module number 5 is the big surprise since many people would swear it is
impossible to measure to an exact clock cycle with software which takes 7 CPU
clock cycles to read and test at a port. These same disbelievers have gone out
of their way to build all sorts of totally unneeded and ridiculous hardware for
use with things like precision light pens, touch screens, and so on. As we will
see, it is trivially easy to quickly find any exact screen location using nothing
but a few bytes of ordinary machine-language software.

We will look at two methods of doing an exact field lock. A simple method
appears here but a much faster and more flexible method will be shown you in
Enhancement 13 of Volume 2.

Module EXACTF will find the exact start of a field for you, jitter free. To see
how it works, we have to carefully look at machine-language instruction timing.
The following procedure shows us the key secret.

The following steps illustrate how to do an EXACT screen lock using software.
Remember that the last part of the FEDGE program looks like this

BLANK BIT SYNC
BMI BLANK
RTS

What this says is, "Read the port named SYNC. If the port is high, go and read
the port again. If the port is low, exit immediately." This part of FEDGE is used
to find the start of the new field for us.

But, the commands BIT and BMI take time. How much time? The BIT test
takes 4 clock cycles and the BMI branch takes 3 clock cycles every time it
repeats. This is a total of 7 clock cycles per try, or roughly 7 microseconds. Thus,
it would seem that you can only read a port once every 7 clock cycles.

So, it would appear that there is an "inherent" 7-microsecond jitter in reading
an outside random event that is routed to a port. And, indeed, there is if you
read the port only once.

The preceding simple program will make its "last" measurement anywhere
between one and seven microseconds after the port input goes low. Let's sup
pose that, this particular time around, we just happen to make our "last" meas
urement at 3 clock cycles into the start of the new field.

Like so ...

/
BLANKING

WAVEFORM

i

SAY WE HIT HERE
ON FIRST TRY

0 1 2 3 4
CPU CYCLES

Field Sync 70 7

There are exactly 17,030 clock cycles in an entire field. Let's do a time delay
of precisely 17,029 clock cycles and, then, make a new measurement. We are
now only two microseconds into the next field, since going forward for 17,029
clock cycles is exactly the same as backing up one clock cycle on the next
field.

This new measurement turns out this way ...

I
BLANKING

WAVEFORM

NEXT FIELD
WE LAND HERE

0 1 2 3 4
CPU CYCLES

Now, delay another 17,029 clock cycles and we end up 1 microsecond into
the next field, since we backed up one more clock cycle.

BLANKING
WAVEFORM

AND HERE ON
THE NEXT FIELD

0 1 2 3 4
CPU CYCLES

And, let's do it one final time. Only now, we "miss" the low part of the
blanking waveform. But we see that we are EXACTLY at the start of the new field
with zero jitter.

So, we exit.
We have done an exact lock to the blanking waveform ..

THIS TIME. WE HIT
______, THE EXACT START

/ AND EXIT JITTER
BLANKING FREE

WAVEFORMS

0 1 2 3 4
CPU CYCLES

The number of fields till lock can be any amount from one to seven, but when
you finally exit the final measurement, you have an EXACT lock on the last field
that came up.

The logic behind a software EXACT lock says ...

Find the start of a new field with
the usual jitter.
Then, back up one clock cycle per
field till you miss the start of the
field.
Then exit.

Here's a flowchart that says the same thing

7 08 Enhancement 4

YES

START

DELAY
17,029

CPU CYCLES

EXIT

A BIT test of an absolute location takes 4 CPU clock cycles. A BPL or BNE
branch needs 3 CPU clock cycles if taken. Thus, the fastest that we can possibly
retest any absolute memory location seems to be once each 7 CPU clock cycles,
or roughly once each 7 microseconds. Since you can enter these field sync
modules at random, this implies that there is an inherent 7-microsecond jitter
in any software measurement. And, 7 microseconds or 7 CPU clock cycles is
7 character slots across the screen. So, it looks like we are stuck with a 7-
microsecond jitter, like it or not.

T'aint so.
Now, follow the bouncing ball. One entire field takes 17,030 CPU clock

cycles, right? So, suppose we do a BIT test and, then, delay exactly 17,029 CPU
clock cycles, or precisely and exactly 1 clock cycle less than one whole field.
Regardless of where our field-start BIT test ends up, the new one takes place
exactly 1 CPU clock earlier in the next field. We have backed up precisely 7
CPU cycle.

So, all you do is find the rough start of the next field using a code like FEDGE
and, then, keep backing up one cycle per field till you miss the start. At that
point, you exit. Your exit will take 2 CPU cycles for the test failed and 6 CPU
cycles for the RTS, and you start at minus 1 CPU cycle from the field start. This
exits you exactly 7 CPU cycles into the start of the new field. Remember that
this leaves you with 25- 7 = 18 CPU cycles in the horizontal blanking time to
play with. This is more than enough time to set up a split screen, a video wipe,
or the timing for a light-pen measurement.

And, it is exact. There is zero jitter. We repeat. This will exactly find the start
of a field for you.

There is a delay program called WAIT that is built into your Apple monitor
starting at $FCA8. We call this delay subroutine three times in a row to help us
hit the exact timing that we need to delay 17,029 CPU clock cycles. Actually,
we pick three magic delay values to total 17,016 CPU clock cycles. The remain
ing 13 CPU clock cycles are used up by the three immediate loads, the BIT test,
and the branch in the loop.

Field Sync 7 09

What happens is that you find the leading edge of the new field using a
FEDGE-like code, just like you did before. This gets done with 1 to 7 CPU clock
cycles of jitter. Then, you back up exactly 1 CPU clock cycle per field till you
hit the exact field start.

Then, you exit.
This is sort of like stopping your car suddenly at an intersection and then

backing up to make sure you really were out of the crosswalk.
Exact sync does take a while. Up to seven fields may be needed to acquire

an exact "lock." This will average out to around three fields or so per try, or
something like one-twentieth of a second. But, this one-twentieth of a second
is usually invisible since it is tacked onto the end of whatever it was that
happened before.

Note that in light-pen uses, we may have to repeat the backing-up dose again
when we sense the pen input. Thus, an average of a tenth of a second will be
needed to hit a light-pen position of one of 40 exact character locations in one
of 192 exact lines. You can thus easily find any one of 7680 screen locations in
a tenth of a second by using nothing but a short piece of wire and some access
software.

A tenth of a second is slightly slower than some special hardware might need,
but since EXACTF eliminates almost all the light-pen circuitry and since it is faster
than most people can react, it is most useful.

In Enhancement No. 5, we will look at mixed fields, a brand new and most
exciting use of EXACTF. With mixed fields, you can mix and match text, HIRES,
and LORES in any combination anywhere on the screen, as well as doing screen
splits and dynamic video wipes.

You can also "inside out" your EXACTF to find the exact start of blanking if
you want to. We have shown this as module 6 and named it EXACTB. This time,
you exit exactly 7 CPU clocks into the vertical blanking rather than 7 CPU clocks
into the next field.

One limit to EXACTF or EXACTB is that you cannot use either one each and
every field, like you could the earlier subroutines. The reason for this is that up
to seven fields may be needed in order to back up to the exact timing exit point
we are after. This means that you have to keep your exact lock till you are
finished with it. During the time you keep the lock, each and every CPU clock
cycle must be exactly accounted for.

For instance, for light-pen use, after you acquire an exact lock, you have to
increment software counters for line and position measurement and do whatev
er else you need to do to end up with an exact measurement. If you are doing
a horizontal video split, or other mixed field, your timing must remain controlled
and constant till you are done. This means that you probably will want to either
time out your split or else test for a pressed key to exit. Your CPU will be tied
up till you are done with the display. We will see just how to handle this timing
situation and how to make room for other program time problems in the next
enhancement.

The point is that once you do an exact lock with EXACTF or EXACTB, your
CPU is 100% committed to the reason why you wanted to lock until you are
finished. This is unlike the earlier subroutines that quickly return control back to
your main programs.

We will note in passing that you can do an exact lock in a fraction of a
field, rather than in seven fields, by a "vapor-lock" method that greatly sim
plifies program coding. Details on this appear in Enhancement 13 of Vol
ume 2.

Let's sum all this up ...

7 7 0 Enhancement 4

THE FIELD SYNC MODULES

C:RUO[-Exit,. sometime during
the vertical blanking time. It
might bomb if the FS mod is
absent. It may be used each
field but must not be called
lwice ,n a field.

FELJG[---fxih on the start of ;i

new field with some jitter. It
will bomb if the FS mod is
.ibsent. It may be used each
field

BEDCE ---like FElJCE, only exits
on ,t.irt of bl,inking.

AL TF.'D -Switches lwtwel-'n text
and graphics fields continu
ously until any key is
prt•s,t·d Nel·cJs FEDGE to
run, and will bomb if the FS
mod is abst·nt.

EXACTF --Finds the exact start
of ,1 field with zero jitter.
Mav take· up to seven tields
to do a perfl,ct lock. Will
bomb 11 F5 fllod is absent.
Lock timing must be con
tinued bv calling program.

EXACTS -Like EX,\CTF, only
exits on exact blanking start.

To rehash, use CRUDE for simple field switching if you are sure you won't
be calling it more than once per field. Use FEDGE when you want the start of
a field with no danger of catching the same field twice. Use BEDGE if you need
a medium amount of animation per field.

Use the AL TFLD for simple text and graphics overlays. Use EXACTF when you
want to find the start of a field exactly for use with a light pen, touch screen,
horizontal video split, or horizontal video wipe. Or, use EXACTS to find an exact
screen location and, then, do lots of setup before the live scan time actually
starts.

We will see more examples of how to use your field sync in upcoming
enhancements. Note that we have kept each sync module separate so you can
add to them or move them anyway you like. The funny misspellings are done
so that each module has its own unique label inside a common assembly
language source program.

While we have shown an RTS, or Return from Subroutine, at the end of each
module, you are free to move any RTS down and stuff as much other machine
language code in the subroutine as you like.

Program number 4-2 shows us a quick way to test your field sync modifica
tion. This Applesoft program loads ALTFLD and FEDGE. It then prints a message
on Text I and some artwork on HIRES 1. ALTFLD is then called on to superim
pose text and HIRES. The text-over-HIRES display continues till you hit any key.

Your field sync is working if you get the double text and HIRES image with
no glitches or noise anywhere on the screen. Some flicker is normal with this

PROGRAM 4-2

FIELD SYNC QUICK TEST

LANGUAGE APPLESOFT

10 REM *********************
12 REM * *
14 REM * FIELD SYNC *
16 REM * QUICK TEST *
18 REM * *
20 REM * VERSION 1.0 *
22 REM * *
24 REM * COPYRIGHT 1981 *
26 REM * BY DON LANCASTER *
28 REM * AND SYNERGETICS *
30 REM * *
32 REM * ALL COMMERCIAL *
34 REM * RIGHTS RESERVED *
36 REM * *
38 REM *********************

52 REM FIELD SYNC DESCRIBED
54 REM IN ENHANCING YOUR
56 REM APPLE II, VOLUME 1

80 REM NEEDS ALTFLD AND
82 REM FEDGE FIELD SYNC
84 REM SUBROUTINES.

100 PRINT "BLOAD FIELD SYNC UTIL
ITY SUBS": REM CTRL D

200 HOME: VTAB 4: REM TEXT
210 PRINT "YOUR FIELD SYNC": PRINT

"IS WORKING IF ...
220 VTAB 10: HTAB 14: PRINT "THE

SE WORDS": HTAB 14: PRINT"
ARE IN A BOX"

230 VTAB 16: HTAB 20: PRINT " ...
AND THERE ARE NO

240 HTAB 20: PRINT" GLITCHES
ANYWHERE";: HTAB 20: PRINT

ON THE SCREEN. II: REM

Field Sync l l l

NEEDS FIELD SYNC MOD
FEDGE SUB
ALTFLD SUB

I 7 2 Enhancement 4

PROGRAM 4-2, CONT'D ...

250 HGR: HCOLOR= 5: POKE - 163
02,0: REM GRAPHICS

260 HPLOT 80,64 TO 184,64 TO 184
,98 TO 80,98 TO 80,64

270 HPLOT 81,65 TO 185,65 TO 185
,99 TO 81,99 TO 81,65

280 HCOLOR= 1: HPLOT 31,12 TO 31
,81 TO 75,81 TO 71,76 TO 75,
81 TO 71,86 TO 71,76

290 HPLOT 29,11 TO 29,16 TO 33,1
1 TO 33,16: HPLOT 73,78: HPLOT
73,82: HPLOT 73,80

300 HCOLOR= 2: HPLOT 191,81 TO 2
36,81 TO 236,116 TO 232,112 TO
240,112 TO 236,116

310 HPLOT 189,80 TO 197,80 TO 13
9,82 TO 197,82: HPLOT 236,11
3: REM

400 FOR N = 1 TO 3000: NEXT~: PRINT
"": REM BELL CTRL G

410 TEXT : FOR N = 1 TO 3000: NEXT
N: PRINT"";: REM BELL CT
RL G

500 CALL 816: REM CALL ALTFLD

990 POKE - 16368,0: REM RESET
KEY STROBE

995 PRINT : PRINT "RUN MENU": REM
EXIT ON KP

996 REM DELETE 995 IF AUTO MENU
IS NOT IN USE

999 END

Field Sync 7 73

particular use of field sync. You can minimize this flicker by using black and
white rather than color displays, or by using darker colors rather than white,
or by minimizing large blocks of text, or by keeping the total screen informa
tion and display time at a minimum. Proper setting of contrast and brightness
on the display will also make a big difference. A color filter in front of a black
and white monitor can reduce flicker a lot. A red or orange filter seems to be
best.

An additional "floating" effect may be noted by people wearing glasses. This
is caused by relative head-to-display motion between the fields as they are
alternated.

Once again, this apparent flicker applies only to some field alternators. Prac
tically all other uses of field sync are glitch and flicker free.

Note that your field sync must have exclusive use of the cassette read cir
cuitry and SW3 when it is in use. We have used the phantom "SW3" input of
the cassette read circuitry instead of the more obvious game paddle SW2
because many word processor programs will use SW2 to route a SHIFT key
command into their programs.

You have to break your field sync connection any time you use your cassette
input. This might happen for normal cassette use, for speech recognizers, or
for color organ music sync programs. You might like to put a switch in the mid
dle of the field sync wire. Close the switch for field sync. Open the switch for
everything else that the cassette input or the phantom "fourth push-button" tie
in. The switch may be mounted using double-stick foam. Direct entry of the
blanking waveform into the IN jack of the cassette is not recommended-first,
because capacitor ClO is too small and, more crucially, because the long and
erratic delay in analog amplifier Kl 3 would give unpredictable results in preci
sion field sync applications which need an exact lock.

Precision field sync is so important and so exciting that it should be immedi
ately added to your Apple and done in a simple, standard, and easy-to-use
way. Let us know what new uses you find for this exciting capability•

The Apple Assembler source and
object programs FIELD SYNC
UTILITY SUBS.SOURCE and FIELD
SYNC UTILITY SUBS, along with
the Applesoft program FIELD
SYNC TESTER are included on the
companion diskette to this volume.
All three programs are fully copya
ble.

A complete set of all parts needed
to build one field sync modifica
tion is included in the companion
parts kit to this volume.

114 Enhancement 4

SEEDS AND STEMS

Here's one way to make sure the field sync
mod is installed before you try to use it
from Applesoft . . .

2000 MM = 0: For NN = 0 to 30: IF
PEEK (-16288) > 127 THEN MM
=MM+ 1: NEXT NN

If, after running this line, MM = 8, 9, 10, or
11, your field sync is in place and properly
installed.

This enhancement works on all Ap
ples. But code and hardware details
change for the Franklin and the Ap
ple lie. See the Update Section.

Enhancement

FUN WITH
MIXED FIELDS

Mix TEXT, HIRES, AND LORES
anywhere on the screen using your
field sync mod and some simple
support software. Displays are
glitch and flicker free and open up
many exciting new uses. The se
cret of the 121 LORES colors is also
revealed. Or is it?

FUN WITH MIXED FIELDS

How would you like to be able to mix and match text, LORES, and HIRES
together anywhere you like on your Apple screen? It's a lot easier than you might
think. All it takes is some simple support software that we'll look at here. We'll
use it along with the one-wire field sync mod of Enhancement 4.

Now you can freely mix text and LORES color, even off of the same display
page, and anywhere you like on the screen. You can title HIRES displays at the
top and sides, mix HIRES and LORES together, and label LORES bar graphs. You
can inset and quickly change normal, inverse, or flashing text anywhere on a
HIRES or LORES display.

Think of the possibilities! And, the mix-and-match magic of mixed fields can
be done much simpler and much faster than can be accomplished by using a

115

116 Enhancement 5

straight HIRES display. Your memory needs also can be much smaller with
mixed fields. And, the basic idea behind mixed fields can be easily extended into
mind-boggling things like video wipes, whole new worlds of animation, external
video special effects, and true 3-D vibrating mirror displays.

What is a mixed field?

MIXED FIELD ~An Apple video
display mode that changes
between text, LORES, and
HIRES on the fly, letting you
mi)(and match what goes on
the screen at any instant.

The exciting thing about mixed fields is that everything is there at once. Since
the screen is switched "on the fly," there is no flicker like you sometimes get
with alternating field displays.

As with any Apple feature, mixed fields have some limits and disadvantages.
The first is that you have to very carefully set up a display file that is part of a
display program. This display file controls when modes get changed on the
screen. The display file isn't nearly as bad as a shape table, but you still must
be able to use and understand one before you can get mixed fields to work for
you. The display file emulates Atari's ANTIC hardware.

The second limiting factor to mixed field displays is that they take up the lion's
share of the CPU time when you are using them. Mixed field displays are better
suited for titles, transitions, and displaying results than for use where you must
do a lot of real-time computing. We have built in an automatic display timer and
an option to exit on any key pressed. These give you the continuity you will need
to use mixed fields. You can easily switch between mixed fields and regular
displays at any time in a program.

You also have the option of using up to 4300 or so clock cycles per field for
things like limited animation, character entry, and so on. The available through
put ends up around one quarter of normal with this option. Use of this nondis
play time is tricky, since you must either maintain an exact number of clock
cycles or else resynchronize each field. Ways around this appear in Enhance
ment 13.

The third limit to mixed fields is that you can get some very awful glitches on
the screen if you aren't careful. The absolute worst source of the glitches is
caused by a change Apple made back in Revision 1. This one is easily eliminated
with the $3.00 Glitch Stamper mod upcoming in Enhancement 6. The remaining
glitches are easily made invisible once you understand what causes them. You
can even make the glitches work for you once you really get to know them.

All in all, though, these limits to mixed fields are easy to get around if you
spend the time and trouble to understand what field switching is all about. And,
the spectacular results certainly make it all worthwhile.

How mixed fields work

The following example shows us how mixed field displays work. The general
idea behind mixed fields is to flip soft switches in exact/}' the same screen
position for every successive field. In this example, we do a graph, starting with
a one-line text title at the top. Then, we do a single LORES horizontal grey line

Field Sync 17 7

separating title from graph. The graph itself consists of Y-axis text on the left and
HIRES lines and points on the right. Finally, we do the X-axis stuff in straight text.
For each and every field, soft switches are flipped in just the right locations to
make all this happen.

In order to understand how to do a mixed field display, it is necessary that
you fully understand the following details.

A mixed field display needs the field sync mod of the previous enhancement
and an exact locking program called VFFS. Inside VFFS are three sets of files,
called CONTROL, H PAT, and VPAT. These files are changed to suit your needs.

For instance, suppose you want to do a fancy graph with a title at the top,
then a grey bar, then a HIRES graph with ordinary text as the Y axis, then a
two-line text X axis below. Something like this ...

Split the display up into horizontal pieces, starting from the top. Each piece
has to have an identical horizontal pattern on each and every one of its scan
lines. With VFFS, you are allowed to have four different horizontal patterns.
These four horizontal patterns can repeat in order as often as you like.

Our first horizontal pattern is used for the title. It simply switches to text and
keeps us in text for the eight lines that are needed to put down a row of
characters

GRAPH TITLE
~ALL TEXT

Our second horizontal pattern is used for the grey bar. It simply switches us
to LORES and keeps us in LORES for another 8 lines. We'll use 4 lines for some
black space under the title, and the second 4 lines for the grey bar.

BLACK

l 18 Enhancement 5

Your text and LORES can be off the same display page as long as you use
exact multiples of 8 scan lines per mode.

Our third horizontal pattern is more complicated. It switches to text at the start
of each horizontal line and then switches to HIRES on the eighth character of
each and every horizontal scan line. This continues for most of the display, down
to line number 175.

EACH SCAN LINE SWITCHES
FROM HIRES TO TEXT HERE

~ _; EACH SCAN LINE SWITCHES
,: FROM TEXT TO HIRES HERE

Our final horizontal pattern goes back to all text, and lasts for the final 16 scan
lines, going from line 175 to the bottom of the screen at line 191.

0 10 20 30 40 50 60 70
X AXIS

'- TWO ROWS OF
ALL TEXT

VFFS first does an exact lock and, then, repeats its formatted display every
field. The display ends on a pressed key, a selected timeout, or both.

This particular example is comparable to VFFS.GRAPH that is used in demon
stration Program 5-2. Each new set of file values should be saved under its own
unique name.

In the preceding example, any time you read or write to memory location
$C051, the display wi 11 immediately switch to its text mode. Whenever you read
or write to memory location $C050, the display immediately switches to its
graphics mode. If you flipped the $C051 switch at the top of the screen and then
flipped $C050 after 8 scan lines went by, you would end up with a line of text at
the top of the screen and graphics the rest of the way down.

Why the eighth line? Because there are eight horizontal raster lines needed
per character, since each character is made up vertically of seven live dots and
a blank undot. The number of raster lines usually needed equals eight times the
number of text lines. As long as you stick with multiples of eight raster lines, you
can even have your LORES and text come off the same display page!

Other switches will let you flip between HIRES and LORES, between memory
page 1 and memory page 2, and between full and mixed graphics. And, since
the programs we will show you can hit many different locations in the I /0 space,

Fun With Mixed Fields 119

you can also flip the annunciator soft switches or read push-button inputs. This
opens the door to special video effects, singling out one display line for analysis,
doing animation and wipes, using precision hardware-free light pens, doing
touch screens, adding grey scale and anti-aliasing, providing sync for 3-D
vibrating mirror displays, providing crosshairs, and so on.

Some very simple field mixing can be done by flipping a soft switch or two
at any old time during the vertical blanking interval. For fancier field mixes, we
have to lock to the field start exactly, using EXACTF or something similar. An
exact lock is needed anytime you want to change something in the middle of
a horizontal scan line.

To use field sync, you set up a switch-flipping program that takes exactly one
field to complete. You then find the start of a field with EXACTF and, then, drop
into this switch-flipping program. The program then keeps changing the display
back and forth for you, putting what you want exactly where you want it. This
will continue until either an automatic timeout is completed or until a key is
optionally pressed.

You can write lots of very simple mixed field programs. One could give you
changes at the beginning of any horizontal line. Another could give you changes
along any horizontal line. Yet another could give you a way to inset text, and
so on.

Instead of all these relatively simple and specialized programs, we will show
you one fairly fancy machine-language subroutine called the Video Field For
matter Sub, or VFFS for short. We will start out with a do-nothing VFFS called
VFFS.EMPTY. You will then customize the files in this VFFS to do whatever you
like and, then, rename it. Examples that we will see will include VFFS.BOXES,
VFFS.GRAPH, and so on.

VFFS.EMPTY appears as Program 5-1 and can be used to flip up to 11
switches on each and every one of 192 live scan lines for a total of up to 2112
display changes per field.

Probably the best way to understand VFFS is to jump in with both feet and
use it. An Applesoft demo, called Fun With Mixed Fields, is shown as Program
5-2. This demo shows you some mixed field animation, a HIRES plot with text
vertical titling, a LORES bar graph with text callouts, and a final display that
mixes three alphabets for you.

VFFS.EMPTY is a machine-language program that needs a total of around 520
bytes, including its working files. We have stashed it starting at $8AFF, or
decimal 35583. You must protect this space from either Applesoft or Integer
BASIC use. The HIMEM command can do this for you, either early in an
Applesoft program or before loading an Integer program. I used this space
because you can optionally load and protect VFFS in the highest optional char
acter slot under Apple's HRCG Hi-Res Character Generator.

You can easily relocate VFFS anywhere you like, but any relocation will
change all the file locations and design worksheets we are about to look at.

Working files

The keys to VFFS lie in three sets of files. The simplest file is a one-byte file
called CONTROL. CONTROL sets the length of time that the display is active
and decides whether a keypressed exit is allowed. CONTROL is located at
$8CFB (decimal 36091). Figure 5-1 shows us how CONTROL is used.

The most significant bit of CONTROL is set to a one to activate the key
pressed exit, and cleared to a zero to disable the keypressed exit. The next
most significant bit of CONTROL is set to a one to activate the automatic
timeout or cleared to zero for an 11infinite 11 display. The remaining six lowest

7 20 Enhancement 5

PROGRAM 5-1

VIDEO FIELD FORMATTER SUB. VFFS. EMPTY

LANGUAGE APPLE ASSEMBLY

BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:

BAFF:
BAFF:
BAFF:

BAFF:
BAFF:
BAFF:

BAFF:
BAFF:
BAFF:
BAFF:
BAFF:

BAFF:
BAFF:
BAFF:

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

25
26
27

29
30
31

33
34
35
36
37

39
40
41

NEEDS FIELD SYNC MOD

*
*
*
*
*
*
*

VIDEO FIELD
FORMATTER SUB

VFFS.EMPTY

($8AFF.8D07)

* VERSION 1.1
* FOR OLDER APPLES
* (10-25-83)
*

*
*
*
*
*
*
*
*
*
*
*

* COPYRIGHT 1981 *
* BY DON LANCASTER*
* AND SYNERGETICS *
* *
* ALL COMMERCIAL *
* RIGHTS RESERVED *
* *

THIS PROGRAM LETS YOU MIX
AND MATCH SCREEN MODES IN
MANY DIFFERENT COMBINA'rIONS.

SCREEN MODE CAN BE CHANGED
ONCE EACH HBLANK TIME USING
FILE "VPATRN".

SCREEN MODE CAN BE CHANGED
UP TO TEN TIMES PER H SCAN
USING FILES "HPATl" THROUGH
"HPAT4". FOUR OR FEWER
H PATTERNS ARE ALLOWED.

SEE ENHANCEMENT #5 OF
ENHANCING YOUR APPLE II,
VOL 1 FOR FULL USE DETAILS.

HIMEN 35583

Fun With Mixed Fields 7 2 7

PROGRAM 5-1 CONT'D ...

8AFF: 43 TO USE, SET UP PATTERN FILES
8AFF: 44 THEN JSR $8B00 FROM MACHINE
8AFF: 45 LANGUAGE OR CALL 35584 FROM
8AFF: 46 APPLESOFT.

C060: 49 DUMMY EQU $C060 LOCATION FOR NO-SWITCH H
C000: 50 KEYBD EQU $C000 KEY PRESS CHECK
C060: 51 SYNC EQU $C060 VBLANK VIA "SW3"
C000: 52 SWITCH EQU $C000 VFILE SWITCH LOCATION
FCA8: 53 WAIT EQU $FCA8 MONITOR DRLAY SUB

8AFF: 56 **** EXACT LOCK TO FIELD START****

8AFF:EA 58 NOP EVEN PAGE START (FOR HRCG)

8B00:20 FE 8C 60 START JSR SETUP INITIALIZE KEYBOARD AND
TIMEOUT

8B03:2C 60 co 62 EXACTF BIT SYNC LOCK TO FIELD EDGE
8B06:10 FB 63 BPL EXACTF
8B08:2C 60 co 64 3LENK BIT SYNC FIND FIELD START
8B0B:30 FB 65 BMI BLENK WITH JITTER
8B0D:EA 66 NOP STALL FOR 2 CYCLES
8B0E:10 00 67 BPL STALL STALL FOR 3 CYCLES
8Bl0:A9 3B 68 STALL LOA #$3B DELAY FOR 17029
8B12:20 A8 FC 69 JSR WAIT CLOCK CYCLES TOTAL
8B15:A9 34 70 LOA #$34 USING THE MONITOR
8Bl7:20 A8 FC 71 JSR WAIT DELAY ROUTINE AND
8BlA:A9 01 72 LDA #$01 THIS LOOP TIMING.
8B1C:20 A8 FC 73 JSR WAIT
8B1F:2C 60 co 74 BIT SYNC HAVE WE BACKED TO START?
8B22:10 EC 75 BPL STALL NO, GO BACK ONE MORE

8B24: 77 **** START OF FIELD ****

8824:A0 co 79 NEWFLD LOY #$CO FOR 192 LINES

8B26:B9 00 8C 81 NXTLNl LOA VPATRN,Y GET LINE PATTERN
8B29:30 63 82 BMI HPAT2
8B2B:10 00 83 HPATl BPL HPl
8B2D:29 7F 84 HPl AND #$7F MASK SWITCH COMMAND
8B2F:AA 85 TAX
8B30:9D 00 co 86 STA SWITCH,X
8B33:8D 60 co 87 STA DUMMY
8B36:8D 60 co 88 STA DUMMY

122 Enhancement 5

PROGRAM 5-1 CONT'D ...

8B39:8D 60 co 89 STA DUMMY *
8B3C:8D 60 co 90 STA DUMMY **
8B3F:8D 60 co 91 STA DUMMY *
8B42:8D 60 co 92 STA DUMMY *
8B45:8D 60 co 93 STA DUMMY *
8B48:8D 60 co 94 STA DUMMY *
8B4B:8D 60 co 95 STA DUMMY ***
8B4E: 8D 60 co 96 STA DUMMY ;
8B51:88 97 DEY ONE LESS LINE
8B52:F0 32 98 BEQ BOTTOM AT SCREEN BOTTOM?
8B54:D0 DO 99 BNE NXTLNl

8B56:B9 00 8C 103 NXTLN4 LDA VPATRN,Y GET LINE PATTERN
8B59:30 DO 104 BMI HPATl
8B5B:10 00 105 HPAT4 BPL HP4
8B5D:29 7F 106 HP4 AND #$7F MASK SWITCH COMMAND
8B5F:AA 107 TAX
8B60:9D 00 co 108 STA SWITCH,X
8B63:8D 60 co 109 STA DUMMY
8B66:8D 60 co 110 STA DUMMY
8B69:8D 60 co 111 STA DUMMY *
8B6C:8D 60 co 112 STA DUMMY **
8B6F:8D 60 co 113 STA DUMMY * *
8B72:8D 60 co 114 STA DUMMY * *
8B75:8O 60 co 115 STA DUMMY *****
8B78:8D 60 co 116 STA DUMMY *
8B7B:8D 60 co 117 STA DUMMY *
8B7E:8D 60 co 118 STA DUMMY
8B81:88 119 DEY ONE LESS LINE
8882:F0 02 120 BEQ BOTTOM AT SCREEN BOTTOM?
8B84:D0 DO 121 BNE NXTLN4

8B86:4C C2 BC 123 BOTTOM JMP BOTTMl "SPLICE" RELATIVE BRANCH

8B89:B9 00 BC 125 NXTLN2 LDA VPATRN,Y GET LINE PATTERN
8B8C:30 30 126 BMI HPAT3
888E:10 00 127 HPAT2 BPL HP2
8B90:29 7F 128 HP2 AND #$7F MASK SWITCH COMMAND
8B92:AA 129 TAX
8B93:9D 00 co 130 STA SWITCH,X
8B96:8D 60 co 131 STA DUMMY
8B99:8D 60 co 132 STA DUMMY
8B9C:8O 60 co 133 STA DUMMY

Fun With Mixed Fields 123

PROGRAM 5-1 CONT'D . ..

8B9F: 8D 60 co 134 STA DUMMY ***
8BA2: 80 60 co 135 STA DUMMY * *
8BA5:8D 60 co 136 STA DUMMY *
8BA8:8D 60 co 137 STA DUMMY *
8BAB: 8D 60 co 138 STA DUMMY *
8BAE: 8D 60 co 139 STA DUMMY *
8BB1: 8D 60 co 140 STA DUMMY ******
8BB4:38 141 DEY ONE LESS LINE
8BB5:F0 CF 142 BEQ BOTTOM AT SCREEN BOTTOM?
8BB 7: DO DO 143 BNE NXTLN2

8BB9:B9 00 BC 147 NXTLN3 LOA VPATRN,Y GET LINE PATTERN
8BBC:30 90 148 BMI HPAT4
8BBE:10 00 149 fIPAT3 13PL HP3
8BC0:29 7F 150 HP3 AND #$7F MASK SWITCH COMMAND
88C2: AA 151 TAX
8BC3:9O 00 co 152 S'rA SWITC=I,X
8BC6:8D 60 co 153 STA DUMMY
8B,'.::::9:8D 60 co 154 STA DUMMY
8BCC: 8D 60 co 155 STA DUMMY *****
8BCF:8D 60 co 156 STA DUMMY *
8BD2:8D 60 co 1S7 STA DUMMY *
8BD5: 8D 60 co 158 STA DUMMY **
8808:30 60 co 159 STA DUMMY *
8BDB:8D 60 co 160 STA DUMMY * *
8BDE: 30 60 co 161 STA DUMMY ***
8BE1:8D 60 co 162 STA DUMMY
8BE4:88 163 DEY ONE LESS LINE
8BE5:F0 9F 164 BEQ BOTTOM AT SCREEN BOTTOM?
8BE7:D0 DO 165 BNE NXTLN3

8BE9: 168 ***** VRLANKING DELAY*****

8BE9:2C 50 co 170 VBSTAL BIT $C050 AFFIRM GR FOR BLANKING
COLOR BURST

8BEC:A9 27 171 LDA #$27 DELAY FOR 4468
BBEE:20 AB FC 172 ,JSR WAIT CPU CYCLES
8BF1:A.9 03 173 LDA #$03
8BF3:20 AB FC 174 JSR WAIT
8BF6:A9 02 175 LOA #$02
8BF8:20 AS FC 176 ,JSR WAIT
8BF3:60 177 RTS

124 Enhancement 5

PROGRAM 5-1 CONT'D ...

8C00: 180 ORG START+256

8C00:60 60 60 182 VPATRN DFB 96,96,96,96,96,96,96,96,
8C03:60 60 60 96,96,96,96,96,96,96,96
8C06:60 60 60
8C09:60 60 60
8C0C:60 60 60
8C0F:60

8Cl0:60 60 60 183 DFB 96,96,96,96,96,96,96,96,
8Cl3: 60 60 60 96,96,96,96,96,96,96,96
8Cl6:60 60 60
8Cl9:60 60 60
8ClC:60 60 60
8ClF:60

8C20:60 60 60 184 DFB 96,96,96,96,96,96,96,96,
8C23:60 60 60 96,96,96,96,96,96,96,96
8C26:60 60 60
8C29:60 60 60
8C2C:60 60 60
8C2F:60

8C30:60 60 60 185 DFB 96,96,96,96,96,96,96,96,
8C33:60 60 60 96,96,96,96,96,96,96,96
8C36:60 60 60
8C39:60 60 60
8C3C:60 60 60
8C3F:60

8C40:60 60 60 186 DFB 96,96,96,96,96,96,96,96,
8C43:60 60 60 96,96,96,96,96,96,96,96
8C46:60 60 60
8C49:60 60 60
8C4C:60 60 60
8C4F:60

8C50:60 60 60 187 DFB 96,96,96,96,96,96,96,96,
8C53:60 60 60 96,96,96,96,96,96,96,96
8C56:60 60 60
8C59:60 60 60
8C5C:60 60 60
8C5F:60

8C60:60 60 60 188 DFB 96,96,96,96,96,96,96,96,
8C63:60 60 60 96,96,96,96,96,96,96,96
8C66:60 60 60
8C69:60 60 60
8C6C:60 60 60
8C6F:60

Fun With Mixed Fields 125

PROGRAM 5-1 CONT'D . ..

8C70:60 60 60
8C73:60 60 60
8C76:60 60 60
8C79:60 60 60
8C7C:60 60 60
8C7F:60
8C80:60 60 60
8C83:60 60 60
8C86:60 60 60
8C89:60 60 60
8C8C:60 60 60
8C8F:60
8C90:60 60 60
8C93:60 60 60
8C96: 60 60 60
8C99:60 60 60
8C9C:60 60 60
8C9F:60
8CA0:60 60 60
8CA3:60 60 60
8CA6:60 60 60
8CA9:60 60 60
8CAC:60 60 60
8CAF:60
8CB0:60 60 60
8CB3: 60 60 60
8CB6:60 60 60
8CB9:60 60 60
8CBC:60 60 60
8CBF: 60
8CC0:60 60

8CC2:

8CC2:20 CB SC
8CC5:20 E9 88
8CC8:4C 24 88

191 DFB 96,96,96,96,96,96,96,96,
96,96,96,96,96,96,96,96

192 DFB 96,96,96,96,96,96,96,96,
96,96,96,96,96,96,96,96

193 DFB 96,96,96,96,96,96,96,96,
96,96,96,96,96,96,96,96

194 DFB 96,96,96,96,96,96,96,96,
96,96,96,96,96,96,96,96

195 DFB 96,96,96,96,96,96,96,96,
96,96,96,96,96,96,96,96

196 DFB 96,96

198 **** KEYPRESSED AND TIMEOUT****

200 BOTTMl JSR KEYTIME TAKE CARE OF EXIT
DELAY TILL NEXT FIELD 201 JSR VBSTAL

202 JMP NEWFLD

7 26 Enhancement S

PROGRAM 5-1 CONT'D ...

8CCB:2C FB 8C 206 KEYTIME BIT CONTROL IS KEY EXIT ACTIVE?
8CCE:10 08 207 BPL NOKEY
8CD0:2C 00 co 208 BIT KEYBD LOOK FOR KEY
8CD3:10 06 209 BPL KEYOK NOT THERE?
8CD5:68 210 PLA POP SUBROUTINE
8CD6:68 211 PLA
8CD7:60 212 RTS EXIT
8CD8:EA 213 NOKEY NOP EQUALIZE 6
8CD9:EA 214 NOP
8CDA:EA 215 NOP
8CDB:EE FD 8C 216 KEYOK INC TIMEX INCREMENT TIMEOUT

MULTIPLIER
8CDE:2C FB 8C 217 BIT CONTROL IS TIMER ACTIVE?
8CE1:50 OF 218 BVC NOTIME
8CE3:A9 lF 219 LDA #$1F MASK FOR 1/64
8CE5: 2D FD 8C 220 AND TIMEX AND TEST MULTIPLIER
8CE8:D0 QC 221 BNE NOMULT
8CEA:CE FC 8C 222 DEC TIMER ONE LESS COUNT
8CED:D0 OB 223 BNE TIMEOK DONE?
8CEF:68 224 PLA POP SUBROUTINE
8CF0:68 225 PLA
8CF1:60 226 RTS EXIT
8CF2:EA 227 NOTIME NOP EQUALIZE 8
8CF3:EA 228 NOP
8CF4:EA 229 NOP
8CF5:EA 230 NOP
8CF6:EA 231 NOMULT NOP EQUALIZE 8
8CF7:EA 232 NOP
8CF8:EA 233 NOP
8CF9:EA 234 NOP
8CFA:60 235 TIMEOK RTS RETURN TO NEXT SCAN

8CFB:C4 237 CONTROL DFB $C4 ARMS KP AND SETS TIMEOUT
8CFC:00 238 TIMER DFB $00 COUNTER FOR TIMEOUT
8CFD:00 239 TIMEX DFB $00 TIMEOUT * 64 MULTIPLIER

8CFE:AD FB 8C 241 SETUP LDA CONTROL INITIALIZE TIMEOUT
8D01:29 3F 242 AND #$3F MASK TIMEOUT BITS
8D03:8D FC 8C 243 STA TIMER
8D06:60 244 RTS AND CONTINUE

PROGRAM 5-2

FUN WITH MIXED FIELDS

LANGUAGE: APPLESOFT

10
12
14
16
18
20
22
23
24
26
28
30
32
34
36
38

50
52
54
56
58

60
62
64
66
68

70
72
74
76

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM

REM
REM
REM
REM
REM

REM
REM
REM
REM
REM

REM
REM
REM
REM

* *
* FUN WITH *
* MIXED FIELDS *
* *
* VERSION 1.0 *
* (9-26-81) *
* *
* COPYRIGHT 1981 *
* BY DON LANCASTER*
* AND SYNERGETICS *
* *
* ALL COMMERCIAL *
* RIGHTS RESERVED *
* *

THIS PROGRAM SHOWS YOU
HOW TO MIX AND MATCH
TEXT, LORES, AND HIRES
ANYWHERE ON THE SCREEN
IN ANY COMBINATION.

THE FIELD SYNC HARDWARE
MOD AND SUBROUTINES
VFFS.BOXES, VFFS.GRAPH,
VFFS.GIRLS AND VFFS.BYE
ARE NEEDED.

SEE ENHANCEMENTS #4,
#5, AND #6 OF ENHANCING
YOUR APPLE II, VOL I
FOR MORE USE DETAILS.

PROTECT VFFS SPACE

NEEDS

100 HIMEM: 35500: REM
110 HGR: TEXT: HOME GR : REM INITIALIZE ALL

Fun With Mixed Fields 7 2 7

FIELD SYNC MOD
HIMEM · 35583
VFFS. BOXES
VFFS. GRAPH
VFFS. GIRLS
VFFS. BYE

128 Enhancement 5

PROGRAM 5-2, CONT'D ...

1000 REM ** TITLE BOXES**

1004 PRINT
1005 PRINT "BLOAD VFFS.BOXES": REM CTRL D
1010 SPEED= 10
1020 VTAB 8: HTAB 9: PRINT "FUN";: HTAB 25:

PRINT II WITH";
1030 VTAB 15: HTAB 9: PRINT II MIXED II;: HTAB

PRINT II FIELDS II

1040 SPEED= 255: REM
1050 COLOR= 1
1080 FOR N = 1 TO 3500: NEXT N
1090 HLIN 6,16 AT 11: HLIN 22,32 AT 11: HLIN

18: HLIN 22,32 AT 18
1100 HLIN 6,16 AT 25: HLIN 22,32 AT 25: HLIN

32: HLIN 22,32 AT 32

25:

6,16 AT

6, 16 AT

1110 VLIN 11,18 AT 6: VLIN 25,32 AT 6: VLIN 11, 18 AT
16: VLIN 25,32 AT 16

1120 VLIN 11,18 AT 22: VLIN 25, 32 AT 22: VLIN
AT 32: VLIN 25,32 AT 32

1125 REM

1130 PRINT 1111

1140 PRINT ""
1145 REM

FOR N = 1 TO 3500: NEXT N
POKE 36091,212: CALL 35584

HGR : HCOLOR= 2: POKE 49234,0

11, 18

1150
1160
1169
1170

HPLOT 12,8 TO 258,8 TO 259,85 TO 12,85 TO 12,8
POKE 4916B,O

1180
1190

HPLOT 12,90 TO 258,90 TO 258,170 TO 12,170 TO
12,90
FOR N = 1 TO 3500: NEXT N: PRINT 1111

CALL 35584: REM MIX FIELDS

2000 REM ** GRAPH AND TITLE**

2006 H = 62:V = 160
2010 TEXT: HOME: SPEED= 100
2015 PRINT "BLOAD VFFS.GRAPH": REM CTRL D

2020 PRINT "DIPTHONG-SNORGEL CORRELATIONS:"
2030
2040
2050
2060
2070

PRINT II

PRINT" 40
PRINT PRINT II

PRINT PRINT" S
PRINT II N

30 -

PROGRAM 5-2, CONT'D ...

PRINT " 0
PRINT " R
PRINT " G 20 -
PRINT " E
PRINT " L
PRINT " s
PRINT" 10
: PRINT PRINT"
PRINT PRINT" 0 -
PRINT: PRINT "O 1 2 3
PRINT: PRINT "DIPTHONGS";

4 5

VTAB 1: HTAB 0: PRINT" ": SPEED= 255
HGR: HCOLOR= 1: POKE 49234,0
HPLOT 63,156 TO 255,156

6 7"

2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2191
2192
2193 HCOLOR= 1: HPLOT 87,157 TO 87,165: HPLOT 115,157

TO 115,165: HPLOT 143,157 TO 143,165
2194

2210
2220
2300
2400
2410
2418
2420
2999

HPLOT 171,157 TO 171,165: HPLOT 199,157 TO 199,
165: HPLOT 227,157 TO 227,165: HPLOT 255,157 TO
255,165
GOSUB 20000: REM PLOT
HCOLOR= 7: HPLOT 229,32 TO 229,120
POKE 36091,208: CALL 35584
FLASH: VTAB 5: HTAB 34: PRINT "1066"
VTAB 15: HTAB 34: PRINT "1492"
HCOLOR= 7: HPLOT 229,28 TO 229,128
NORMAL: CALL 35584: REM MIX FIELDS
REM

3000 REM **GIRLS**

3010 GR: CALL - 1998: POKE - 16302,0
3020 PRINT "BLOAD VFFS.GIRLS": REM

3100 FOR N = 1 TO 10: READ L: COLOR= N: HLIN O,L AT
(4 * N - 1): FORK= 1 TO 200: NEXT K,N

3105 : FOR N = 1 TO 2000: NEXT N
3107 HGR: HCOLOR= 3: HPLOT 4,174 TO 240,174 TO 243,

·179 TO 246,169 TO 249,174 TO 279,174

3108 POKE - 16302,0:
3110 HPLOT 4,175 TO 4,180: HPLOT 46,175 TO 46,180:

HPLOT 88,175 TO 88,180: HPLOT 130,175 TO 130,180:
HPLOT 172,175 TO 172,180

3111 HPLOT 214,175 TO 214,180: HPLOT 270,175 TO 270,
180

3115 FOR N = l TO 23 STEP 2
3116 VTAB (N): FOR K = 0 TO 39: PRINT " ";: NEXT K,N

Fun With Mixed Fields 7 29

7 30 Enhancement 5

PROGRAM 5-2, CONT'D ...

3120 FOR N = 1 TO 10: READ G$: VTAB 1 + 2 * N: PRINT
G$: NEXT N

3130 PRINT : PRINT : PRINT "O 2 4 6 8
10 ! II ; : POKE 2039,160: REM AVOID SCROLL

3190 POKE 36091,212
3200 CALL 35584: REM MIX FIELDS

3990 POKE 16368,0: REM RESET KEY STROB

4000 REM *** BYE BYE***

4005 PRINT : PRINT "BLOAD VFFS.BYE": REM CTRL D
4008 GR: TEXT
4009 : POKE - 16368,0: GR: TEXT

4010
4015
4020

4022

4024

4026

4027

4028

4029
4030

4032

4034

4099

HOME : VTAB 7: HTAB 20: PRINT "BYE";
FOR N = 1 TO 1000: NEXT N
HGR : HCOLOR= 5: HPLOT 143,86 TO 143,79: HPLOT
145,86 TO 145,79: HPLOT 141,78 TO 141,77: HPLOT
139,78 TO 139,77: HPLOT 147,78 TO 147,77: HPLOT
149,78 TO 149,77
HPLOT 137,76 TO 137,73: HPLOT 135,76 TO 135,73:
HPLOT 151,76 TO 151,73: HPLOT 153,76 TO 153,73
HPLOT 107,73 TO 107,86: HPLOT 109,73 TO 109,86:
HPLOT 119,75 TO 119,78: HPLOT 121,75 TO 121,78:
HPLOT 119,81 TO 119,84: HPLOT 121,81 TO 121,84
HPLOT 107,73 TO 117,73: HPLOT 107,74 TO 117,74:
HPLOT 107,79 TO 117,79: HPLOT 107,80 TO 117,80:
HPLOT 107,85 TO 117,85: HPLOT 107,86 TO 117,86
HPLOT 163,73 TO 163,86: HPLOT 165,73 TO 165,86:
HPLOT 163,73 TO 179,73: HPLOT 163,74 TO 179,74
HPLOT 163,85 TO 179,85: HPLOT 163,86 TO 179,86:
HPLOT 163,79 TO 175,79: HPLOT 163,80 TO 175,80
COLOR= 0: FOR N = 25 TO 39: HLIN 0,39 AT N: NEXT N
COLOR= 3: HLIN 11,14 AT 25: HLIN 11,14 AT 28: HLIN
11,14 AT 31: VLIN 25,31 AT 11: VLIN 26,27 AT 15:
VLIN 29,30 AT 15
VLIN 25,26 AT 18: VLIN 27,27 AT 19: VLIN 28,31 AT
20: VLIN 27,27 AT 21: VLIN 25,26 AT 22
VLIN 25,31 AT 25: HLIN 25,29 AT 25: HLIN 25,28 AT
28: HLIN 25,29 AT 31
POKE 36091,128

4100 CALL 35584: REM MIX FIELDS

PROGRAM 5-2, CONT'D ...

4200
4201
4210

PRINT: PRINT "RUN MENU": REM CTRL D
REM DELETE 4200 IF AUTO-MENU IS NOT IN USE
END

20000 REM ** SNORGEL CURVES**

20005 HCOLOR= 3
20010 FOR X = 1 TO 200
20020 y = (1
20030 z = y *
20040 HPLOT X
20050 HPLOT X

20060 NEXT X
29999 RETURN

- (2.718)
(2.718 A

+ 61,159
+ 61,159

A (- X I 50))
- X I 60))

- 137 * y
- 457 * z

30000 DATA 2,6,9,16,21,24,27,29,31,39

Fun With Mixed Fields T J T

30100 DATA VELMA,GERTRUDE,CHARITY,NOREEN, EMILY,PEGGY,
ELAINE,SAMANTHA,RACHAEL,YVONNE

132 Enhancement 5

KEYPRESSED EXIT TIMED EXIT
1 = activate 1 = timed
0 = disable O = infinite

j l
DISPLAY TIME
Six bits hold the
number of half-seconds
in straight binary

+

The CONTROL file is presently located at hex $8CFB (decimal 36091).

The values shown give a keypressed exit along with a timeout exit
after seven seconds.

Some CONTROL file use examples:

1. Keypressed exit only-use hex $80 or decimal 128.
2. Four-second display only-use hex $48 or decimal 72.
3. Four-second display with keypressed exit-use hex $C8 or

decimal 200.
4. Eight-second display only-use hex $50 or decimal 80.
5. Eight-second display with keypressed exit-use hex $DO or

decimal 208.

To set up CONTROL in hex, start with $00 and add $80 if keypressed
exit is wanted. Add $40 if timeout is wanted. Add TWICE the number
of seconds of timeout to this value (max. timeout value = $3F). Store
this value in $8CFB.

To set up CONTROL in decimal, start with 0 and add 128 if keypressed
exit is wanted. Add 64 if timeout is wanted. Add TWICE the number of
seconds of timeout to this value (max. timeout value = 63). Poke this
value into 36091.

Do not use a CONTROL value of hex $00 or a decimal O as this will
give you a permanent display.

Fig. 5-1. CONTROL file used in VFFS.

bits hold a binary number equal to the number of half seconds you wish to
display. For instance, for a ten-second display, you would load decimal twenty,
or hex $14, into these six bytes.

Timeout range goes from one-half a second to thirty-two seconds, with the
option of an "infinite" timeout exited with a pressed key.

Next are the HPAT files, short for Horizontal Patterns. The following example
shows us the H PAT addresses and data value. There are four possible horizontal
pattern files used in VFFS. These files decide which soft switch is flipped in any
of ten exact horizontal screen positions.

The files are called H PA Tl through H PAT 4. The display always starts with
HPAT1. Each HPAT file continues for a number of scan lines set by the VPAT
file shown in Table 5-1. While the HPAT files must be sequenced in order, they
can repeat as often as you like each field.

Fun With Mixed Fields 133

Here are the present addresses of the pattern files ...

HPAT1 ADDRESSES HPAT2 ADDRESSES

Switch-on Hex Decimal Switch-on Hex Decimal

Character Address Address Character Address Address

0 $8B34 35636 0 $8B97 35735

4 $8B37 35639 4 $8B9A 35738

8 $8B3A 35642 8 $8B9D 35741

12 $8B3D 35645 12 $8BA0 35744

16 $8B40 35648 16 $8BA3 35747

20 $8B43 35651 20 $8BA6 35750

24 $8B46 35654 24 $8BA9 35753

28 $8B49 35657 28 $8BAC 35756

32 $8B4C 35660 32 $8BAF 35759

36 $8B4F 35663 36 $88B2 35762

HPAT3 ADDRESSES HPAT4 ADDRESSES

Switch-on Hex Decimal Switch-on Hex Decimal
Character Address Address Character Address Address

0 $8BC7 35783 0 $8B64 35684

4 $8BCA 35786 4 $8B67 35687

8 $8BCD 35789 8 $8B6A 35690

12 $8BD0 35792 12 $8B6D 35693

16 $8BD3 35795 16 $8B70 35696

20 $8BD6 35798 20 $8B73 35699

24 $8BD9 35801 24 $8B76 35702

28 $8BDC 35804 28 $8B79 35705

32 $8BDF 35807 32 $8B7C 35708

36 $8BE2 35810 36 $8B7F 35711

Note that any address in the 1/0 space below $Cl00 may also be flipped by
using its hex address minus $C000, or its decimal equivalent. Note, also, that
any change or relocation of the VFFS program will change all these address
locations.

HPA T is really working code rather than a true file, so its soft switching "file"
values only show up every third byte. H PAT splits up the screen horizontally

134 Enhancement 5

Here are the data values used in an H PAT file

HPAT DATA VALUES

Switch Hex Decimal

Graphics ON $50 80
Text ON $51 81
Full Screen $52 82
Mixed Graphics $53 83

Page ONE $54 84
Page TWO $55 85
LORES Graphics $56 86
HIRES Graphics $57 87

Do Nothing $60 96

into ten groups of four characters each. At the beginning of each four-character
slot, you have the option of flipping one soft switch.

For instance, suppose we use this HPAT code ...

8833: 8D 60 co STA DUMMY ; flip dummy soft switch
8836: 8D 50 co STA TEXT ; Switch to text
8839: 8D 60 co STA DUMMY ; Flip dummy soft switch
883C: 8D 60 co STA DUMMY ; Flip dummy soft switch
883F: 8D 51 co STA GRAFIX ; Switch to graphics

8842: 8D 60 co STA DUMMY ; Flipdummysoftswitch
8845: 8D 60 co STA DUMMY ; Flipdummysoftswitch
8B48: 8D 60 co STA DUMMY ; Flip dummy soft switch
8B4B: 8D 60 co STA DUMMY ; Flip dummy soft switch
8B4E: 8D 60 co STA DUMMY ; Flipdummysoftswitch

What this will do is display the first four characters as graphics, the next
twelve as text, and the remainder of the line as graphics again. Which type of
graphics and which page of text is decided by how the other soft switches have
been previously flipped.

Note that you only have to flip a soft switch when you want to produce a
change in the output mode. If you flip to text, you stay that way till you flip to
something else.

Each ST A absolute store command takes 4 CPU clock cycles, which is equal
to 4 characters. Thus, the 10 switch flippings will equal the horizontal live
character scan time of 40 CPU clock cycles.

To use this particular H PAT file, we access it with some machine-language
code that goes through the "file" exactly once each horizontal line. The timing
is very carefully set up so that the first switch flips before character Zero, the
second one before character Four, the next one before character Eight, and so
on, across the screen to the final switch that flips before character Thirty-six.

Because our back is to the wall with CPU operating speeds, we aren't free to
flip only those switches we want to. Instead, we must flip 10 soft switches each

Fun With Mixed Fields 7 35

and every horizontal line. To do this, we fill in with dummy soft switches. A
dummy soft switch is one that flips but doesn't do anything. One good dummy
soft switch is a write to location $C060. This is the cassette IN location, and the
hardware here is read-only. So, you can write to location $C060 all day long
and nothing will happen. By coincidence, $C060 is also read as part of the exact
locking code. These two uses of one address space location will not cause
conflict.

What you usually do is start with a VFFS.EMPTY file that holds all dummy soft
switches. Then, you modify that file by changing the code locations you need
to flip the "live" switches you really want in the exact slots where you want
them. The easiest way to change these locations is to display the file in machine
language and, then, use the monitor commands to modify only the locations you
want. You can also change a VFFS file by poking from Applesoft, by reading
Applesoft data statements, by transferring the commands from another ma
chine-language file, or by reading a new "file" off your disk.

If we had only one HPAT file, we could only have one combination of text,
HIRES, and LORES which would have to repeat each and every horizontal line
all the way down the screen. At the other extreme, we could have 192 separate
HPAT files that would let us change each horizontal line any way we liked,
separate from all the others. But this, of course, would take bunches of code and
would be horribly complex.

Instead, we have shown you four HPAT files, called HPAT1 through HPAT4.
This lets you have four different horizontal patterns. We will see that we have
an option of changing to the next HPAT file at any scan line we like. Thus, you
could use HPAT1 for fifteen lines, HPAT2 for six lines, HPAT3 for 97 lines, and
H PAT 4 for two lines. If we like, we can go round and round back through the
HPAT files as often as we want to on the same field. The next field always restarts
with HPAT1.

Four different horizontal patterns that can be repeated is more than enough
for text insets and some really fancy field mixing, yet it keeps our program and
pattern files down to something manageable.

Our final file is called VPATRN. VPATRN does two things for you. It first lets
you flip an eleventh soft switch during each horizontal blanking time. This extra
switch can be handy in going, say from text page One to HIRES page Two. You
can use this extra and hidden switch any way you want to. The second thing
that VPA TRN does for you is let you advance to the next available H PAT file
any time that you like.

To repeat, the VPATRN file lets you flip one soft switch invisibly during the
blanking time of each horizontal line. It also optionally lets you change to the
next available HPAT horizontal pattern. A c!earedMSB in a VPATRN file loca
tion only flips a soft switch, while a set MSB in the file both flips a soft switch
and moves on to the next available H PAT file. Should no soft switching be
wanted, a dummy or "do-nothing" switch location is substituted.

Table 5-1 gives the addresses of the VPATRN files

Table 5-1. VPATRN Vertical Pattern File Used in VFFS

Line Character LORES line Hex Decimal
number and dot number address address

0 0/0 0/0 8C:C0 36032
1 0/1 0/1 8CBF 36031
2 0/2 0/2 8CBE 36030
3 0/3 0/3 8CBD 36029

736 Enhancement 5

Table 5-1 Cont. VPATRN Vertical Pattern File Used in VFFS

Line Character LORES line Hex Decimal
number and dot number address address

4 0/4 1/0 8CBC 36028
5 0/5 I /1 8CBB 36027
6 0/6 I /2 8CBA 36026
7 017 I /3 8CB9 36025

8 1 /0 210 8CB8 36024
9 1 /1 2/1 8CB7 36023

10 1 /2 2/2 8CB6 36022
11 l /3 2/3 8CB5 36021

12 1 /4 3/0 8CB4 36020
13 1 /5 3/1 8CB3 36019
14 1 /6 3/2 8CB2 36018
1 S 1 /7 3/3 8CB1 36017

16 2/0 4/0 8CB0 36016
17 2/1 4/1 8CAF 36015
18 2/2 4/2 8CAE 36014
19 2/3 4/3 SCAD 36013

20 2/4 5/0 8CAC 36012
21 2/5 'i/1 SCAB 36011
22 2/6 5/2 8CAA 36010
23 2/7 ',/3 8CA9 36009

24 310 6/0 8CA8 36008
25 3/1 6/1 8CA7 36007
26 3/2 6/2 8CA6 36006
27 3/3 6/3 8CA5 36005

28 3/4 710 8CA4 36004
29 3/5 7/1 8CA3 36003
30 3/6 712 8CA2 36002
31 3/7 7/3 8CA1 36001

32 4/0 8/0 8CA0 36000
33 4/1 8/1 8C9F 35999
34 4/2 8/2 8C9E 35998
35 4/3 8/3 8C9D 35997

36 4/4 9/0 8C9C 35996
37 4/5 9/1 8C<JB 35995
38 4/6 9/2 8C9A 35994
39 4/7 9/3 8C99 35993

40 5/0 10/0 8C98 35992
41 5/1 10/1 8C97 35991
42 5/2 10/2 8C96 35990
43 5/3 10/3 8C95 35989

44 5/4 11 /0 8C94 35988
45 5/5 11 /I 8C93 35987
46 5/6 11/2 8C92 35986
47 5/7 11 /3 8C91 35985

48 6/0 12/0 8C90 35984
49 6/1 12/1 8C8F 35983
50 6/2 12/2 8C8E 35982
51 6/3 12/3 8C8D 35981

52 6/4 13/0 8C8C 35980
53 6/5 13/1 8C8B 35979
54 6/6 1 3/2 8C8A 35978
55 6/7 13/3 8C89 35977

Fun With Mixed Fields 137

Table 5-1 Cont. VPATRN Vertical Pattern File Used in VHS

Line Character LORES line Hex Decimal
number and dot number address address

56 710 14/0 8C88 35976
57 7/1 14/1 8C87 35975
58 7/2 14/2 8C86 35974
59 7/3 14/3 8C85 35973

60 7/4 15/0 8C84 35972
61 7/5 15/1 8C83 35971
62 7/6 15/2 8C82 35970
63 717 15/3 8C81 35969

64 8/0 16/0 8C80 35968
65 8/1 16/1 8C7F 35967
66 8/2 16/2 8C7E 35966
67 8/3 16/3 8C7D 35965

68 8/4 17/0 8C7C 35964
69 8/5 17/1 8C7B 35963
70 8/6 17/2 8C7A 35962
71 8/7 17/3 8C79 35961

72 9/0 18/0 8C78 35960
73 9/1 18/1 8C77 35959
74 9/2 18/2 8C76 35958
75 9/3 18/3 8C75 35957

76 9/4 19/0 8C74 35956
77 9/5 19/1 8C73 35955
78 9/6 19/2 8C72 35954
79 9/7 19/3 8C71 35953

80 10/0 20/0 8C70 35952
81 10/1 20/1 8C6F 35951
82 10/2 20/2 8C6E 35950
83 10/3 20/3 8C6D 35949

84 10/4 21/0 8C6C 35948
85 10/5 21 /1 8C6B 35947
86 10/6 21/2 8C6A 35946
87 10/7 21/3 8C69 35945

88 11 /0 22/0 8C68 35944
89 11 /1 22/1 8C67 35943
90 11 /2 22/2 8C66 35942
91 11 /3 22/3 8C65 35941

92 11 /4 23/0 8C64 35940
93 11 /5 23/1 8C63 35939
94 11 /6 23/2 8C62 35938
95 11 /7 23/3 8C61 35937

96 12/0 24/0 8C60 35936
97 12/1 24/1 8C5F 35935
98 12/2 24/2 8C5E 35934
99 12/3 24/3 8C5D 35933

100 12/4 25/0 8C5C 35932
101 12/5 25/1 8C5B 35931
102 12/6 25/2 8C5A 35930
103 12/7 25/3 8C59 35929

104 13/0 26/0 8C58 35928

105 13/1 26/1 8C57 35927

106 13/2 26/2 8C56 35926

107 13/3 26/3 8C55 35925

738 Enhancement 5

Table 5-1 Cont. VPATRN Vertical Pattern File Used in VHS

Line Character LORES line Hex Decimal
number and dot number address address

108 13/4 27/0 8(54 35924
109 13/5 27/1 8C53 35923
110 13/6 27/2 8C52 35922
111 13/7 2713 8C51 35921

112 14/0 28/0 8C50 35920
113 14/1 28/1 8C4F 35919
114 14/2 28/2 8C4E 35918
115 14/3 28/3 8C4D 35917

116 14/4 29/0 8C4C 35916
117 14/5 29/1 8C4B 35915
118 14/6 29/2 8C4A 35914
119 14/7 29/3 8C49 35913

120 15/0 30/0 8C48 35912
121 15/1 30/1 8C47 35911
122 15/2 30/2 8C46 35910
123 15/3 30/3 8C45 35909

124 15/4 31/0 8C44 35908
125 15/5 3111 8C43 35907
126 15/6 31 /2 8C42 35906
127 15/7 3113 8C41 35905

128 16/0 32/0 8C40 35904
129 16/1 32/1 8C3F 35903
130 16/2 32/2 8C3E 35902
131 16/3 32/3 8C3D 35901

132 16/4 33/0 8C3C 35900
133 16/5 33/1 8C3B 35899
134 16/6 33/2 8C3A 35898
135 16/7 33/3 8C39 35897

136 17/0 3410 8C38 35896
137 17/1 34/1 8C37 35895
138 17/2 34/2 8C36 35894
139 17/3 34/3 8C35 35893

140 17/4 35/0 8C34 35892
141 17/5 35/1 8C33 35891
142 17/6 35/2 8C32 35890
143 17/7 35/3 8C31 35889

144 18/0 36/0 8C30 35888
145 18/1 36/1 8C2F 35887
146 18/2 36/2 8C2E 35886
147 18/3 36/3 8C2D 35885

148 18/4 36/4 8C2C 35884
149 18/5 36/5 8C2B 35883
150 18/6 36/6 8C2A 35882
151 18/7 36/7 8C29 35881

152 19/0 38/0 8C28 35880
153 19/1 38/1 8C27 35879
154 19/2 38/2 8C26 35878
155 19/3 38/3 8C25 35877

156 19/4 39/0 8C24 35876
157 19/5 39/1 8C23 35875
158 19/6 39/2 8C22 35874
159 19/7 39/3 8C21 35873

Fun With Mixed Fields 139

Table 5-1 Cont. VPATRN Vertical Pattern File Used in VFFS

Line Character LORES line Hex Decimal
number and dot number address address

160 20/0 40/0 8C20 35872
161 20/1 40/1 8C1F 35871
162 20/2 40/2 8C1E 35870
163 20/3 40/3 8C1D 35869

164 20/4 41/0 8C1C 35868
165 20/5 41 /1 8C1B 35867
166 20/6 41/2 8C1A 35866
167 20/7 41/3 8C19 35865

168 21/0 42/0 8C18 35864
169 21 /1 42/1 8C17 35863
170 21/2 42/2 8C16 35862
171 21/3 42/3 8C15 35861

172 21/4 43/0 8Cl4 35860
173 21/5 43/1 8Cl3 35859
174 21/6 43/2 8Cl2 35858
175 21/7 43/3 8C11 35857

176 22/0 44/0 8C10 35856
177 22/1 44/1 8COF 35855
178 22/2 44/2 8COE 35854
179 22/3 44/3 8COD 35853

180 22/4 45/0 8COC 35852
181 22/5 45/1 8COB 35851
182 22/6 45/2 8COA 35850
183 22/7 45/3 8C09 35849

184 23/0 46/0 8C08 35848
185 23/1 46/1 8C07 35847
186 23/2 46/2 8C06 35846
187 23/3 46/3 8C05 35845

188 23/4 47/0 8C04 35844
189 23/5 47/1 8C03 35843
190 23/6 47/2 8C02 35842
191 23/7 47/3 8C01 35841

Note that any soft switch in the I 10 space below COBO may be flipped. Use
its hex address minus $C000 if a new H PAT is notto be used, or its hex address
minus $BF80 if a new HPAT is to be used. Note also that any change or
relocation of the VFFS program will change all these address locations.

There are 192 entries in the VPATRN fille, arranged from the bottom to the
top of the screen. These entries start out as $60 values which end up stored at
$C060 as dummy writes to the cassette IN iread-only location. Changing a value
to $54, for instance, causes a soft switch to flip to page One. A $55 flips you
to page Two, and so on. Or, for far out uses, a $59 will set annunciator ANO
at the start of a chosen vertical line, and a $58 will clear ANO.

If a VPA TRN file entry has its most significant bit set, it will flip the intended
soft switch and automatically advance us to the next available H PAT file. If the
VPA TRN entry has its most significant bit cleared, it will flip the intended soft
switch but will not change the HPAT file in use.

For instance, a $51 entry will flip you to text and keep the old HPAT in use.
A $D1 will both flip you to text and advance to the next HPAT. Note that $51
+ $80 = $D1. If the most significant VPATRN file bit is set, then HPAT gets
flipped. If the MSB is cleared, then HPAT stays the same.

J 40 Enhancement 5

Here are the data values used in a VPATRN file

Switch AdvanceHPAH Hex Data Decimal Data

Do Nothing no $60 96
yes $EO 224

Graphics ON no $50 80
yes $DO 208

Text ON no $51 81
yes $D1 209

Full Screen no $52 82
ves $D2 210

Mixed Graphics no $53 83
yes $D3 211

Page One no $54 84
yes $D4 212

Page Two no $55 85
yes $D5 213

LORES Graphics no $56 86
yes $D6 214

HIRES Graphics no $57 87
yes $D7 215

The main VFFS program is set up to always start on HPATl at the top of the
screen, and continue from there. Values in the VPA TRN file will decide when
and if a change to HPAT2, HPAT3, and so on, is to be done. If you are using
HPAT4 and you get a change command, you switch back to HPATl and go
round and round.

VFFS DETAILS

Note that all these CONTROL, HPAT, and VPATRN file locations will change
if you relocate the program or make any other modifications to it.

What you do ahead of time is make up a VFFS.EMPTY program with all
dummy soft switches in VPATRN and the four HPAT files, along with some
sensible value for CONTROL, say a four-second display with keypressed active.
You then modify these files to do the exact display job you want. For many uses,
only a few file locations need be changed.

A pair of worksheets that make file design a lot easier appear in Figs. 5-2 and
5-3. The easiest way I've found to change an HPAT or VPATRN file is to simply
list it in machine language on the screen, and then change the dummy locations
as needed. You then save VFFS under a new modifier name to pick up these
special locations.

To use these worksheets, first split your display up into horizontal blocks, each
of which has a distinct horizontal pattern. Then, write the modes into the top
of the HPAT file worksheet, putting a "TEXT" in the block where you want text
to start appearing, and so on. Then, put the right data value in the right box on
the correct HPAT for each switch flipping. To finish your HPAT worksheet,
calculate the line number or numbers where you want to switch from HPA Tl
to HPAT2, and so on. Put these numbers in the bottom boxes.

Fun With Mixed Fields 7 4 7

Now go to the VPA TRN worksheet, and label the changes you want in the
positions you want. Then, substitute the code needed beside each position. Note
that you can count in scan lines, in 8 scan-line character units, or in 4 scan-line
LORES units.

When you have completed both worksheets, you should have a list of all file
values that you need. Load VFFS.EMPTY, modify these file values, change
CONTROL as needed, and resave your new VFFS under a new name. The whole
process is much easier to do than to describe.

Let's look at some more details of VFFS.EIV1PTY that appear as Program 5-1.
A flowchart is shown in Fig. 5-4.

To activate VFFS, you first create your own custom version and then load it
into your Apple. Then, you do a JSR $8B00 or a CALL 35584. Your VFFS will
then do a mixed field display for you for the length of time that you selected
with your CONTROL data values.

At the start of VFFS, your Apple is still displaying whatever it happened to
have on the screen. Nothing visible will change until an exact lock to video
timing is completed. Once again, you must have the one-wire sync mod of
the previous enhancement in place for mixed fields to work.

We first do some setting up at $8B00. This takes the timeout bits from
CONTROL and moves them to a location called TIMER where they can be
counted down for timeout. We then find the exact start of a video field using
code we borrowed from EXACTF of the last enhancement. This code must have
the field sync modification of Enhancement 4 to work. What EXACTF does is
find the beginning of a field with some jitter and, then, backs up one CPU clock
cycle per field till it finds an exact field start.

We get to $8B24 exactly at the start of a field. We call this location NEWFLD
since it is the point we will return to after each field is complete. Timing from
now on is exactly controlled to take up precisely one field per trip around. Up
to this point, the Apple is still displaying whatever it happened to be showing
before we began.

NEWFLD tells us the number of live scan lines we are to use. This is usually
hex $CO or decimal 192. The number of live scan lines is put in the Y register
and Y counts the lines down for us. We then grab a value from the VPATRN
file for the top line. This is done with an indexed load, taking the sum of the start
of the VATRN file at $8C00 and the value in Y. Thus, our top line appears as
VPATRN byte $8CC0.

We next test the value found at $8CC0 to see if we are to flip to the next
HPAT. If $8CC0 has its MSB cleared, we use HPAT1; if the MSB is set, we switch
to HPAT2. This is done with the BM! test at $8B29.

Assuming that we don't want to change HPAT just yet, we go on through the
code starting at $8B2 F. We first flip the VPA TRN byte switch invisibly during
the blanking time and, then, go on to switch up to ten locations set by the HPA T1
file.

We reach the right end of the screen on the first scan line when we get to
$8B51. We subtract one line from our scan counter and repeat the process,
taking exactly 65 CPU cycles to get right back where we started from, but one
horizontal scan line down.

This goes on and on until we either reach the bottom of the screen, or else,
until we find a VA TRN value that flips to us to H PA T2. The time it takes to switch
between H PAT files is exactly the same as the time it takes to continue with the
same HPAT file. The apparent order of the HPAT files is "juggled" in the
program to keep all the relative branches from pattern to pattern in range.

The process repeats every scan line. A VPA TRN byte is gotten and tested to
see if a switch to the next H PAT is needed. Then, the chosen H PAT scan is done,

$8834

$8837 II

$883A 111

$883D IV

$8840 V

$8843 VI

$8846 VII

$8849 VIII

$884C IX

$884F X

HPAT1
STARTS

ON LINES

~

HORIZONTAL PATTERN WORKSHEET FOR L-1 v_F_F_s_. ________ ~

111

'

$8897

$889A

$889D

$88A0

$88A3

$88A6

$88A9

$88AC

$88AF

$8882

IV

'

II

111

IV

V

VI

VII

VIII

IX

X

HPAT2
STARTS

ON LINES

CJ

ACTION POINTS

V

'

$88C7

$88CA

$88CD

$88D0

$88D3

$88D6

$88D9

$88DC

$8BDF

$8BE2

VI

'

HPAT3
START

II

111

IV

V

VI

VII

VIII

IX

X

ON LINES

CJ

VII

'
VIII

'

$8864

$8867

$886A

$886D

$8870

$8873

$8876

$8879

$887C

$887F

II

Ill

IV

V

VI

VII

VIII

IX

X

HPAT4
STARTS

ON LINES

D

HPAT1

HPAT2

HPAT3

HPAT4

DATA VALUES

GRAPHICS~

TEXT -D2J
FULL -G
MIXED -OD
PAGE 1 ~

PAGE2 ~

LORES~

HIRES ~
DUMMY----0

-cJ
-cJ
-cJ
-cJ

VALUES IN $HEX

......
-1:..

""'
s,
:::)-
tu
:::J

~
('!)
:::J -.
vi

Fun With Mixed Fields 143

VERTICAL PATTERN WORKSHEET FOR I VFFS.

CHARACTER 0
0 $8CCO
1 $8CBF
2 $8CBE
3 $8CBD
4 $8CBC
5 $8CBB
6 $8CBA
7 $8CB9

11
12
13
14
15

LORES 0/1

:t;HARACTE:ii~~

18 $8CAE
19 $SCAD
20 $8CAC
21 $SCAB
22 $8CAA
23 $8CA9

LORES 4/5

CHARACTER 3
24 $8CA8
25 $8CA7
26 $8CA6
27 $8CA5
28 $8CA4
29 $8CA3
30 $8CA2
31 $8CA1

LORES 6/7

CHARACTER 4
32 $8CAO
33 $8C9F
34 $8C9E
35 $8C9D
36 $8C9C
37 $8C9B
38 $8C9A
39 $8C99

LORES 8/9

40 C;HARA!CTE$~~98
41 $8C97
42 $8C96
43 $8C95
44 $8C94
45 $8C93
46 $8C92
47 $8C91

LORES 10/11

GRAPHICS TEXT

SAME HPAT $50 $51

NEW HPAT $DO $D1

CHARACTER 6
48 $8C90
49 $8C8F
50 $8C8E
51 $8C8D
52 $8C8C
53 $8C8B
54 $8C8A
55 $8C89

LORES 12/13

CHARACTER 7
56 $8C88
57 $8C87
58 $8C86
59 $8C85
60 $8C84
61 $8C83
62 $8C82
63 $8C81

LORES 14/15

CHARACTER 8
64 $8C80
65 $8C7F
66 $8C7E
67 $8C7D
68 $8C7C
69 $8C7B
70 $8C7A
71 $8C79

LORES 16/17

72 $8C78
73 $8C77
74 $8C76
75 $8C75
76 $8C74
77 $8C73
78 $8C72
79 $8C71

LORES 18/19

CHARACTER 10
80 $8C70
81 $8C6F
82 $8C6E
83 $8C6D
84 $8C6C
85 $8C6B
86 $8C6A
87 $8C69

LORES 20/21

88C;HARAC!TE~S~~S
89 $8C67
90 $8C66
91 $8C65
92 $8C64
93 $8C63
94 $8C62
95 $8C61

LORES 22/23

11~H;ARACTER$~~50
113 $8C4F
114 $8C4E
115 $8C4D
116 $8C4C
117 $8C4B
118 $8C4A
119 $8C49

LORES 28/29

CHARACTER16
128 $8C40
129 $8C3F
130 $8C3E

$8C3D
$8C3C
$8C3B
$8C3A

135 $8C39
LORES 32/33

CHARACTER 17 ~~~;;::g~~ 138 $8C36
139 $8C35
140 $8C34
141 $8C33
142 $8C32
143 $8C31

LORES 34/35

DATA VALUES

CHARACTER 18
144 $8C30
145 $8C2F
146 $8C2E
147 $8C2D
148 $8C2C
149 $8C2B
150 $8C2A
151 $8C29

LORES 36/37

CHARACTER19
152 $8C28
153 $8C27
154 $8C26
155 $8C25
156 $8C24
157 $8C23
158 $8C22
159 $8C21

LORES 38/39

CHARACTER 22
$3C10
$8COF
$8COE
$8COD
$8COC
$8COB
$8COA

183 $8C09
LORES 44/45

18~H;ARAC!TER$:gOB
185 $8C07
186 $8C06
187 $8C05
188 $8C04
189 $8C03
190 $8C02
191 $8C01

LORES 46/47

FULL MIXED PAGE 1 PAGE 2 LORES HIRES DUMMY

$52 $53 $54 $55 $56 $57 $60 SAME HPAT

$D2 $D3 $D4 $D5 $D6 $D7 $EO NEW HPAT

Fig. 5-3. Vertical pattern VFFS worksheet.

144 Enhancement 5

NO

OUTPUT
"OLD"

HPAT FILE

NO

Fig. 5-4. Flowchart of VFFS.

START

FIND EXACT
FIELD EDGE

GET LINE
PATTERN FROM

VPAT FILE

ONE
LESS
LINE

CHECK
KEYPRESS

AND TIMEOUT

DELAY TILL
NEXT FIELD

YES

OUTPUT
"NEW"

HPAT FILE

PROGRAM STARTS
WITH HPAT 1 AS
"OLD" FILE, THEN
SWITCHES
1-2·3·4-1-2, etc., IN
ORDER, AS NEEDED

YES
EXIT

Fun With Mixed Field~ l 4S

flipping switches across the live part of the screen. During horizontal retrace, we
knock one off the line number and get a new VPATRN value.

Eventually, we reach the bottom of the screen. Our test of the line number
fails, and we drop first to location BOTTOM and, then, jump to BOHM 1. This
absolute jump is needed because we go out of the allowed range for a relative
jump. It is also more flexible this way, since you can substitute your own code
for the entire vertical blanking interval.

Our default processing for the vertical blanking time starts at $8CC2. We first
see what the keypressed and timeout sub is up to. This sub is called KEYTIME.

KEYTIME first checks to see whether we are interested in a keypressed and
then checks for an actual keypressed. If we want a key exit and if a key has been
pressed, we return to the calling program in whatever language it was in. If not,
we continue.

KEYTIME then increments a location called TIMEX. TIMEX is a multiplier that
multiplies each count of the timeout value in CONTROL by 32. Thus, we only
decrement the "half-seconds" count in TIMER only once every thirty-second
field or, roughly, once each half second.

A check is then made to see if timeout is active, and if we are in the magic
l -of-32 field that lets us decrement the timeout counter. Should we timeout, we
exit to the main program. If not, we go back to our BOTTM 1 processing.

Note two things. First, the code in KEYTIME seems a little complex, but it has
to be done this way so that each and every possible route through the code, that
returns us to a repeat field scan, takes up exactly the same time. Anything else
you do during the vertical blanking interval must also be set up to exactly take
a precise and known number of CPU clock cycles for each and every possible
direction through the code.

Secondly, note we have two different types of subroutine returns. If we simply
RTS, then we kick back into our calling program, which is the BOHM 1 code
of VFFS. If we pop the stack twice, removing the return address to VFFS, then
we return to the main calling program in whatever language it happens to be.
So, do an RTS to get back to VFFS, or else, a PLA-PLA-RTS to get back to your
main calling program.

Assuming we haven't pressed a key or used up our timeout, we will normally
return to BOHM 1. At this point, we have to delay exactly 447 2 CPU cycles
to get to the exact start of a new field. This is handled by a subroutine called
VBST AL. VBST AL provides our vertical blanking delay for us. It does this by
calling the WAIT delay subroutine in the monitor at $FCA8 three times over,
with just the right magic numbers stuffed into the accumulator to give us exactly
the delay you need.

If you like, you can replace VBST AL with any other program that takes exactly
4472 CPU clock cycles to repeat. This can give you a limited amount of anima
tion or key entry while your mixed field display is active. Once again, the exact
number of cycles used is critical and must be the same for each and every path
through your code.

When VBSTAL is complete, we jump to NEWFLD and repeat the whole game
over and over again till our timeout is complete or a selected key is pressed.

Your VFFS subroutine can be relocated to any protected space in memory,
but note that all the file locations will change and all the worksheet values will
be wrong if you try this.

As a hint of some of the really mind-boggling stuff you can do with mixed
fields, think about what happens if you modify your files while they are running.
This lets you do video wipes and other animation, where the screen modes
change dynamically.

Heavy.

7 46 Enhancement 5

GLITCH RIDDANCE

The first few times you try to use the VFFS subs, you probably will get some
ugly glitches messing up your display.

Your most obvious glitch source is caused by you not having what you think
you do in your VPATRN and HPAT files. Be very careful and very patient in
deciding what you want to put where on the screen. Use the worksheets. Note
particularly that your HPAT values go every thirdbyte in the program. When
you list an HPAT, the HPAT values usually are placed in the slot one byte higher
than the address shown on the screen.

For instance, if you have an

$8B30- 8D 60 CO STA $C060

on your HPAT listing, it is location $8B31 that holds your soft switch value, and
NOT location $8B30. The first byte of this code says to absolute store some
thing. The second byte tells us the exact location on a particular memory page,
and the final byte tells us exactly which page. Your HPAT value must fit into the
middle slot and not either of the others. Mix these up and your program bombs
for sure.

It is also a good idea to use every early slot left over on H PA Tl to reaffirm
that your display is showing what you think it should be. As an example, you
might want to flip the switches for page One, LORES, and full-screen display
even if you never get out of these modes. That way, if you enter from some other
part of a program or with a screen in the wrong mode, things will correct
themselves immediately.

There are two more sources of glitches. Any time you flip into or out of LORES
on screen, you will probably get the darndest half-and-half split HIRES/text
glitch you ever saw. This happens if you are using a Revision No. 1 or newer
Apple and it is caused by a switching change that Apple made to pick up extra
HIRES colors. You can reduce this ugly glitch to one that can easily be handled
by adding another modification to your Apple.

This modification is called a Clitch Stamper and is detailed in Enhancement
6. Your Glitch Stamper can be built for $3.00 and in a few minutes time. It is
only needed for mid-line field switching.

The final glitch problem comes about since there is always one character "in
the pipe" being processed, at the instant that you flip a soft switch

GLITCH KILLING RULE

There is always one
character or byte "in the
pipe" at the instant that
you flip a soft switch.

Say you flip from text to HIRES. What this rule says is that the next text char
acter after the switch flips gets displayed as HIRES lines rather than dots. Or,
going backwards, a flip from HIRES to text says that the HIRES dot pattern of
the next byte after the switch fl1ipping gets put on the display as a dot matrix
character.

Fun With Mixed Fields 7 47

Now, that sounds just awful. But, you can carefully make each and every
glitch on the screen invisible with some care. You can even make a glitch work
for you, rather than against you.

For instance, when you go from text to LORES, exit to LORES black. If the text
and LORES are on the same display page, the black LORES character has the
same code as a text inverse @.

If you go from text to HIRES, if the next text character after the last live one
is the blank character, you will get a vertical green line on the screen as your
first HIRES display byte. What is happening is that the least significant seven bits
of your ASCII text character, following the last valid text character, are displayed
as HIRES. A text blank has the binary code 1010 0000. The most significant bit
tells us to shift to HIRES color set "1," and the remaining "1" gives us a green
line.

When you are building a HIRES graph, a green vertical line may be exactly
what you want, and we get this "free." You can get most any other HIRES
pattern in this slot that you want, as long as all eight horizontal scan lines have
the same pattern on them. If you force a $80 into the character slot following
the last valid one, you will get both a black HIRES display and an invisible
glitch.

If you go from HIRES to text on the live part of the scan, you will get an inverse
@ as your first text character if the HIRES display was black at this point. This
is caused by black being all zeros in the HIRES space and an inverse@ in the
text space. The way to get rid of your inverse @'s is to change the code on the
HIRES page to give you one vertical line through dot number 6 of the character.
This will exit you to an ASCII code of blank.

Any other time that a glitch rears its ugly head, find out what character or byte
is in which memory location. Then, find out what that character or byte looks
like in the code that you just switched to. Then, change the character to make
it invisible or otherwise useful.

Another obvious way to eliminate glitches is to use the VPATRN switches as
much as possible. These switch during the horizontal blanking time and, there
fore, any funny stuff will be off screen.

Glitch-riddance rules for very old "Revision 0" Apples will be slightly more
complicated since the switching will take place one dot into the character. Have
fun.

Summing up ...

Glitches happen only during live
scan switching.

The Glitch Stomper of the next
enhancement converts really bad
LORES glitches into workable ones.

By carefully studying where the
code comes from and where it is
going, all glitches can be made
invisible, or else they can be made
to work for you.

Some practice is all that it takes to build yourself some completely glitch-free
displays that will mix and match text, HIRES, and LORES in any way that you
like.

748 Enhancement 5

VFFS. EMPTY

BAFF- EA
8B00- 20 FE 8C 2C 60 co 10 FB
8B08- 2C 60 co 30 FB EA 10 00
8B10- A9 3B 20 A8 FC A9 34 20
8B18- A8 FC A9 01 20 A8 FC 2C
8B20- 60 co 10 EC AO CO B9 DO
8B28- BC 30 63 10 00 29 7F AA

~
8B30- 90 00 co 80 60 co 80 60 HPAT 1
8B38- co 80 60 co 80 60 co 80

FILE 8840- 60 CO Bo 60 co 80 60 co
8848- Bo 60 co 80 60 co 80 60
8850- co 88 FO 32 DO DO 89 00
8858- 8C 30 DO 10 00 29 7F AA

~
8B60- 90 00 co 80 60 co 80 60 HPAT 4
8868- co 80 60 CO Bo 60 co 80 FILE 8B70- 60 CO Bo 60 co 80 60 co
8B78- 80 60 co 80 60 co 80 60
8B80- co 88 FD 02 DO DO 4C C2
8B88- 8C 89 00 8C 3 0 30 10 00

~
8B90- 29 7F AA 9D 00 co 8D 60 HPAT 2 8898- co 8D 60 CO 8D 60 co 8D
8BA0- 60 co 80 60 co 80 60 co FILE
BEAS- 80 60 CO Bo 60 CO Bo 60
8B80- co 80 60 co 88 FO CF DO
88B8- DO 89 00 BC 30 90 10 00
BBCO- 29 7F AA 9D 00 co 80607

~ HPAT 3 8BC8- co 80 60 co 80 60 co soj
8800- 60 co 80 60 co 80 60 co FILE
8B08- 80 60 co 80 60 CO BO 60
BBEO- co 8D 60 CO 88 FO 9F DO
8BE8- DO 2C 50 CO A9 27 20 A8
8BFO- FC A9 03 20 A8 FC A9 02
8BF8- 20 A8 FC 60 00 OD 00 00

8C00- 60 60 6 0 60 60 60 60 60
8COB- 60 60 60 60 60 60 60 60
BClO- 60 60 60 60 60 60 60 60
8Cl8- 60 60 60 60 60 60 60 60
8C20- 60 60 60 60 60 60 60 60
8C28- 60 60 60 60 60 60 60 60
8C30- 60 60 60 60 60 60 60 60
8C38- 60 60 60 60 60 60 60 60
8C40- 60 60 6 0 60 60 60 60 60

~ BC48- 60 60 6 0 60 60 60 60 60 VPATRN
BCSO- 60 60 60 60 60 60 60 60 FILE 8C58- 60 60 60 60 60 60 60 60
8C60- 60 60 60 60 60 60 60 60
8C68- 60 60 60 60 60 60 60 60
8C70- 60 60 60 60 60 60 60 60
8C78- 60 60 60 60 60 60 60 60
8C80- 60 60 60 60 60 60 60 60
8C88- 60 60 60 60 60 60 60 60
8C90- 60 60 60 60 60 60 60 60
8C98- 60 60 60 60 60 60 60 60
8CA0- 60 60 6 0 60 60 60 60 60
8CA8- 60 60 60 60 60 60 60 60
8CBO- 60 60 6 0 60 60 60 60 60
8CB8- 60 60 60 60 60 60 60 60
8CCO- 60 60 20 CB 8C 20 E9 88
8CC8- 4C 2 4 88 2C FB 8C 10 08
8CDO- 2C 00 co 10 06 6B 6B 6 0
8CD8- EA EA EA EE FD BC 2C FB
8CEO- 8C 50 OF A9 lF 20 FD 8C
8CE8- DO oc CE FC BC DO OB 68

~
8CFO- 68 60 EA EA EA EA EA EA

CONTROL 8CF8- EA EA 60ITI] 00 00 AD FB
8D00- 8C 29 3 F 8D FC SC 60 FILE

Fig. 5-5. Hex dumps of VFFS files used in

TWO DEMOS

Program 5-2 is a HIRES demo program that loads several different VFFS
subroutines for you. These subroutines are called VFFS.BOXES, VFFS.GRAPH,
VFFS.GIRLS, and VFFS.BYE. You'll find hex dumps of these shown in Fig. 5-5.
Once again, all of these custom field mixers are created by starting with
VFFS.EMPTY, listing it in machine language, changing a few locations using
your pattern worksheets, and, then, saving the result to disk under a new name.

The demo program also shows us how we can mix action during normal
display times with stunning results during mixed field times. We've purposely
slowed things down with SPEED commands and lengthy calculations to make
the demo more interesting to watch.

Our demo first mixes text with color LORES boxes and, then,, for an encore,
puts a pair of HIRES boxes around the whole works. Actually, we stay in a
3-way HIRES-LORES-text mix all along. The HIRES parts are black at first.

We then draw a graph that uses HIRES for the axis and curves, and which uses
text for the vertical and horizontal data values. Above that is a text title. Note

VFFS. BOXES

8AFF- EA
8800- 20 FE 8C 2C 60 co 10 FB
8808- 2C 60 co 30 FB EA 10 DO
8810- A9 38 20 AB FC A9 34 20
8818- A8 FC A9 01 20 AB FC 2C
8820- 60 co 10 EC AO co 89 OD
8828- BC 30 63 10 00 29 7F AA
8830- 90 00 co 80 54 50 80 50
8838- co 8D 57 co 80 60 co 80
8840- 60 co 80 60 co 80 60 co
8848- 80 60 co 80 60 co 80 60
8850- co 88 FO 32 DO DO 89 00
8858- 8C 30 DO 10 00 29 7F AA
8860- 9D 00 co 80 60 co 80 56
8868- co 80 60 CO 8D 60 co 80
8B70- 60 co 80 60 co 80 60 co
8878- 8D 60 CO 8D 60 CO 80 57
8880- co 88 FO 02 DO DO 4C C2
8B88- 8C B9 00 8C 30 30 10 00
8890- 29 7F AA 90 00 co 80 60
8B98- co 80 56 co 80 60 co 80
8BA0- 60 co 80 60 co 80 60 co
8BA8- 80 60 co 80 60 co 80 60
8880- co 80 57 co 88 FD CF DO
8BB8- DO 89 00 8C 30 90 10 00
SBCO- 29 7F AA 9D 00 co 80 60
8BC8- co 80 56 co 80 51 co 80
8BD0- 60 co 80 50 co 80 60 co
8BD8- 8D 51C08060 co 80 50
8BEO- co 8D57C088 FO 9F DO
8BE8- DO 2C 50 CO A9 27 20 A8
8BFO- FC A9 0 3 20 A8 FC A9 02
8BF8- 20 A8 FC 60 00 00 00 00

8COO- 60 60 60 60 60 60 60 60
8C08- 60 60 60 60 60 60 60 60
8Cl0- 60 60 60 60 60 60 60 60
8Cl8- 60 60 60 60 60 60 60 60
BC20- 60 60 60 60 60 60 60 60
8C28- ED 60 60 60 60 60 60 60
8C30- 60 60 60 60 60 60 60 60
8C38- 60 60 60 60 60 60 60 60
8C40- 60 60 60 60 60 60 60 60
8C48- EO 60 60 60 60 60 60 60
8C50- ED 60 60 60 60 60 60 60
8C58- 60 60 60 60 60 60 60 60
8C60- 60 ED 60 60 60 60 60 60
8C68- 60 60 60 60 60 60 60 60
8C70- ED 60 60 60 60 60 60 60
8C78- 60 60 60 60 60 60 60 60
8C80- ED 60 60 60 60 60 60 60
8C88- ED 60 60 60 60 60 60 60
8C90- 60 60 60 60 60 60 60 60
BC98- ED 60 60 60 60 60 60 60
BCAO- 60 60 60 60 60 60 60 60
8CA8- 60 60 60 60 60 60 60 60
BCBO- 60 60 60 60 60 60 60 60
8CB8- 60 60 60 60 60 60 60 60
8CCO- 60 60 20 CB 8C 20 E9 BB
8CC8- 4C 24 88 2C FB 8C 10 08
8CDO- 2C 00 co 10 06 68 68 60
8CD8- EA EA EA EE FD 8C 2C FB
8CEO- 8C 50 OF A9 lF 20 FD 8C
8CE8- DO DC CE FC 8C DO OB 68
8CFO- 68 60 EA EA EA EA EA EA
8CF8- EA EA 60 80 00 06 AD FB
8D00- BC 29 3F 8D FC 8C 60

VFFS. GRAPH

BAFF- EA
BBOO- 20 FE BC 2C 60 co 10 FB
8B08- 2C 60 co 30 FB EA 10 00
BBlO- A9 3B 20 AB FC A9 34 20
8Bl8- AB FC A9 01 20 AB FC 2C
8B20- 60 co 10 EC AO CO B9 00
8B28- BC 30 63 10 00 29 7F AA
8B30- 9D 00 co 8D 51 CO BD 57
8B38- CO BD 54 CO 8D 60 CO BD
8B40- 60 co BD 60 co BD 60 CO
BB48- BD 60 co 8D 60 CO BD 60
BB50- co 88 FO 32 DO DO B9 00
8B58- BC 30 DO 10 00 29 7F AA
BB60- 9D 00 CO BD 51 CO BD 60
8B68- CO BD 50 CO BD 60 CO BD
8B70- 60 CO BD 60 CO BD 60 co
8B78- 8D 60 CO 8D 60 CO BD 60
8B80- CO 88 FO 0 2 DO DO 4C C2
8B88- BC 89 00 BC 30 30 10 00
8B90- 29 7F AA 9D 00 CO 8D 51
8B98- CO 8D 60 CO 8D 50 CO 8D
BBAO- 60 CO 8D 60 CO 8D 60 CO
8BA8- 8D 60 CO 8D 60 CO BD 60
8B80- CO 8D 60 CO 88 FO CF DO
8B88- DO 89 00 BC 30 9D 10 00
BBCO- 29 7F AA 9D 00 CO 8D 51
BBCB- CO 8D 60 CO 8D 50 CO 8D
8BDO- 60 CO 8D 60 CO 8D 60 CO
8BD8- 8D 60 CO 8D 60 CO 8D 51
8BEO- CO BD 60 CO 88 FO 9F DO
8BE8- DO 2C 50 CO A9 27 20 AB
BBFO- FC A9 0 3 20 AB FC A9 02
8BF8- 20 AB FC 60 00 00 00 20
8COO- 51 51 51 51 51 51 51 51
8C08- 51 51 51 51 51 51 51 51
8Cl0- 51 51 51 51 51 51 51 51
BC18- Dl 51 51 51 51 51 51 51
8C20- 51 51 51 51 51 51 51 51
8C28- 51 51 51 51 51 51 51 51
BC30- 51 51 51 51 51 51 51 51
8C38- 51 51 51 51 51 51 51 51
8C40- 51 51 51 51 51 51 51 Dl
8C48- 51 51 51 51 51 51 51 51
8C50- 51 51 51 51 51 51 51 51
8C58- 51 51 51 51 51 51 51 51
8C60- 51 51 51 51 51 51 51 51
8C68- 51 51 51 51 51 51 51 51
BC70- 51 51 51 51 51 51 51 51
8C78- 51 51 51 51 51 51 51 51
8CBO- 51 51 51 51 51 51 51 51
BC88- 51 51 51 51 51 51 51 51
8C90- 51 51 51 51 51 51 51 51
8C98- 51 51 51 51 51 51 51 51
8CA0- 01 51 51 51 51 51 51 51
8CA8- Dl 51 51 51 51 51 51 51
8CBO- 51 51 51 51 51 51 51 51
8CB8- 51 51 51 51 51 51 51 51
8CCO- 51 60 20 CB BC 20 E9 BB
8CC8- 4C 24 BB 2C FB BC 10 08
8CDO- 2C 00 co 10 06 68 68 60
8CD8- EA EA EA EE FD BC 2C FB
8CEO- BC 50 OF A9 lF 2D FD BC
8CEB- DO oc CE FC BC DO OB 68
8CF0- 68 60 EA EA EA EA EA EA
8CF8- EA EA 60 80 00 80 AD FB
8D00- BC 29 3F 8D FC BC 60

Fun With Mixed Fields 149

VFFS. GIRLS VFFS. BYE

BAFF- EA BAFF- EA
8B00- 20 FE BC 2C 60 co 10 FB 8800- 20 FE BC 2C 60 co 10 FB
8B08- 2C 60 co 30 FB EA 10 00 8B08- 2C 60 co 30 FB EA 10 00
8Bl0- A9 38 20 AB FC A9 34 20 8Bl0- A9 38 20 AB FC A9 34 20
BBlB- AB FC A9 01 20 A8 FC 2C 8B18- AB FC A9 01 20 AB FC 2C
8820- 60 co 10 EC AO CO B9 00 8B20- 60 co 10 EC AO co 89 00
8B28- BC 30 63 10 00 29 7F AA 8B28- BC 30 6 3 10 00 29 7F AA
8B30- 9D 00 co 8D 54 50 8D 50 8B30- 9D 00 co 8D 52 co BD 60
8B38- CO 8D 57 CO 8D 60 CO BD 8B38- CO 8D 60 CO BD 60 CO 8D
8B40- 60 co 8D 60 CO BD 60 CO 8B40- 60 co 8D 60 co BD 60 co
8B48- 8D 60 co 8D 60 CO 8D 60 8B48- 8D 60 CO 8D 60 co 80 60
8B50- CO 88 FO 3 2 DO DO B9 00 8B50- CO 88 FD 32 DO DO B9 00
8B58- BC 30 DO 10 00 29 7F AA 8858- BC 30 DO 10 00 29 7F AA
8B60- 9D 00 co 8D 60 CO 8D 56 8B60- 90 00 co 8D 60 CO BD 60
8B68- CO 8D 60 CO 8D 60 CO 8D 8B68- CO SD 60 CO 8D 60 CO 8D
8B70- 60 co 8D 60 CO BD 60 CO 8B70- 60 co BD 60 co BD 60 CO
8878- BD 60 CO 8D 60 CO 8D 57 8B78- 8D 60 CO 8D 60 CO BD 60
8B80- CO 88 FO O 2 DO DO 4C C 2 BBBO- CO 88 FO 02 DO DO 4C C2
BB88- BC B9 00 BC 30 30 10 00 8B88- BC B9 00 BC 30 30 10 00
8B90- 29 7F AA 9D 00 CO 8D 60 8B90- 29 7F AA 9D 00 CO 8D 60
8B98- CO 8D 56 CO 8D 60 CO 8D 8B98- CO 8D 60 CO 8D 60 CO 8D
8BA0- 60 co BD 60 CO 8D 60 CO
8BA8- 8D 60 CO 8D 60 CO 8D 60
88B0- CO 8D 57 CO 88 FO CF DO
8BB8- DO B9 00 BC 30 9D 10 00 I

BBAO- 60 CO 8D 60 co 8D 60 co
8BA8- 8D 60 CO 8D 60 CO 8D 60
8BBO- CO BD 60 co 88 FO CF DO
8BB8- DO B9 00 BC 30 9D 10 00

8BCO- 29 7F AA 9D 00 CO 8D 60 8BCO- 29 7F AA 9D 00 CO 8D 60
8BC8- CO 8D 56 CO 8D 51 CO 8D SBCB- CO BD 60 CO 80 60 CO 8D
8BDO- 60 co 80 50 CO 8D 60 CO BBDO- 60 CO 8D 60 CO 8D 60 co
8BD8- 8D 51 CO BD 60 CO 8D 50 8BDB- BD 60 CO 8D 60 co BD 60
8BE0- CO BD 57 CO 88 FO 9F DO BBEO- CO 8D 60 CO 88 FD 9F DO
8BE8- DO 2C 50 CO A9 27 20 AB 8BE8- DO 2C 50 CO A9 27 20 AB
8BF0- FC A9 0 3 20 AB FC A9 02 8BFO- FC A9 0 3 20 AB FC A9 02
8BF8- 20 AB FC 60 00 00 00 00 8BF8- 20 AB FC 60 00 00 00 20
8COO- 56 56 60 60 60 60 60 60 BCOO- 51 60 60 60 60 60 60 60
8C08- 51 60 60 60 60 60 60 60 BC08- 60 60 60 60 60 60 60 60
8Cl0- 57 60 60 60 60 60 60 60 BClO- 60 60 60 60 60 60 60 60
BClB- 50 57 60 60 60 60 60 60 8Cl8- 60 60 60 60 60 60 60 60
8C20- 51 60 60 60 60 60 60 60 8C20- 60 60 60 60 60 60 60 60
8C28- 50 60 60 60 60 60 60 60 8C28- 60 60 60 60 60 60 60 60
8C30- 51 60 60 60 60 60 60 60 BC30- 60 60 60 60 60 60 60 60
BC38- 50 60 60 60 60 60 60 60 BC38- 60 60 60 60 60 60 60 60
8C40- 51 60 60 60 60 60 60 60 8C40- 60 60 60 60 60 60 60 60
8C48- 50 60 60 60 60 60 60 60 SC48- 60 60 60 60 60 60 60 60
8C50- 51 60 60 60 60 60 60 60 8C50- 60 60 60 60 60 60 60 60
8C58- 50 60 60 60 60 60 60 60 8C58- 60 60 60 60 60 60 60 60
8C60- 51 60 60 60 60 60 60 60 8C60- 56 60 60 60 60 60 60 60
8C68- 50 60 60 60 60 60 60 60 8C68- 60 60 60 60 60 60 60 60
8C70- 51 60 60 60 60 60 60 60 8C70- 60 60 60 60 60 60 60 60
8C78- 50 60 60 60 60 60 60 60 8C78- 60 60 60 60 60 60 60 60
8C80- 51 60 60 60 60 60 60 60 8C80- 50 57 60 60 60 60 60 60
8C88- 50 60 60 60 60 60 60 60 8C88- 60 60 60 60 60 60 60 60
SC90- 51 60 60 60 60 60 60 60 8C90- 60 60 60 60 60 60 60 60
SC9S- 50 60 60 60 60 60 60 60 8C98- 60 60 60 60 60 60 60 60
SCAO- 51 60 60 60 60 60 60 60 8CAO- 60 60 60 60 60 60 60 60
8CA8- 50 60 60 60 60 60 60 60 8CA8- 60 60 60 60 60 60 60 60
8CB0- 51 60 60 60 60 60 60 60 8CBO- 60 60 60 60 60 60 60 60
8CB8- 50 60 60 60 60 60 60 60 8CB8- 60 60 60 60 60 60 60 60
8CC0- 51 60 20 CB SC 20 E9 8B 8CCO- 51 60 20 CB BC 20 E9 BB
SCCS- 4C 24 8B 2C FB BC 10 08 8CC8- 4C 24 BB 2C FB BC 10 08
8CD0- 2C 00 co 10 06 68 68 60 8CDO- 2C 00 co 10 06 68 68 60
SCDB- EA EA EA EE FD BC 2C FB 8CD8- EA EA EA EE FD BC 2C FB
SCE0- SC 50 OF A9 lF 2D FD BC 8CEO- BC 50 OF A9 lF 2D FD BC
8CE8- DO OC CE FC BC DO OB 68
8CF0- 68 60 EA EA EA EA EA. EA
8CF8- EA EA 60 80 00 AS AD FB

BCEB- DO OC CE FC BC DO 0B 68
8CFO- 68 60 EA EA EA EA EA EA
BCFB- EA EA 60 80 00 80 AD FB

8DOO- BC 29 3F 8D FC BC 60 8DOO- BC 29 3F BD FC BC 60

"fun With Mixed Fields" demo program.

the use of a vertical HIRES line in order to get rid of an on-screen glitch in line
2220.

After our graph is complete, we then inset some flashing text inside the HIRES
display. It is usually very tricky to have flashing text in the middle of a HIRES
screen. Mixed fields make it trivial.

The subject of our next plot is obvious. We show how to do a LORES
horizontal bar graph with text documentation. A HIRES graph axis completes the
picture for us.

The final display in the Fun With Mixed Field demonstration program shows
how you can have a LORES, HIRES, and text words on the screen at the same
time right above each other.

A totally different kind of Applesoft demo appears as Program 5-3. This one
is called LORES COLORS 121 and shows 121 of the many available LORES
colors. We purposely aren't going to tell you how this one works. But, if you
combine the detective work you should have picked up in Enhancement 3 with
a good understanding of your VPATRN and HPA T files from this enhancement,

7 50 Enhancement 5

VFFS. LORES LORES 1 (DISPLAY PAGE 1)

8AJ<7 F- CA 0400- 11 11 00 11 11 00 11 11 0600- 22
8R00- 20 F~ BC 2C 60 co '.O FR 0408- 00 11 11 00 11 11 00 11 060B- 00
8908- 2C 60 co 30 fg E1; 10 on 0410- 11 00 00 00 00 11 11 00 0610- 33
R110- A9 JO 20 A8 PC .09]4 0418- 11 11 00 11 11 00 11 11 1)618- 33
89";8- A8 FC A9 Cl 2J A8 FC 2C 042/J- 00 11 11 00 11 11 00 00 0620- 00
8:120- 60 co -:.o EC AO co R9 00 0428- 44 44 no 44 44 on 44 44 0628- 00
8B28- s·: JO 63 l 0 00 29 7F M 0430- 00 44 44 00 44 44 no 44 0630- 30
8B30- 9D 00 co Rn SC co 8D 56 04 38- 44 00 30 30 00 55 55 'JO ()638- 30
8838- co SD 60 co 8D 60 co 8D 0440- 55 55 no 55 55 00 55 55 0640- 30
8R4 :}- 60 co SD 60 co 8D 60 co 0448- C"JO 55 55 00 55 55 00 00 0648- 00
8B48- 80 60 co 8D 60 co Bo 6:1 0450- 66 66 00 66 66 00 66 66 0650- 99
8BSO- co 88 FO 32 DO DO 89 00 0458- on 77 77 00 77 77 no 77 0658- 00
8BS8- SC JO DO 10 00 :9 7F AA 0460- 77 00 00 00 00 77 77 no ()660- AA
8860- 9D 00 co 8D 60 CQ 80 60 0468- 77 77 00 77 77 no 77 77 0668- AA
8B68- co 8D 60 co 80 60 co SD 0470- 00 77 77 00 77 77 00 00 0670- 00
8370- 60 co 80 60 co 8D 60 co 04 78- 12 00 3 7 3 7 37 37 24 J 7 0678- 60
8878- 8D 60 co 80 60 co 80 60 0480- 01 01 00 01 01 00 01 01 0680- 02
8880- co 88 FD 02 DO DO 4C :2 0488- 00 01 01 00 01 01 00 0 l 0688- 00
8888- BC B9 00 SC JO JO 10 00 0490- 01 00 no 00 00 01 01 00 0690- 03
8390- 29 "7? AA 9D 00 co 80 60 0498- 01 01 on 01 01 00 01 01 0698- 03
3898- co 80 60 co SD 51 co SD ')4AO- 00 01 01 no 01 01 00 00 06AO- 00
8Bi"\0- 60 co 80 60 co BD 60 co 04A8- 04 04 00 04 04 no 04 04 06/1.8- so
8BA8- 80 60 co 80 so co 8D 60 04B0- 00 04 04 00 04 •14 on 04 0680- 00
8880- co 80 60 co 88 FO CF DO 0488- 04 00 33 33 00 OS 05 00 06B8- 60
8RB8- DO 89 00 BC JO 90 10 00 04CO- OS 05 on ,,s OS 00 OS CJS 06CO- 60
8BCO- 29 'F AA 90 00 co Bll 60 04C8- 00 05 05 00 05 ()5 00 DO 06C8- 00
8BC8- co BD 60 co 80 60 co 80 04D0- an 80 on 80 80 00 BO 80 06D0- BO
BBDO- 60 co 80 60 co 80 60 co 04D8- 00 BO 80 00 BO 80 00 Bil 0608- 00
8B08- 80 60 co 80 60 co 80 60
8I3EO- co 80 60 co BB FD 9F DO
83E8- DO A9 20 20 AB FC A9 14
BBFO- 20 AB FC A9 06 20 AB FC
8BF8- 60 20 20 20 20 20 20 20

'14EO- 80 on 00 00 no BO 80 no OEiEO- co
04E8- 80 80 on 90 90 00 90 90 06E8- DO
04FO- 00 90 90 00 90 90 00 00 06FO- 00
(J4F8- 04 3 7 37 17 37 J 7 on 3 7 06F8- 02

scoo- 54 55 54 55 54 55 54 57 ()5()()- 11 11 Wl 11 11 00 11 11 0700- 33
8C08- 54 55 54 55 54 55 54 55 0508- 00 22 27 00 22 22 00 22 0708- 00
BClO- 54 55 54 55 54 ss 54 55 ns1 o- 22 00 on ()() 00 22 22 no 0711)- 33
8C'l8- 54 55 54 55 54 55 54 55 ·)518- 22 22 on 22 22 on 22 22 0718- 44
8C20- 54 55 54 55 54 35 54 55 0520- no 22 22 ()() 22 22 00 00 0720- 00
8C28- 54 55 54 55 54 55 54 SI 0528- no no 00 0() 00 00 00 33 0728- 55
8C30- 54 55 54 s, 54 I, 54 55 ns1n- 03 OJ OJ 03 03 OJ OJ 03 0730- 00
8C18- 54 So 54 55 54 ss 54 55 OS 18- OJ OJ OJ '11 ()J 03 03 03 0738- 66
8C40- 54 5'.> 54 55 54 ss 54 c-)5 ()54()- 03 03 OJ 03 03 03 33 no 0740- 66
8C48- 54 55 54 55 54)5 54
SCIO- 54 55 54 55 54 55 54 60
8C58- 60 60 60 60 60 60 60 60
8C60- EO 60 60 60 60 60 60 60
8C68- EO 60 60 60 60 60 60 60
8C70- 60 60 60 60 54 ss 54 55
8C78- 54 55 54 55 54 55 54 5S
BCBO- 54 55 54 55 54 55 54 55
8C88- 54 55 54 55 54 ss 54 SI
8C90- 54 55 54 55 54 5 ~1 54 55
8C98- 54 55 54 55 54 55 54 55
8CA0- 54 55 54 55 54 55 54 55
8CA8- 54 55 54 55 54 "iS 54 55
BCBO- 54 55 54 55 54 55 54 55
8CB8- 14 55 54 5 5 54 55 54 IS
BCCO- 54 55 20 CB 8C 20 E9 BB
8CCB- 4C 24 8B 2C FB BC 10 08
8CDO- 2C 00 co 10 06 68 68 60
BCDB- EA EA EA EE FD BC 2C FB
8CEO- BC so OF A9 lF 20 FD 8C

0548- on 00 i)() no on 00 00 00 0748- 00
1)5'i/J- 88 BS 10 88)]8 on 88 88 0750- BB
0558- 00 88 88 no 88 88 00 BB 0758- 00
ns6o- BB ,,o on •10 00 88 88 00 0760- cc
rJ568- BR 88 ,in 99 99 00 99 99 0768- DD
n5 70- r::,io 99 99 00 99 99 00 00 0770- 00
0578- 2F 80 17 17 37 37 37 17 0778- 3F
0580- 01 n1 00 01 01 no 01 01 0780- 03
')588- 00 02 o, {J() 02 02 00 02 0788- 00
()59()- 02 no ()() no on 02 02 00 0790- 03
(JS98- 02 02 ()r) 02 02 no 02 02 0798- 04
r)SArJ- 00 o, 07 nn 02 ()2 on 00 07AO- 00
05.I\8- 00 /JO 00 00 00 00 on 33 07A8- 60
nsBn- AO .,n AO Bl B2 Rl AO AO 07B0- 00
()588- cc CF D2 cs 03 AO CJ CF 0788- 70
05C'1- cc CF 02 D3 no 00 33 00 07CO- 70
05C8- 00 00 00 00 00 00 00 00 07C8- 00
05D0- 90 90 00 90 90 00 90 90 0700- 00
0508- 00 AO AO 00 AO AO 00 AO 07D8- DO

8CE8- DO oc CE FC BC DO OB 68 ()5£()- AO 00 00 00 on AO AO 00 07EO- 00
BCFO- 68 60 EA EA EA EA EA EA ()5£8- AO AO 00 AO AO 00 BO BO 07E8- 00

8CF8- EA EA 60 80 00 AS AD FB OSFO- 00 BO BO on BO BO 00 00 07FO- 00
8D00- BC 29 3F 8D FC SC 60 29 OSF8- 60 03 3 7 37]7 37 37 3 7 07F8- C6

Note· These values must be indirectly loaded since they are an 'IMAGE"' of text page 1

Fig. 5-6. Hex dumps of VFFS and SCREEN files

you will be well on your way to thoroughly understanding some machine
language secrets.

Fig. 5-6 shows us hex dumps of the VFFS.LORES subroutine, along with two
display page files called LORES 1 and LORES2. The companion diskette to this
book has these programs ready to go, and also includes two programs called
LORES1 CREATE and LORES2 CREATE. You can modify these CREATE pro
grams for other LORES color demonstrations. Do not run either CREA TE pro
gram with a locked LORESl or LORES2 on the same disk or you will get an
error message.

Note that you cannot directly "hand load" LORES1 since this is on the dis
play page. Instead, you save a version from $0800 to $0BFF onto your disk
and, then, read this VERSION into $0400 to $07FF. The demo disk does all this
for you.

Oh, yes. One gotcha. Before you can use an Applesoft program such as
LORES COLORS 121 and page Two LORES or text together, you have to make
sure the Applesoft program starts above memory location $0C00. The copy

22 00 22 22 00 22 22
22 22 00 22 22 00 33
00 00 00 00 33 33 00
33 00 33 33 00 33 33
33 33 00 33 33 00 on
no no 00 00 on 00 33
30 30 30 30 JO 30 30
30 30 30 30 30 30 30
JO 30 30 30 30 33 on
on no on 00 on 00 00
99 00 99 99 00 99 99
AA AA 00 AA AA on AA
00 00 on 00 AA AA 00
AA no AA AA 00 BB BB
BB BB 00 BB BB 00 00
09 3F JF JF JF lF 3F
02 00 02 02 no 02 02
02 02 no 02 02 00 03
00 00 00 00 03 03 no
03 ()() 03 03 00 03 03
03 03 00 03 03 00 00
so 00 50 so no 50 so
so so 00 50 50 00 60
00 33 33 00 60 60 00
60 00 60 60 on 60 60
60 60 on 60 60 00 00
BO 00 BO 80 00 co co
co co 00 co co 00 co
00 00 00 no DO on 00
DO 00 00 DO no EO EO
EO EO 00 FD FO 00 00
3F 3F 3F JF 3F 3F 3F

33 00 33 33 on 33 3 3
33 33 00 33 33 00 33
00 00 no 00 44 44 00
44 00 44 44 on 44 44
44 44 00 44 44 00 00
55 00 55 55 00 55 55
55 55 00 55 55 00 66
00 OJ 03 00 66 66 00
66 00 66 66 00 66 66
66 66 00 66 66 00 00
BB on BB BB no cc cc
cc cc 00 cc cc 00 cc
00 on 00 00 OD OD 00
DO on DD DD 00 EE EE
EE EE 00 FF FF no no
FF 3F 3F 3F 3F 3F 3F
03 00 03 03 00 03 03
03 03 00 03 03 00 OJ
00 00 00 00 04 04 00
04 DO 04 04 00 04 04
04 04 00 04 04 00 on
60 00 60 60 00 60 60
70 70 no 70 70 00 70
00 00 00 00 70 70 00
70 00 70 70 00 70 70
70 70 00 70 70 00 00
00 00 00 00 00 00 00
00 00 00 00 00 00 00
00 00 00 00 00 00 00
00 00 00 00 00 00 00
00 00 00 00 no 00 00
3F 3F 3F 3F 3F 3F JF

Fun With Mixed Fields 151

LORES 2 (DISPLAY PAGE 2)

0800- 11 11 00 22 22 00 33 33 OAOO- BB BB 00 cc cc 00 DD DD
0808- 00 44 44 00 55 55 00 66 OAOB- 00 EE EE 00 FF FF 00 33
0810- 66 00 00 00 00 77 77 00 OAlO- 33 00 00 00 00 44 44 00
0818- 88 BB 00 99 99 00 AA AA OAlB- 55 55 00 66 66 00 77 77
0820- 00 BB BB 00 cc cc 00 00 OA20- 00 BB BB 00 99 99 00 00
0828- AA AA 00 BB BB 00 cc cc OA28- 00 00 00 00 00 00 00 00
0830- 00 DD DD 00 EE EE 00 FF OA30- 00 00 00 00 00 00 00 00
0838- FF 00 00 00 00 55 55 00 OA38- 00 00 00 00 00 00 00 00
0840- 66 66 00 77 77 00 BB BB OA40- 00 00 00 00 00 00 00 00
0848- 00 99 99 00 AA AA 00 00 01\48- 00 00 00 00 00 00 00 00
0850- DD DD 00 EE EE 00 FF FF OASO- DD DD 00 EE EE 00 FF FF
0858- 00 77 77 00 BB 88 00 99 01\58- 00 AA AA 00 BB BB 00 cc
0860- 99 00 00 00 00 AA AA 00 OA60- cc 00 00 00 00 DD DD 00
0868- BB BB 00 cc cc 00 DD DD OA68- EE EE 00 FF FF 00 BB BB
0870- 00 EE EE 00 FF FF 00 00 OA70- 00 cc cc 00 DD DD 00 00
0878- 13 00 37 3 7 37 3 7 26 37 OA78- 60 07 3F 3F 3F 3F 3F 3F
0880- 01 01 00 02 02 00 03 03 OA80- OB OB 00 QC oc 00 OD OD
0888- 00 04 04 00 OS 05 00 06 OA88- 00 OE OE 00 OF OF 00 03
0890- 06 00 00 00 00 07 07 00 0A90- 03 00 00 00 00 04 04 00
0898- 08 OB 00 09 09 00 OA QA OA98- 05 05 00 06 06 00 07 07
OBAO- 00 OB OB 00 QC oc 00 00 OAAO- 00 08 08 00 09 09 00 00
OBAB- OA OA 00 OB OB 00 oc QC OAAB- BO BO 00 co co 00 DO DO
OBBO- 00 OD OD 00 OE OE 00 OF OABO- 00 EO EO 00 FO FO 00 60
0888- OF 00 00 00 00 05 05 00 OABB- 60 00 00 00 00 70 70 00
OBCO- 06 06 00 07 07 00 OB 08 OACO- BO 80 00 90 90 00 AO AO
OBCB- 00 09 09 00 OA OA 00 00 0AC8- 00 80 BO 00 co co 00 00
OBDO- 80 80 00 90 90 00 AO AO OADO- EO EO 00 FO FO 00 co co
OBDB- 00 BO BO 00 co co 00 DO OADB- 00 DO DO 00 EO EO 00 FO
OBEO- DO 00 00 00 00 EO EO 00 OAEO- FO 00 00 00 00 00 DO 00
OSEB- FO FO 00 90 90 00 AO AO 0AE8- EO EO 00 FO FO 00 EO ED
OBFO- 00 BO BO 00 co co 00 00 OAFO- 00 FO FO 00 FO FO 00 00
OBFB- 04 37 37 37 37 37 00 37 OAFS- 02 3F 3F 3F 3F 3F 3F 3F

0900- DD DD 00 EE EE 00 FF FF OBOO- AA AA no BB BB 00 cc cc
0908- 00 22 22 00 33 33 00 44 0808- 00 DD DD 00 EE EE 00 FF
0910- 44 00 00 00 00 55 55 00 0B10- FF 00 00 00 00 44 44 00
0918- 66 66 00 77 77 00 88 BB OBlB- 55 55 ()0 66 66 00 77 77
0920- 00 99 99 00 AA AA. 00 00 0B20- 00 BB 88 00 99 99 00 00
0928- 00 00 00 00 00 00 00 00 OB28- BB 88 00 cc cc 00 DD DD
0930- 00 00 00 00 00 00 00 00 OB30- 00 EE EE 00 FF FF 00 66
0938- 00 00 00 00 00 00 00 00 0838- 66 00 00 00 00 77 77 00
0940- 00 00 00 00 00 00 00 00 0B40- 88 BB 00 99 99 00 AA AA
0948- 00 00 00 00 00 00 00 00 0B48- 00 BB BB 00 cc cc 00 00
0950- 88 88 00 99 99 00 AA AA 0850- EE EE 00 FF FF 00 cc cc
0958- 00 BB BB 00 cc cc 00 DD 0858- 00 DD DD 00 EE EE 00 FF
0960- DD 00 00 00 00 EE EE 00 0860- FF 00 00 00 00 DD DD 00
0968- FF FF 00 99 99 00 AA AA 0868- EE EE 00 FF FF 00 EE EE
0970- 00 BB BB 00 cc cc 00 00 OB70- 00 FF FF 00 FF FF 00 00
0978- 30 on 37 37 37 3 7 37 37 OB78- 3F FF 3F 3F 3F 3F 3F 3F
09B0- OD OD 00 OE OE 00 OF OF 0880- OA OA 00 OB OB 00 oc oc
0988- 00 02 02 00 03 03 00 04 0888- 00 OD OD 00 OE OE 00 OF
0990- 04 00 00 00 00 05 05 00 0890- OF 00 00 00 00 04 04 00
0998- 06 06 00 07 07 00 OB 08 0898- 05 05 00 06 06 00 07 07
09AO- 00 09 09 00 OA OA 00 00 OBAO- 00 08 08 00 09 09 00 00
09A8- 00 00 00 00 00 00 00 00 OBAB- DO DO 00 EO EO 00 FO FO
09B0- 00 00 00 00 00 00 00 00 0B80- 00 70 70 00 80 80 00 90
09B8- 00 00 00 00 OD 00 00 00 OBBB- 90 00 00 00 00 AO AO 00
09CO- 00 00 00 00 00 00 00 00 OSCO- BO BO 00 co co 00 DO DO
09C8- 00 00 00 00 00 00 00 00 OBC8- 00 EO EO 00 FO FO 00 00
0900- DO DO 00 EO EO 00 FO FO 0B00- 00 00 00 00 00 00 00 00
09D8- 00 AO AO 00 BO BO 00 co 0B08- 00 00 00 00 00 00 00 00
09EO- co 00 00 00 00 DO DO 00 OBEO- 00 00 00 00 00 00 00 00
09EB- EO EO 00 FO FO 00 BO BO OBEB- 00 00 00 00 00 00 00 00
09FO- 00 co co 00 DO DO 00 00 OBFO- 00 00 00 00 00 00 00 00
09FB- 60 03 37 37 37 37 37 37 OBFB- C6 3F 3F 3F 3F 3F 3F 3F

Note: Page two text must be protected to use this listing.

used in the LORES COLOR 121 demonstration.

of Program 5-3 that is on the disk has an automatic repositioner built in. The
disk version of LORES COLORS 121 will run just like any ordinary program.
But, if you are trying to copy the LORES COLORS 121 program from this book,
do a POKE 104, 12 and a POKE 3072,0 from the keyboard before entering the
program and, again, immediately before every use. Always turn your Apple off
and back on again before running anything else on the machine. We might
look at repositioning details in a future enhancement.

So far, I have been able to find only 136 LORES colors. Sorry about that. I
left the ugliest 15 colors off the display on purpose. But, even these uglies might
be useful in order to add texture to a black and white display. How many new
LORES colors can you find?

TWO GOTCHAS

If your display is to be all black and white, either activate your color killer of
Enhancement 2 or else back the color controls all the way down.

7 52 Enhancement 5

If your display is to be in full color, you will want to provide the reference
color burst on as many horizontal lines as you possibly can. Fail to do this and
your monitor or color tv will get confused and mix up the colors. Some moni
tors may drop color altogether.

This means that you should avoid being in the text mode at the end of any
line. You should also have as few all-text lines as possible. You should wait as
long as possible before going into the text mode, and get out of text as soon as
you can.

The VBST AL routine of Program 5-1 automatically affirms the graphics mode
during vertical blanking. This guarantees you have color bursts for the entire
blanking time.

There are lots of possible VFFS options and improvements since mixed fields
is a brand new ball game. You might like to write a program that will automatical
ly generate custom VFFS files for you. You might like to modify VFFS.EMPTY
to put a "phase shifter" between the exact lock and the rest of the program. This
lets you switch on characters 0,4,8, ... , or characters 1, 5, 9, ... , or characters
2, 6, 10, ... , or characters 3,7, 11, ... , per your choosing. The really good

stuff will happen when you start flipping nonobvious soft switches, for things
like external 3-0 displays, anti-aliased grey scales, interlace, and so on. And,
the opportunities for dynamic "change-while-it's-running" field-switch anima
tion and wipes are awesome.

By the way, if you try flipping the speaker or cassette soft switches with
VFFS, you'll have to replace any involved H PAT "8D" absolute stores with
"AD" absolute loads instead. Due to an Apple quirk, stores whap each soft
switch twice. This puts the speaker cone right back where it was two microsec
onds earlier and it produces no sound.

We will look at some more flexible and simpler mixed-field concepts in
Enhancement 13 of Volume 2.

Now, it's your turn. What can you do with mixed fields? In the back of this
volume is a postcard. Use it to show us the best uses of mixed fields that you
can think of. Pay particular attention to flipping nonobvious switches like the
annunciators and whatever. We'll work up the best of the best into future
enhancements that everyone can share a:

PROGRAM 5-3

LORES COLORS 121

LANGUAGE: APPLESOFT

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38

50
52
54
56
58

70
72
74

80
82
84

86
88
90
92
94
96
98

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM

REM
REM
REM
REM
REM

REM
REM
REM

REM
REM
REM

REM
REM
REM
REM
REM
REM
REM

* *
* LORES COLORS 121 *
* *
* COPYRIGHT 1981 *
* BY DON LANCASTER*
* AND SYNERGETICS *
*
*
*

VERSION 1. 0
(9-20-81)

*
*
*

* ALL COMMERCIAL *
* RIGHTS RESERVED*
* *

THIS PROGRAM NEEDS THE
FIELD SYNC MODIFICATION
AND BINARY FILES LORESl,
LORES2, AND VFFS.LORES
TO WORK PROPERLY.

SEE ENHANCING YOUR
APPLE II, VOLUME 1
FOR MORE USE DETAILS.

WARNING: THIS PROGRAM
MUST BE RELOCATED
ABOVE TEXT PAGE TWO!

DO A POKE 3072,0:
AND A POKE 104,12
BEFORE USING. THIS
IS DONE AUTOMATICALLY
IN THE VERSION OF THIS
PROGRAM ON THE DEMO
DISK.

Fun With Mixed Fields 153

NEEDS: FIELD SYNC MOD
VFFS. LORES
RELOCATION ABOVE TEXT 2
LORES 1
LORES 2

J 54 Enhancement 5

PROGRAM 5-3, CONT'D ...

100 HOME : GR: POKE - 16302,0: CALL - 1998: REM
CLEAR FULL GRAPHICS SCREEN

.200 PRINT "BLOAD VFFS.LORES": REM CTRL D
210 PRINT "BLOAD LORESl": REM CTRL D
220 PRINT "BLOAD LORES2,A$800": REM CTRL D
300 CALL - 29952: REM MIX FIELDS

400 POKE - 16300,0: TEXT : HOME :
405 POKE 2048,0: POKE 104,8: PRINT : PRINT "RUN MENU"
406 REM DELETE 405 IF AUTO MENU IS NOT IN USE

410 PRINT "PLEASE TURN APPLE POWER OFF AND BACK ON
AGAIN BEFORE RUNNING ANY OTHER PROGRAM.

420 PRINT PRINT: PRINT"! HASTA LA BYE BYE": VTAB
23: END

Fun With Mixed Fields 155

The following programs and files
are included on the companion
diskette to this volume:

VHS.EMPTY.SOURCE
VHS.EMPTY
VHS.BOXES
VHS.GRAPH
VHS.GIRLS
VHS.BYE
VHS.LORES
FUN WITH MIXED FIELDS
LORES COLORS 121
LORES1 CREATE
LORES2 CREATE
LORES1
LORES2

All are fully copyable.

SEEDS AND STEMS

Don't ever change WNDLFT ($20 or 32)
without checking WNDWTH ($21 or 33)
when setting your text screen margins.

If the sum of WNDLFT and WNDWTH
ever exceeds $28 or 40, all sorts of nasty
things can happen, including plowing 1/0
routines.

Note that WNDWTH is the width of the
scrolling window and not the absolute
right-margin setting.

This Enhancement is only needed by
the Apple II+, and then only forcer
tain on-screen changes.

Enhancement

GLITCH STOMPER

GLITCH STOMPER

This simple, three dollar, add-on
hardware mod makes the mixed
field displays of Enhancement 5
even more powerful. The mod lets
you glitchlessly switch to and from
LORES anywhere on the screen.

As we promised you in Enhancement 5, here is a fairly simple mixed fields
add-on hardware mod that will eliminate the worst of the on-screen glitches as
you switch to or from LORES on any live portion of your screen. The glitch
stamper works on any older Apple-from Revision 1 on. It costs under $3.00
and is fairly easy to install or remove. It is only needed for mid-screen LORES
field switching.

The problem we are about to attack was caused by Apple when they picked
up the extra HIRES colors during Revision 1. Their idea was to make a few
changes as simply and cheaply as possible to the existing Revision (/J Apple
board. But, what they forgot, and what we are about to find out is .

With hardware or software, there
NEVER is such a thing as a small
change!

757

7 58 Enhancement 6

and even more to the point ...

When you do make any change in
hardware or software, anything
you ignore will surely return to
haunt you.

In the case of the Apple mod. the thing that the Apple people ignored is that
someday someone might like to instantly switch to or from LORES while in the
middle of a live scan. The change that they made requires one character time
in order to complete a switch to or from LORES. During that time, you get
some very ugly glitches that are a mix of both text and HIRES.

Fig. 6-1 shows us the Apple circuitry that is involved in the modification. A
one-of-eight electronic selector was originally provided at location A9 on the
Revision 0 Apple boards. This selector switch was set up so that the code on
the "A," "B," and "C" select lines picked the source of the video to be routed
to the display. When the original switch was in any of positions Zero through
Three, you got a text output. This text output came from a 2513 dot matrix
character generator by way of a serial video-shift register at A3.

TEXT

E
0

4
HIRES

5 AND
LORES - 6 - 7

74LS151
VIDEO

SELECTOR
A9

A B C

w 1---- VIDEO
OUT

Fig. 6-1. Video selector used in Revision .0 Apple boards. Line "C" unconditionally picks
text or graphics.

HIRES and LORES were input to positions Four through Seven of this switch.
On Revision 0 boards, the HIRES and LORES were separated in earlier circuits
and one or the other, but not both, would go to selector A9. When in a graphics
mode, A9 would use its four graphics input positions to complete sorting out the
dots on either a HIRES cell or a LORES color block.

Note that the switching between text and graphics here was unconditional.
Whenever select line "C" with a weight of" 4" was low, you went immediately
to the text side of the switch. When select line "C" went high, you went to the
graphics side of the switch. Since all four low inputs went to the same text
source, it didn't matter what selector line "A" (weighted 1), and selector line
"B" (weighted 2), were up to.

Now for the problem. Fig. 6-2 shows the same selector switch after the HIRES
color modification, and as used on all Apples of Revision 1 and higher. Now,
the bottom two switch positions are text, the next two are HIRES, and the four
high ones are LORES, all separate. One of the HIRES inputs is delayed one
quarter of a color cycle from the other, giving you a choice of two sets of colors,
depending on whether the most significant bit of the HIRES word was a one or
a zero.

Glitch Stamper J 59

TEXT 0
74LS151
VIDEO

2 SELECTOR
HIRES{

3
A9

4 w VIDEO

LORES{

OUT

6

A B C

SELECT {: : ··~·· LIN ES -
C = · 4

Fig. 6-2. Video selector circuit used in newer Apple boards. Line "C" is no longer
unconditional.

Nice and neat.
Except for the problem. To go into text or HIRES, you now have to pay

attention to a// three select lines, instead of using only select line "C'' to un
conditionally go to text like before. Apple very carefully worked things out
so that the select signals would point exactly to the right switch position.
Lines "B" and "C'' must work together to unconditionally output text or
HIRES.

The only little hassle is that the logic to keep everything pointing in the right
place ends up one character behind the character you think you are on when
you suddenly switch display modes. It takes the Apple one character more to
complete the switching to or from LORES and either text or HIRES.

The result of this is an ugly glitch. Fig. 6-3 shows you what you get. When
you suddenly switch out of LORES, you get a symbol that is split into two vertical
halves. The top half will be the dot matrix display of the character still stuck in
the pipe, while the bottom half will be a HIRES mapping of the actual ASCII code
bits of that same "in the pipe" character. Thus, the top half is the character and
the bottom half is the code that forms that character.

Assume you just switched from LORES to TEXT or HIRES in the middle of a
horizontal line. IF the NEXT LORES value happens to be hex $52. here is what
you get:

TOP HALF OF UN STOMPED GLITCH
1--1--1--1--1--~t--t- IS DONE IN DOT MATRIX TEXT. IN THIS

CASE, A FLASHING ""R.'"

BOTTOM HALF OF UNSTOMPED GLITCH
1--~l--f--fS;.,I--~- IS DONE IN HIRES. IN THIS CASE A

0100 101 PATTERN

Fig. 6-3. Typical one-character unstomped glitch that you get on a sudden mid-scan
switch out of LORES.

The problem to you, as field mixer, is that while you can "hide" either half
of this glitch by a choice of what character you put here, you cannot get rid of
both halves of the glitch at once. Something always remains to haunt you and
foul up the display.

160 Enhancement 6

What we have to do is make sure that your sc!ector switch instantly goes into
the chosen text or HIRES mode when you switch out of LORES, instead of
waiting for the Apple circuit to straighten things out for you on the next character
slot. Make this correction and you still get a "wrong" character, but the "wrong"
character is now at least in one entire piece. By picking the character code, you
can now make this glitch invisible, or else, have it work for you one way or
another. We saw details on this in Enhancement 5.

The problem lies in selector line "B." All line "A" can do is pick even or odd,
so it can't point us temporarily to text while in HIRES, or vice versa. And, line
"C" is what picks LORES on one hand and text or HIRES on the other. So what
we have to do is make sure that line "B" immediately points to text or HIRES
the instant that we do a field switch out of LORES.

Fig. 6-4 shows the schematic of the glitch stomper. What we do is intercept
line "B" of the selector, and force it to a "zero" the instant that we go into a
text mode, and to a "one" the instant that we go into a HIRES mode. Should
we be in LORES, the signal that is supposed to be on line "B" passes through
unharmed.

This speeds up the Apple switching logic by one character, so we can instantly
switch to an all-text mode, an all-HIRES mode, or back to LORES anywhere on
the screen. Any glitch that remains is in one piece and is easy to handle by
changing its code to something useful or invisible.

We will now show you how to make this mod using three new integrated
circuits. While you only need one new 14-cent IC to do the job, we are going
to chop and channel the other two in a way that the Apple warranty people
might find suspect. When the mod is done, two of Apple's integrated circuits
will be left over. You can set these aside for use in case you ever need a warranty
repair.

As with the hardware mods in the other enhancements, this one does in fact
void your Apple warranty. But, if you are careful, you can easily and completely
return things back to normal.

Here are the parts you will need ...

()

()

()

()

()

PARTS LIST FOR
GLITCH STOMPER

74LS02 quad NOR gate
IC (2 needed).

74LS151 l -of-8
selector IC.

DIP socket, 16-pin,
premium machined-pin
style.

No. 24 insulated solid
wire, 4-1 /2 inches
long, red.

No. 24 insulated solid
wire, 4-1 / 2 inches
long, blue.

Electronic solder (5
inches).

SOCKET
10/A9

12/A12

10/A12

Glitch Stamper 16 7

BREAK OLD
CONNECTION

y_ DEVICE
>--------7'--------~ 10/A9

LONG LONG
BLUE

74LS02

SHORT 9
BLUE

SHORT
RED

10 11

12

RED
74LS02

74LS02 "PIGGYBACK"
ONTO EXISTING A12.

PIN 7 = GROUND
PIN 14 = + 5 V DC
PIN 1-6 = NO CONNECTION

Fig. 6-4. Schematic of the glitch stomper modification.

Here are the tools you will need ...

TOOLS NEEDED TO BUILD
GLITCH STOMPER

() Small soldering iron, 40 watt

() Diagonal-cutting pliers

() Needle nose pliers

() Wire stripper

() Piece of protective IC foam

() IC puller (optional)

() Phillips screwdriver

() Regular small screwdriver

Construction details for your glitch stamper are shown in Fig. 6-5. Be sure to
use a premium machined-pin DIP socket. This is the only type that can safely
be plugged into another socket without damage. Also, be certain you understand
how DIP pins are numbered.

Installation is slightly harder than the earlier mods since the case of your
Apple will have to be temporarily removed. Here is how to build and install
your glitch stamper

162 Enhancement 6

INSTRUCTIONS FOR BUILDING
THE GLITCH STOMPER

1. Cut the blue wire into two pieces, one 3¾ inches long and
one ¾ inch long. Strip 3/16 inch of insulation from each end.

Do the same to the red wire.

2. Carefully identify pin 10 of the machined-pin DIP socket. If
you have a second 16-pin DIP socket available, plug this
machined-pin socket into it. This will keep the pins aligned
should the plastic soften. Insert one end of the 3¾-inch blue
wire into pin 10 of the DIP socket. Then solder this wire in
place.

Position the wire so that it lies flat as shown. Remove the dum
my socket if you used one.

3. Carefully identify pin 10 of the 74LS151 1-of-8 data selec
tor. Bend this pin straight out as shown. Tin this pin with a very
small amount of solder and, then, solder one end of the 3¾
inch red wire to pin 10 of the 74LS151.

Make sure that pin 10 does not point downward or short to ad
jacent pins.

4. Plug the 74LS151 into the machined-pin DIP socket, making
sure that pin 1 of the IC goes to pin 1 of the socket.

Route the wires as shown and temporarily set this half of the
modification aside.

5. Press a 74LS02 quad NOR gate into a piece of protective
foam. Carefully tin the very tops of pins 7, 10, 12 and 14 with a
small amount of solder.

Make sure no solder reaches the part of the pins that must fit
the socket.

6. Solder one end of the ¾-inch blue wire to the very top of pin
12 of the 74LS02 as shown.

Then, solder one end of the ¾-inch red wire to the very top of
pin 10 of the 74LS02 .

Make sure there are no pin-to-pin shorts and that you can still
plug this IC into a socket.

Fig. 6-5. How to build

-----3 3/4"----

RED

-i 1--3/16"
BLUE BLUE

-c::::::J--

RED ---i 3/4" I-

@a
@7
@ 6

SOLDER
12@ {!) 5

LONG

13 {!) {!) 4

@3
0@ 2

@1

RED --.... •
WIRE • ..rr----n... a

SOLDER
PIN 10

w
N
in
.J
.J
::,

""
BLUE __
WIRE

~
TIN

HERE

\~
10 ·

11

12

I 13

NOT 14 '
HERE!

SHORT

RED -----

SOLDER

TOP VIEW

RED
WIRE

' 7

:---...... TIN
#7,10,12,14

ONLY

SHORT

---- BLUE

a 9 10 ,, 12 13 14

BEND ALL

10

11

12

13

BUT #7 AND #14
STRAIGHT OUT

FLAT AND
SQUARE

1234567

CUT #7
AND #14

2 LIKE THIS

8 9 10 11 \2 13 14

LONG

RED -
WIRE

PINS #1-6
ARE NOT

CONNECTED

V
4

Glitch Stamper 163

7. Take a second 74LS02 quad NOR gate and bend pins 1
through 6 straight out. Then, bend pins 8 through 13 straight
out.

Then, cut 1/16 inch off the very ends of pins 7 and 14. Tin these
pins with a small amount of solder on the cut ends.

8. Piggyback the second 74LS02 quad NOR gate onto the first
74LS02 quad NOR gate so that pins 7 and 14 of each IC contact
each other and so that the top IC sits square and flat on the
bottom one.

Solder pin 7 to pin 7 and separately solder pin 14 to pin 14.
Make sure both ICs "point" the same way and that you can still
plug the bottom IC into a socket.

9. On the top 74LS02, bend the tip of pin 11 so that it faces pin
10 and bend the tip of pin 10 so that it faces pin 11.

Solder these two pins together.

10. Take the free end of the short blue wire coming from pin
12 of the bottom 74LS02 and solder this wire to pin 9 of the
upper 74LS02 as shown.

Then, take the tree end of the short red wire coming from pin
10 of the bottom 74LS02 and solder this to wire to pin 12 of the
upper 74LS02 as shown.

Note that the two wires should cross each other, forming an
"X".

11. Take the long blue wire coming from the data selector half
of your mod and solder this wire to pin 8 of the upper 74LS02,
as shown.

Then, take the long red wire coming from the data selector halt
of your mod and solder this to pin 13 of the upper 74LS02, as
shown.

12. Carefully check your glitch stomper against the schematic
of Fig. 6-4 and the pictorial of Fig. 6-6.

13. This completes your glitch stomper modification. See text
for installation and checkout details.

your glitch stomper.

164 Enhancement 6

INSTALLING THE
GLITCH STOMPER

1 . Put a rug or other soft
cover over your work
area.

2. Turn Apple OFF. Then,
unplug both ends of
the Apple power cord
and set the cord aside.

3. Pop the cover on your
Apple by pulling
sharply up-first at left
rear, and then right rear.

4. Remove all plug-in
cards, cables, rf
modulator leads, and
other add-ons. Make a
careful record of what
goes where.

5. Turn the Apple upside
down onto the rug.
Using a Phillips
screwdriver, remove
two screws at extreme
rear, two on either
extreme side, and four
from the front.

NOTE - Remove
ONLY these 10
screws. Do not let the
case separate from the
rest of the Apple.

6. Carefully grab both the
case and the chassis of
the Apple and turn
them both back
right-side up together.
Do not let case
separate from
chassis when you
do this.

7. Gently lift the front of
the case only far
enough to look inside.
Note the keyboard
connector. Now, lift
the case up and back
as far as you can
without stressing the

keyboard connector.

You should be able to
rest the case on the
power supply and on a
book or two.

8. Verify that there is a
7 4LS 151 integrated
circuit in location A9.
This is in the front
row, somewhat right of
center.

9. Remove the 74LS151
at A9 and set it aside.
Plug the DIP socket of
the glitch stamper into
location A9, being
careful that the red
and blue wires exit to
the left rear and that
pin number 1 is on the
front right.

10. Remove the 7 4LS02 IC
located at A 12 and set
it aside. Plug the
stacked 7 4LS02-end of
the glitch stamper into
this socket. Be sure the
red and blue wires exit
to the left rear and pin
1 is to the front right.

11 . Check the pictorial of
Fig. 6-6 to be sure you
have everything in the
right place.

12. Set the cover back in
place. Some Apples
will have a hook at
the right rear that goes
into a slot in the case.
If yours does, make
sure the hook fits into
the case slot.

13. Carefully hold case
and chassis together
and turn them back
upside down. Do not
let them separate.

14. Replace the ten
Phillips screws holding
case to chassis.

Glitch Stamper J 65

766 Enhancement 6

15. Replace all plug-in
cards, cables, and
whatever.

16. Replace cover, but
leave the line cord
unplugged till you
complete checkout.

1 7. Label and store your
"extra" integrated
circuits. Save these
should a warranty
repair be needed.

Here is how to check your glitch stomper modification

GLITCH STOMPER
CHECKOUT

1. Turn the Apple OFF
and plug in the line
cord.

2. Very briefly, turn the
Apple on and, then,
back off again. The pilot
lamp should light and
there should be only a
single click from the
power supply.

3. Turn the Apple on and
hit RESET, followed by
a few random keys. You
should get a text
message.

4. Get into BASIC, and,
then, type GR. Top of
screen should go to
black. Then, do a
COLOR = 5 followed
by a HLIN 0,25 AT 10.
You should get a color
line on the black
screen.

5. Keep typing keys and
returns till you get down
screen. The usual text

should appear in the
usual mixed graphics
mode.

6. Type HGR. Screen
should go black. Type
HCOLOR = 3, and,
then, HPLOT 0, 100 TO
100,0. You should get a
single diagonal line on
the screen. Check for
normal mixed text on
the bottom.

7. Run the FUN WITH
MIXED FIELDS demo.
Everything should work
with no glitches.

Glitch Stamper 7 67

Fig. 6-6 shows you a pictorial view of your installed glitch stamper. The
sidebar given back in Enhancement 2 shows you how to read Apple's compo
nent locations.

(DADAPTER MADE
FROM PREMIUM DIP
SOCKET AND MODIFIED
74LS151 PLUGS INTO A9

@JUMPER WIRES
MODIFY LINE "B"
TO STOMP GLITCH

BLUE

@PIGGYBACK PAIR OF
74LS02's IS PLUGGED
INTO A12

1 r~
~

8
13

"'- FRONT OF APPLE II
MAIN BOARD

Fig. 6-6. Pictorial shows glitch stomper modification in place.

Should you not get the pilot light to come on or should the power supply click
more than once, STOP IMMEDIATELY. This means you have a short in the
mod-most likely caused by an upside-down IC. If you end up stuck in text
mode or stuck in HIRES, this means that you have a problem on the upper
7 4LS02-most likely caused by a short or a pin mixup. However, any problems
at all are very unlikely since this is a straight and simple modification.

168 Enhancement 6

The glitch stamper is totally invisible except when you suddenly switch on
screen from LORES to text or HIRES, and should not interfere with any other
intended use or attachment to your Apple. The additional power-supply current
is very low, so you can leave the glitch stamper in place all the time.

The glitch stamper is a simple enough and powerful enough modification that
we hope Apple will add it themselves to future revisions of the Apple main pc
board a

A complete set of all parts needed
to make one glitch stomper
modification is included in the
parts kit that is companion to this
volume.

SEEDS AND STEMS

Don't forget you can use "?" instead of
"PRINT" in an Applesoft program. This
saves bunches of time and keystrokes.

SEEDS AND STEMS

A linefeed can be added to remarks in
any Applesoft line by using <CTRL> J.
This makes for prettier listings and adds
white space where needed.

You can also imbed backspaces into
remarks. This lets you list a comment to the
screen without showing the line number or
"REM."

This Enhancement works on all
Apples in the HIRES text mode. A
slight modification is needed for the
Apple lie. See the update section.

Enhancement

GENTLE SCROLL

GENTLE SCROLL

This simple software add-on gives
your 48K Apple II a crawling or
gentle scroll for easy reading of
upward-moving text. The gentle
scroll is compatible with the high
resolution character generator.

Have you ever been infuriated by how your Apple's text jumps up the screen
during a normal scroll? Most personal computers and practically all video termi
nals share this same hangup. Yet, it is surprisingly simple and easy to add a
protected and invisible machine-language subroutine to your 48K Apple II that
will give you a smooth and continuous flow of your text up the screen.

I call this enhancement a gentle scroll. Fig. 7-1 shows us the differences
between a gentle scroll and an abrupt, or ordinary, scroll. In your usual abrupt
scroll, the characters move up on the screen an entire character line at a time.
Thus, each character dot reappears eight dots above where it was before,
making it just about impossible to read anything while scrolling. The gentle scroll
only moves up one dot at a time, giving you the illusion of a continuous or
crawling text that is very easy to read. During each movement in a gentle scroll,
the message only travels one-eighth as far up the screen. Thus, eight movements

169

170 Enhancement 7

• •••• •••• • • •••• • •••• I .• •. : : : : : : : : : • • •••• •••• • • •••• • =···= = ; = •• = ; ; ;
=···= =···· =·=· : = =··· : •••• = =·=· : ; : = = = :.... = •• • ••• • = : ••••• ••••• = •• ••••• =···· :

In an abrupt or conventional scroll, words move up EIGHT
dots at a time. You can not read the screen while 11 1s
scrolling.

•••• ••••• • • ••••• • ••••• ~
In a gentle scroll, words move slowly up the screen. ONE
dot at a time. You can easily read the screen while It 1s
scrolling. Eight gentle scrolls replace one abrupt scroll

Fig. 7-1. A gentle scroll is far better looking and easier to read than a conventional or
abrupt scroll.

are needed in succession for the same displacement as one old-style abrupt
scroll.

You can do a gentle scroll either with hardware or software. I first tried the
hardware route and found that elaborate changes in the Apple's system timing
would be needed, along with other hassles. Instead, we will be using a soft
ware subroutine that works on any 48K, or larger, Apple microcomputer.
While this gentle scroll is intended for use in a protected CHARACTER.SET slot
under Apple's HRCG (High-Res Character Generator), supplied with the 005
Toolkit, this gentle scroll will work with most any host program in almost any
language. It should be compatible with any other character generator that uses
the HIRES screen for display.

More and more programmers are going the HIRES route for character display
because of the variety of fonts that you can have, the stunning animation and
wipe possibilities, the mixing of graphics and text anywhere on the screen, the
wide color range and text-over-color choices, and so on.

Note that our gentle scroll is only a gentle scroll. It does not map charac
ters onto the HIRES page for you. All the gentle scroll does is move any exist
ing characters or graphics smoothly up the screen. The HRCG is an ideal host
program to initially enter characters. The HRCG interacts with the gentle scroll
by replacing its own incredibly ugly abrupt scroll with a subroutine call to the
gentle scroll. While you do not have to use the HRCG, you will need some
other host program to get the characters on the screen and to decide when a
scroll is needed.

We will show you a simple Applesoft test program that does not need a

character generator. This will get you started but, later on, you will want to add
HRCC or something similar so as to make best use of your new gentle scroll
capability.

Fig. 7-2 shows us how we do a gentle scroll. We use HIRES page One for our
main text display. Every time we want to do a gentle scroll, the host program
(HRCG) calls the gentle scroll subroutine. This subroutine then starts mapping
from page One to page Two, going up one dot row. Then, we remap from page
Two back to page One, going up a second dot row, and so on. We repeat this
eight times, ending up back on page One with our text smoothly moved up the
screen. Only the page we are mapping from ever gets displayed on the screen,
so everything appears smooth and continuous. One call to the gentle scrolling

Fig. 7-2. How a gentle scroll is done
using pages 1 and 2.

Gentle Scroll T 71

TO DO A HIRES GENTLE SCROLL. .

DISPLAYD AND MAP TO [~]THEN ..

DISPLAY~ AND MAP TO D· THEN ..

DISPLAYD AND MAP TO D· THEN ..

DISPLAY~ AND MAP TO D· THEN ..

DISPLAYD AND MAP TO D· THEN ..

DISPLAY~ AND MAP TO D· THEN ..

DISPLAY D AND MAP TO [~]THEN ...

DISPLAY~ AND MAP TO D Fl NALLY ..

DISPLAY[].

THIS SMOOTHLY MOVES EVERYTHING ONE
CHARACTER ROW (8 DOTS) UP THE SCREEN.

subroutine does all eight mappings needed to smoothly move up one com
plete row of characters. With the field sync modification of Enhancement 4,
the remapping can be made perfectly smooth. Without this field sync mod, the
results are still acceptable but will be very slightly "nervous."

While a gentle scroll can be done by remapping a single HIRES page, we
have chosen this two-page route for maximum possible speed and smooth
ness.

THREE PROBLEMS

If a gentle scroll is so fast and easy, why wasn't it available since Year One,
and why can't you get it on most other personal computers? It turns out that
there are three problems that interact to make a gentle scroll somewhat tricky.
These three hassles involve the eye's perception of motion, collisions caused by
the raster scan, and the remapping time needed to get from one HIRES page to
another. Let's look at these hassles one by one ...

Motion perception

This is the simplest of the problems. If you present to the eye two events that
are separated by less than 10 milliseconds, both events will appear to exist at
the same time. If you take over 100 milliseconds between events, then one event
will clearly be seen to happen after the other one, and a distinct jump will be
seen between the two.

It is only when you present two events faster than 10 milliseconds, or slower
than 100 milliseconds, that the eye "fills in" with the illusion of a smooth and
continuous motion. Television uses a 60-field per second rate while most movies
use a 48-field per second rate. Both these values center in the range where the
eye best senses apparent motion.

The exact speed range over which you can get a smooth illusion varies with
the contrast, the image, and many other things, but this 10- to 1 OD-millisecond

172 Enhancement 7

area is where we have to aim if we expect to obtain any smooth and useful
results.

The Apple presents us with 60 fields per second. This is equal to one field of
video every 1 7 milliseconds. Which tells us that a single scroll should take
somewhere between one and six fields to accomplish an action if we are going
to get smooth results. We will split the difference and use four fields to remap
up one dot line. This should give us the best illusion of an apparently continuous
motion.

Our second hassle is called ...

Raster scan collisions

You've seen this one before. It has ruined more than one animation
attempt. There is "sugar," or "collisions," or "flicker," or whatever in the dis
play. Small objects may appear double or may momentarily reverse direction.
These distractions can range from just barely noticeable to extremely
annoying.

On some personal computers, the worst of these distractions are caused by
the CPU stealing time from the display for remapping. Fortunately, the Apple has
a transparent display that never has to pause to let the microprocessor add bytes
to, or remove bytes from, the display memory. Each and every machine cycle
on the Apple gets shared 50-50 by the CPU and the display timing. Each works
nicely in the other's unneeded and unused blind spot to gain full transparency.

The main cause of sugar or collisions on an Apple display is that the television
set paints a raster only one dot at a time. The top part of the raster goes down
before the bottom part does. It takes 16 milliseconds to get from the top of the
screen to the bottom, giving us some 262 horizontal lines of some 65 mi
croseconds each.

What you can get during animation is a mix of the "old" picture and the
"new" picture if you aren't careful. This can range from "just mapped" stuff to
old information that is as much as 16 milliseconds out of date. This "old" and
"new" mix can momentarily give you a "wrong" display.

Fig. 7-3 shows us how we can get a collision between two character rows if
we try moving characters and viewing them at the same time. Most of the time,
you either are presenting "old" or "new" information. But, every once in a
while, a character will get moved during the time it takes to get from one
horizontal line to the next. When this happens on a blank line between charac
ters, the "new" or "lower" dot line crashes into the "old" or "upper" dot line
without any space between. The result is a brief flash that really can look bad.

You can also get the opposite effect in which a dot line is dropped out. Instead
of a flash, you get an "unflash" in which the middle of an "E," an "H," an "S,"
or whatever disappears momentarily, leaving you with a strange bunch of illegi
ble dots.

This is sort of like a small town that has one cop and one thief, each of whom
are making their rounds. Eventually, they are bound to run into each other even
if they are traveling at different speeds and are using different paths going
through town.

All of which tells us we should never display the HIRES page you are moving
characters to. While you can do a gentle scroll using a single page of video and
remapping things one line at a time, you will find the collisions to be annoying
and the motion slightly nervous or erratic. The "one-page" program that I tried
turned out to be longer than the available space in one HRCG character set and
this is a second disadvantage. You will get the best results by using two HIRES
pages for a scroll, displaying one while you move dots to the new location on
the other.

For a gentle scroll, both HIRE pages are
used alternately to eliminate the
"sugar," "sparkle," or "collisions"
caused by raster scan problems. These
effects usually last one field and can
become very annoying.

Most of the times a HIRES map-while
displaying-the-same-page would look ..

As the raster scan works its way from
top to bottom, it will overrun the map
ping every now and then, leading to
results ...

or perhaps even ..

Sugar and collision flashes can be com
pletely eliminated by displaying one
HIRES page while you are remapping to
the second and, also, by switching be-
tween HIRES pages only during the ver-
tical blanking time.

Fig. 7-3. Raster scan collisions.

•
• •••••
•••••

.
•
••••• ••••• .

• . . .

.
•••••

• .

... . .
•

• . . . •

... . .
• .
• • . . . •

• . . •

.
• . . •

Gentle Scroll 173

• . • •••• • ••• •
• •••••

• • • .
• ...
• •

. • .. • .. • ••• .. .
• • •
• • • ••••

•
•
• . . ·- ...

. • ••• •
• • • . •

Even if you switch between the pages after mapping is complete, you can still
get a brief flash or collision every now and then. This happens if you decide to
switch between pages in the middle of a live scan. Our field sync hardware
modification eliminates this final and fairly minor hassle.

We use a program similar to the CRUDE program of Enhancement 4 to make
sure we only flip display pages during the vertical blanking time. This way, only
"whole" pages appear on the screen and you get no collisions. This particular
use of field sync is far less critical than the exact locking needed for mixed fields
or other super fancy stuff.

To review, when the field sync modification is in place, we can do a simple
bit test of SW3 that waits till it is "safe" to flip from one screen to the other.

T 74 Enhancement 7

The machine-language bit test of location $C060 sets the negative flag if it is safe
to switch the pages and clears the negative flag if it is not. By BPL branching to
retest till it is safe, you can always be sure that you will avoid all collisions and
all sugar.

What's that location in decimal for use in a BASIC program, you ask? You've
got to be kidding. Your Apple warranty isn't long enough to let you do a gentle
scroll in BASIC. In fact, unless you are really into machine language, even
machine language will seem far too slow. So what you do is provide a special
and exceptionally fast machine-language subroutine and call it from any host
program in any language you like.

This brings us to the third hassle of ...

Mapping time

The real sticky problem is that it takes a long time to move all those dots from
one HIRES page to a different position on the other one. Let's see. There are 192
rows of 280 dots each for a total of 53,760 dots. We can move these dots seven
at a time with a single machine-language byte, so only 7680 moves are needed.
But wait. That is 7680 moves to go up a single dot row. We have to go eight
dot rows to move up one full character-for a total of 61,440 mappings.

Now, if you use machine language the way most people do, this remapping
will take far too long. The usual way we might map is to use the indirect indexed
command such as is done in the abrupt scroll included in the HRCG. The code
could look something like this ...

c_EMAP LOA
STA
DEY
BNE

(P1LOC),Y
(P2LOC),Y

REMAP

; Get a byte from page 1
; Move it to page 2
; Go to next byte
; And repeat till done

This says to go to the sum of the address in P1 LOC plus the value in the Y regis
ter, and put whatever you get from there in the sum of the address in P2LOC plus
Y. Both P1 LOC and P2LOC will be pairs of page Zero addresses that point to the
base address at the left end on any line. Keep doing this remapping till Y hits
zero. You start at the right end of one line and work your way to the left, remap
ping as you go along. The code is short, simple, very powerful, and disgustingly
elegant.

It also works, sort of. If you have the time.
The trouble is that this obvious route is far too slow. Let's add things up.

We'll assume an Apple machine cycle takes exactly 1 microsecond. If you are
a timing purist, just multiply all that follows by 0.978. An indirect load takes 5
microseconds. An indirect store takes 6. Add 2 microseconds to knock one
count off Y, and a final 3 microseconds to go back and repeat. A total of 16
microseconds, or just a tad under 16 if you are really keeping score.

Using 16 microseconds to move seven somethings sounds pretty snappy till
you realize that we have 61,440 mappings to do. Multiplying 61,440 mappings
times 16 microseconds per mapping equals 0.983 second.

We can apparently scroll a row of characters smoothly up eight dots in slightly
under a second. This doesn't sound too bad until you realize that there are 24
lines of text on the screen, so it takes nearly 24 seconds to get from the bottom
of the screen to the top. This can turn out to be unacceptably slow for some uses.

What can we do to speed up a tight, sophisticated, and elegant little remap
ping loop like the one we just looked at?

Scrap it.

Gentle Scroll 175

That's right, scrap our compact and elegant code. Indirect indexed modes
dramatically shorten the physical length of a program all right, but they take
longer to execute. And loops always add overhead, since you always have to
decrement something and, then, branch to get out of a loop. Even an "empty"
loop that does nothing uses up 5 microseconds per trip not doing whatever it is
that it is not doing.

The fastest possible code that you could write would use the fastest address
modes and no loops. We could write a program that would absolutely load
and then absolutely store each and every location and it would be much faster.
"Brute force" coding of this type would only need 8 microseconds per map
ping. Compare this to the 16 microseconds that the elegant code demands.

But, this brute force route would have the disadvantage of needing more than
46,000 bytes of code! And, that's for a single mapping. You have to double that
to get back to the first page. Some compromise is obviously needed between
code that is short and elegant and code that is long enough to rapidly do the
job.

We first notice that absolute indexed addressing is fairly snappy at 4 mi
croseconds per load and 5 microseconds per store. And, we can now use a loop
to shorten the code by bunches. But, there's that loop again. The sneaky and
crucial trick is to share the loop as many ways as possible. If 32 mappings are
done inside a loop, the loop overhead of 5 microseconds only takes 5 I 32 of a
microsecond per mapping. Our code might look like this ...

REMAP LOA $2400,X ; move first byte
STA $4000,X

LOA $2800,X ; move second byte
STA $4400,X

LOA $2C00,X ; move third byte
STA $4800,X

; (repeat 32 times)

LOA $3F00,X ; move thirty-second byte
STA $5800,X

DEX ; move one to left
BNE REMAP ; and repeat till done

This code is obviously much longer than the earlier code. But look at the
timing. Four microseconds to load, five to store, and a mere 5 I 32 of a mi
crosecond as one mapping's share of the loop overhead. Our total is slightly over
nine microseconds, or around one-half the total of using the "elegant and
compact" code of the HRCG.

Note that this new code also maps in a different sequence. The usual code
works from right to left, one horizontal dot row at a time. Our fast code starts
with part of a rightmost column of dots and then works its way from right to left
doing a partial column at a time.

The actual mapping details turn out even messier than this, as we will see. The
important points here are that an oddball mapping sequence (1) is very fast, and
(2) doesn't matter anyway since you don't look at the page till after the mapping
is completed. What we are after here is a fast final result, and that is just what
we get.

7 76 Enhancement 7

The gentle scroll program turns out fairly long since we are using less elegant
addressing modes. The entire program is only 600 bytes long, and fits a protect
ed slot originally intended for use by an alternate character set under HRCG.

When you use the gentle scroll, the measured time on screen is something like
12 seconds from bottom to top .. The first time you see this, you will say that it
is far too slow. And, if you are listing a program, a gentle scroll may indeed take
a minute to list a 100-line program.

Let's look at this 12 seconds in a different light. If we completely fill the screen,
we'll average 7 words or so per line. And, 7 words per line times 24 lines equals
168 words in 12 seconds, or a reading speed of 840 words per minute.

This is at least four times faster than most people can read. When you use
the gentle scroll, your messages will usually be short. What at first sounds like
an awfully slow scroll time turns out to be a very attractive speed.

The fast remapping code will take 4 fields to scroll upwards by a single dot,
which translates to 32 fields being required in order to do a complete 8-dot
full-character scroll. Thus, slightly over half a second is needed for each full
character scrolling.

MEMORY MAP

A memory map of a 48K Apple II, using the gentle scroll under HRCG, is
shown in Fig. 7-4. We've already seen back in Enhancement 3 how the bottom
2K-bytes of RAM from $0000 through $07FF are reserved for system use.
Review the details on this and you will find reference locations on page Zero
of memory, the stack on page One, the keyboard buffer on page Two, DOS
hooks on page Three, and "page One" of text and low-resolution graphics on
memory pages Four through Seven. Here a memory "page" consists of 256
locations, while a video "page" is made up of whatever happens to fit the
screen. One 1024-byte text or LORES page needs four RAM memory pages of
256 bytes each.

Looking further up the map, we see that HIRES page One fits in locations
$2000 through $3FFF, and HIRES page Two resides at hex $4000 through
$5FFF. Each HIRES page needs almost 8K of RAM to store its image. Thus,
thirty-two pages of RAM memory will always be needed for each HIRES page.

DOS normally resides at the top of RAM, and goes from locations $9600 up
through $BFFF. The HRCG high-resolution character generator and its alter
nate character sets reside just under DOS.

The HRCG is an example of a new type of program that uses an "R" disk
file. The "R" stands for relocatable, and this coding must be handled differently
from the usual "B," "A," "I," or 'T' files you already know. When you use
the LOADHRCG program off the 005 Toolkit, the HRCG is automatically put
just below DOS and, then, enough space is cleared below HRCG for as many
alternate fonts as are needed. After enough room is set aside and the fonts are
loaded, the Applesoft HIMEM pointer is then automatically moved down. This
will protect the HRCG and any of the alternate character sets from intrusion.

This nicely makes room for machine-language sequences with Applesoft. Just
put your sequence in the space intended for the highest HRCG alternate char
acter set, and the routine gets put out of harm's way. Everything is set aside for
you automatically without any calculations or sneaky tricks.

You'll find two areas left in memory for your Applesoft or other program.
The 6K space from $800 through $2000 is available, as are the 10K + locations
$6000 through $8AFE. A RAM card, or auxiliary memory on the Apple lie, can
give you lots more room.

HEX

$BFFF

$9600

$8E00-
$8600-

$6000

$4000

$2000

$0800

$0000

DOS
3.3

HRCG

HIRES
Page 2

HIRES
Page 1

SYSTEM

DECIMAL

49151

38400

36352 } GENTLE SCROLL SUBROUTINE,
35584 PROTECTED UNDER HRCG

24576

16384

8192}

2048

0

10K + SPACE AVAILABLE
FOR APPLESOFT STRINGS
AND VARIABLES

6K SPACE AVAILABLE
FOR APPLESOFT
PROGRAM LINES

Gentle Scroll 7 77

Fig. 7-4. Memory map of 48K RAM under gentle scroll. Most shorter Applesoft programs
will fit as is. Longer ones may need pointer adjustment, disk reaccess, RAM

card use, auxiliary memory, or other memory management.

Applesoft normally builds its program up from its TXT AB pointer at the lowest
available RAM location. This is usually $0800. It also builds its variables down
from HIMEM. You will usually have around 6K of program space and some 1 OK
of variable space available till you bump into either HIRES page.

Most shorter Applesoft programs will fit as is. Longer ones may need pointer
adjustment, disk reaccess, REM elimination, or other memory management
tricks. Note that this is nearly the same memory space that you have any time
you want to use both HIRES pages and Applesoft. The HRCG and its alterna
tive fonts take up little extra room.

Our gentle scroll program should get loaded as the highest character set under
the HRCG. But, we will never use this set as a character set. Instead, we will
find the magic hooks to jump to this code subroutine every time the HRCG
wants to do a scroll. The reason we use a character set location is for the
convenience it gives us in automatically loading a machine-language program
into a protected space. On a 48K Apple computer operating under DOS 3.3,
the highest character set lies from $8AFF through $8CFE. If you do use any
alternate character sets, they will automatically be placed lower in memory.
Regardless of how many alternate fonts you use, the highest character set will
always start at $8AFF. Should you use alternate character sets, each additional
character set will need another 3 pages, working down through memory.

Thus, the highest alternate font will always lie from $8AFF to $8DFF, and the
lowest alternate font will always have the lowest starting address, regardless of
how many fonts you use. All of these will reside in a protected space above
HIMEM.

178 Enhancement 7

We now know where to put our gentle scroll machine-language program and
how to get it there. One big location problem that remains is figuring out what
maps where on HIRES page One and page Two.

The first time you look at HIRES locations, they may seem random or sense
less. In fact, they were very carefully chosen to greatly simplify the hardware
needed in the Apple's video timing circuitry.

Fig. 7-5 shows us a typical HIRES horizontal line. Each line begins with a BASE
address on the left and needs 40 bytes. The bytes are numbered left to right as
BASE + 0, BASE + 1, BASE+ 2, ... , and so on, up through BASE + 39 in deci
mal, or BASE+ $27 in hex, at the extreme right.

Each byte, in turn, holds seven dots. These dots are arranged "backwards"
as the lower seven bits. The LSB is the leftmost dot. The eighth or MSB is not
mapped. Instead, it is used as an optional half-dot shifter that gives us color
changes by shifting all seven dots simultaneously.

As an example, if some line has a base address of $2400, the leftmost seven
dots will be in location $2400, the next seven in $2401, the next seven in $2402,
and so on across the line to the final seven dots contained in $2427.

What gets sticky fast is finding the base address for each horizontal line. There
are elegant program sequences in the HIRES subroutines that let you calculate
each and every base address as needed. But these calculations take quite a bit
of time and they must be avoided at all costs if you want the fastest possible
code.

Rather than calculate base addresses, we will simply call them out as they are
needed in the code. This is much faster. Table 7-1 is a table of the base addresses
of each line. This is shown as a decimal or hex scan line number and as a
"which-dot-row-of-which-character" number pair.

The base addresses are rearranged for you in Fig. 7-6. Here we see the packing
of lines into each sequential 256-byte page of memory. These addresses are all
shown for HIRES page One on the left and HIRES page Two on the right. To find
a comparable address for Hires page Two, just add hex $2000 to each page One
location. To go the other way, subtract hex $2000.

Now, if we were trying to display and remap on the same page at the same
time, we would have to start at the top of the display and remap each line one
place up from where it happened to be. This would take 192 separate remap
pings since there are 192 vertical lines (24 characters X 8 dots per character)

LEFTMOST BYTE ON BASE ADDRESS BASE ADDRESS RIGHTMOST BYTE ON
THE LINE IS THE PLUS ONE PLUS TWO THE LINE IS THE
BASE ADDRESS I ./ BASE ADDRESS PLUS I // DECIMAL 39 OR \EX $27

~-~-~I -~I 1_11_11_11 1 _ ___._--))-_ ___.__ _ ___.__ _ __.

THERE ARE 40 BYTES
OF 7 DOTS EACH USED
FOR EACH HORIZONTAL
ROW OF 280 DOTS

THERE ARE 192 HIRES
LINES PER PAGE. EACH
LINE HAS ITS OWN BASE
ADDRESS

'--,-~----'
EACH HIRES BYTE HOLDS
SEVEN DOTS, ARRANGED
"BACKWARDS" IN THE
DATA WORD ...

RIGHTMOST LEFTMOST

' DOT DOT

ll ...,.....,.t .,.......I __,+ r----r-~.,.......--,~__,+

d7 d6 d5 d4 d3 d2 d1 dO

\
EIGHTH BIT CONTROLS SHIFT OF ALL 7 DOTS
½ DOT TO THE RIGHT FOR COLOR CHANGE

Fig. 7-5. Details of one horizontal line mapping.

PAGE
ONE

Gentle Scroll 7 79

$2000
$2100
$2200
$2300
$2400
$2500
$2600
$2700

$2800
$2900
$2A00
$2B00
$2C00
$2000
$2E00
$2F00

$3000
$3100
$3200
$3300
$3400
$3500
$3600
$3700

$3800
$3900
$3A00
$3B00
$3C00
$3000
$3E00
$3F00

$00 $28 $50 $80 $A8 $00 $FF
I I I I I I I

0 64
16 80 I

32 96
i 48 112

1 65
17 81
33 97
49 113

I I I
$00 $28 $50

I I I

2 66
18 82
34 98
50 114
3 67
19 83
35 99
51 115

I I I
$00 $28 $50

I I I

4 68
20 84
36 100
52 116
5 69

21 85
37 101
53 117

I I I
$00 $28 $50

I I I

6 70
22 86
38 102
54 118
7 71

23 87
39 103
55 119

128 8 72 136
144 24 88 152
160_ 49_ ~1_Q5 __ 168 --~--=--
176 56 120 184
129 9 73 137
145 25~-- 89 153
161 41 105 ~§§)_
177 57 121 185

I I I
$80 $A8 $00

I
$FF

I I I I

13Q__
~- 10 74 138

146 26 90 154
162 42 106 170
178 58 122 186
131 11 75 139
147 27 91 155
163 43 107 171
179 59 123 187

I I I I
$80 $A8 $DO $FF

I I I I

132 12 76 _140 ..
148 28 92 156
164 44 108 172
180 60 124 188
133 13 77 141
149 29 93 157
165 45 109 173
181 61 125 189

I I I I

$80 $A8 $DO $FF
I I I

134 14 78 142
150 30 94 158
166 46 110 174
182 62 126 190
135 15 79 143
151 31 95 159
167 47 111 175
183 63 127 191

I I I I I I I
$00 $28 $50 $80 $AB $DO $FF

$4000
$4100
$4200
$4300
$4400
$4500
$4600
$4700

$4800
$4900
$4A00
$4B00
$4C00
$4D00
$4E00
.$4F00

$5000
$5100
$5200
$5300
$5400
$5500
$5600
$5700

$5800
$5900
$5A00
$5B00
$5C00
$5D00
$5E00
$5F00

EACH BLOCK SHOWS HORIZONTAL LINE NUMBER
IN DECIMAL. I= UNUSED 8 BYTES OF RAM.

PAGE
TWO

Fig. 7-6. How HIRES lines are packed into memory.

in the display. We would map line 1 to line 0, then line 2 to line 1, and so on
down the screen.

But, a two-page mapping lets us get sneaky and greatly shorten the code. An
indexed move lets us move up to 256 bytes from one base address. Do things
just right and we can be remapping six lines using the same indexed move
instruction. This shortens the code bunches. For instance, one indexed mapping
code pair can map lines 1 to 0, 65 to 64, 129 to 128, 9 to 8, 73 to 72, and 137
to 136. All of this is done with the same base address of hex $2400. You first
set your X index pointer to $F7 and work your way down the list. First, you
remap all of line 137, then all of line 73, then all of line 9. Then, you reset your

7 80 Enhancement 7

Table 7-1. HIRES BASE ADDRESSES

LINE NUMBER PAGE1 BASE PAGE2 BASE
DECIMAL CHAR/DOT HEX DECIMAL HEX DECIMAL HEX

0 0/0 $00 8192 $2000 16384 $4000
1 0/1 $01 9216 $2400 17408 $4400
2 0/2 $02 10240 $2800 18432 $4800
3 0/3 $03 11264 $2C00 19456 $4C00
4 0/4 $04 12288 $3000 20480 $5000
5 0/5 $05 13312 $3400 21504 $5400
6 0/6 $06 14336 $3800 22528 $5800
7 017 $07 15360 $3C00 23552 $5C00

8 1/0 $08 8320 $2080 16512 $4080
9 1 /1 $09 9344 $2480 17536 $4480

10 1 /2 $0A 10368 $2880 18560 $4880
11 1 /3 $0B 11392 $2C80 19584 $4C80
12 1/4 $0C 12416 $3080 20608 $5080
13 1/5 $OD 13440 $3480 21632 $5480
14 1/6 $OE 14464 $3880 22656 $5880
15 1/7 $OF 15488 $3C80 23680 $5C80

16 2/0 $10 8448 $2100 16640 $4100
17 2/1 $11 9472 $2500 17664 $4500
18 2/2 $12 10496 $2900 18688 $4900
19 2/3 $13 11520 $2D00 19712 $4D00
20 2/4 $14 12544 $3100 20736 $5100
21 2/5 $15 13568 $3500 21760 $5500
22 2/6 $16 14592 $3900 22784 $5900
23 2/7 $17 15616 $.moo 21808 $5D00

24 3/0 $18 8576 $2180 16768 $4180
25 3/1 $19 %00 $2580 17792 $4580
26 3/2 $1A 10624 $2980 18816 $4980
27 3/3 $1B 11648 $2D80 19840 $4D80
28 3/4 $1C 12672 $3180 20864 $5180
29 3/5 $10 13696 $3580 21888 $5580
30 3/6 $1E 14720 $3980 22912 $5980
31 3/7 $1F 15744 $3080 23936 $5D80

32 4/0 $20 8704 $2200 16896 $4200
33 4/1 $21 9728 $2600 17920 $4600
34 4/2 $22 10752 $2A00 18944 $4A00
35 4/3 $23 11776 $2EO0 19968 $4EO0
36 4/4 $24 12800 $3200 20992 $5200
37 4/5 $25 13824 $3600 22016 $5600
38 4/6 $26 14848 $3A00 23040 $5A00
39 4/7 $27 15872 $3EO0 24064 $5EO0

40 5/0 $28 8832 $2280 17024 $4280
41 5/1 $29 9856 $2680 18048 $4680
42 5/2 $2A 10880 $2A80 19072 $4A80
43 5/3 $2B 11904 $2E80 20096 $4E80
44 5/4 $2C 12928 $3280 21120 $5280
45 5/5 $2D 13952 $3680 22144 $5680
46 5/6 $2E 14976 $3A80 23168 $SABO
47 5/7 $2F 16000 $3E80 24192 $SEBO

48 6/0 $30 8960 $2300 17152 $4300
49 6/1 $31 9984 $2700 18176 $4700
50 6/2 $32 11008 $2B00 19200 $4B00
51 6/3 $33 12032 $2F00 20224 $4F00
52 6/4 $34 130.06 $3300 21248 $5300
53 6/5 $35 14080 $3700 22272 $5700
54 6/6 $36 15104 $3B00 23296 $5B00
55 6/7 $37 16128 $3F00 24320 $5F00

Gentle Scroll J 81

Table 7-1 Cont. HIRES BASE ADDRESSES

LINE NUMBER PAGE 1 BASE PAGE2 BASE
DECIMAL CHAR/DOT HEX DECIMAL HEX DECIMAL HEX

56 7/0 $38 9088 $2380 17280 $4380
57 7/1 $39 10112 $2780 18304 $4780
58 7/2 $3A 11136 $2B80 19328 $4B80
59 7/3 $3B 12160 $2F80 20352 $4F80
60 714 $3C 13184 $3380 21376 $5380
61 7/5 $30 14208 $3780 22400 $5780
62 7/6 $3E 15232 $3B80 23424 $5B80
63 717 $3F 16256 $3F80 24448 $5F80

64 8/0 $40 8232 $2028 16424 $4028
65 8/1 $41 9256 $2428 17448 $4428
66 8/2 $42 10280 $2828 18472 $4828
67 8/3 $43 11304 $2C28 194% $4C28
68 8/4 $44 12328 $3028 20520 $5028
69 8/5 $45 13352 $3428 21544 $5428
70 8/6 $46 14376 $3828 22568 $5828
71 8/7 $47 15400 $3C28 23592 $5C28

72 9/0 $48 8360 $20A8 16552 $40A8
73 9/1 $49 9384 $24A8 17576 $44A8
74 9/2 $4A 10408 $28A8 18600 $48A8
75 9/3 $4B 11432 $2CA8 19624 $4CA8
76 9/4 $4C 12456 $30A8 20648 $50A8
77 9/5 $4D 13480 $34A8 21672 $54A8
78 9/6 $4E 14504 $38A8 22696 $58A8
79 9/7 $4F 15528 $3CA8 23720 $5CA8

80 10/0 $50 8488 $2128 16680 $4128
81 10/1 $51 9512 $2528 17704 $4528
82 10/2 $52 10536 $2928 18728 $4928
83 10/3 $53 11560 $2D28 19752 $4D28
84 10/4 $54 12584 $3128 20776 $5128
85 10/5 $55 13608 $3528 21800 $5528
86 10/6 $56 14632 $3928 22824 $5928
87 10/7 $57 15656 $3D28 23848 $5D28

88 11/0 $58 8616 $21A8 16808 $41A8
89 11 /1 $59 9640 $25A8 17832 $45A8
90 11 /2 $SA 10664 $29A8 18856 $49A8
91 11/3 $5B 11688 $2DA8 19880 $4DA8
92 11/4 $SC 12712 $31A8 20904 $51A8
93 11 /5 $5D 13736 $3SA8 21928 $SSAS
94 11 /6 $SE 14760 $39A8 22952 $59A8
95 11 /7 $5F 15784 $3DA8 23976 $5DA8

96 12/0 $60 8744 $2228 16936 $4228
97 12/1 $61 9768 $2628 17960 $4628
98 12/2 $62 10792 $2A28 18984 $4A28
99 12/3 $63 11816 $2E28 20008 $4E28

100 12/4 $64 12840 $3228 21032 $5228
101 12/5 $65 13864 $3628 22056 $5628
102 12/6 $66 14888 $3A28 23080 $5A28
103 12/7 $67 15912 $3E28 24104 $5E28

104 13/0 $68 8872 $22A8 17064 $42A8
105 13/1 $69 9896 $26A8 18088 $46A8
106 13/2 $6A 10920 $2AA8 19112 $4AA8
107 13/3 $6B 11944 $2EA8 20136 $4EA8
108 13/4 $6C 12968 $32A8 21160 $52A8
109 13/5 $6D 13992 $36A8 22184 $56A8
110 13/6 $6E 15016 $3AA8 23208 $SAAS
111 13/7 $6F 16040 $3EA8 24232 $5EA8

182 Enhancement 7

Table 7-1 Cont. HIRES BASE ADDRESSES

LINE NUMBER PAGE 1 BASE PAGE2 BASE
DECIMAL CHAR/DOT HEX DECIMAL HEX DECIMAL HEX

112 14/0 $70 9000 $2328 17192 $4328
113 14/1 $71 10024 $2728 18216 $4728
114 14/2 $72 11048 $2B28 19240 $4B28
115 14/3 $73 12072 $2F28 20264 $4F28
116 14/4 $74 13096 $3328 21288 $5328
117 14/5 $75 14120 $3728 22312 $5728
118 14/6 $76 15144 $3B28 23336 $5B28
119 14/7 $77 16168 $3F28 24360 $5F28

120 15/0 $78 9128 $23A8 17320 $43A8
121 15/1 $79 10152 $27A8 18344 $47A8
122 15/2 $7A 11176 $2BA8 19368 $4BA8
123 15/3 $7B 12200 $2FA8 20392 $4FA8
124 15/4 $7C 13224 $33A8 21416 $53A8
125 15/5 $7D 14248 $37A8 22440 $57A8
126 15/6 $7E 15272 $3BA8 23464 $5BA8
127 15/7 $7F 16296 $3FA8 24488 $5FA8

128 16/0 $80 8272 $2050 16464 $4050
129 16/1 $81 9296 $2450 17488 $4450
130 16/2 $82 10320 $2850 18512 $4850
131 16/3 $83 11344 $2C50 19536 $4C50
132 16/4 $84 12368 $3050 20560 $5050
133 16/5 $85 13392 $3450 21584 $5450
134 16/6 $86 14416 $3850 22608 $5850
135 16/7 $87 15440 $3C50 23632 $5C50

136 17/0 $88 8400 $20D0 16592 $40D0
137 17/1 $89 9424 $24D0 17616 $44D0
138 17/2 $8A 10448 $28D0 18640 $48D0
139 17/3 $8B 11472 $2CD0 19664 $4CD0
140 17/4 $BC 12496 $30D0 20688 $5000
141 17/5 $80 13520 $3400 21712 $5400
142 17/6 $8E 14544 $3800 22736 $5800
143 17/7 $BF 15568 $3CD0 23760 $5CD0

144 18/0 $90 8528 $2150 16720 $4150
145 18/1 $91 9552 $2550 17744 $4550
146 18/2 $92 10576 $2950 18768 $4950
147 18/3 $93 11600 $2050 19792 $4050
148 18/4 $94 12624 $31.50 20816 $5150
149 18/5 $95 13648 $3550 21840 $5550
150 18/6 $96 14672 $3950 22864 $5950
151 18/7 $97 15696 $3050 23888 $5050

152 19/0 $98 8656 $2100 16848 $4100
153 19/1 $99 9680 $2500 17872 $4500
154 19/2 $9A 10704 $2900 18896 $4900
155 19/3 $9B 11728 $2000 19920 $4000
156 19/4 $9C 12752 $3100 20944 $51 DO
157 19/5 $90 13776 $3500 21968 $5500
158 19/6 $9E 14800 $3900 22992 $5900
159 19/7 $9F 15824 $30D0 24016 $5000

160 20/0 $AO 8784 $2250 16976 $4250
161 20/1 $Al 9808 $2650 18000 $4650
162 20/2 $A2 10832 $2A50 19024 $4A50
163 20/3 $A3 11856 $2E50 20048 $4E50
164 20/4 $A4 12880 $3250 21072 $5250
165 20/5 $AS 13904 $3650 22096 $5650
166 20/6 $A6 14928 $3AS0 23120 $5A50
167 20/7 $A7 15952 $3E50 24144 $5ES0

Gentle Scroll 7 83

Table 7-1 Cont. HIRES BASE ADDRESSES

LINE NUMBER PAGE1 BASE PAGE2 BASE
DECIMAL CHAR/DOT HEX DECIMAL HEX DECIMAL HEX

168 21 /0 $AB 8912 $22D0 17104 $42D0
169 21 /1 $A9 9936 $26D0 18128 $46D0
170 21 /2 $AA 10960 $2AD0 19152 $4AD0
171 21/3 $AB 11984 $2ED0 20176 $4ED0
172 21/4 $AC 13008 $32D0 21200 $52D0
173 21 /5 $AD 14032 $36D0 22224 $56D0
174 21 /6 $AE 15056 $3AD0 23248 $5AD0
175 21 /7 $AF 16080 $3ED0 24272 $5ED0

176 22/0 $BO 9040 $2350 17232 $4350
177 22/1 $B1 10064 $2750 18256 $4750
178 22/2 $B2 11088 $2B50 19280 $4B50
179 22/3 $B3 12112 $2FS0 20304 $4FS0
180 22/4 $B4 13136 $3350 21328 $5350
181 22/5 $BS 14160 $3750 22352 $5750
182 22/6 $B6 15184 $3B50 23376 $5850
183 22/7 $B7 16208 $3FS0 24400 $5F50

184 23/0 $B8 9168 $2300 17360 $43D0
185 23/1 $B9 10192 $2700 18384 $47D0
186 23/2 $BA 11216 $2BD0 19408 $48D0
187 23/3 $BB 12240 $2FD0 20432 $4FD0
188 23/4 $BC 13264 $3300 21456 $53D0
189 23/5 $BO 14288 $3700 22480 $57D0
190 23/6 $BE 15312 $3BD0 23504 $5BD0
191 23/7 $BF 16336 $3FD0 24528 $5FD0

X index to hex $77 and work down all of line 129, followed by all of line 6.5
and, finally, all of line 1. Trace this action out on Fig. 7-6 to make sure you see
and understand exactly what is happening.

However, remapping several lines with the same code does give you several
minor hassles that you have to get around. Those unused locations from $78
through $7F and $F8 through $FF on any page must be bypassed during the
mapping. Besides making the code take longer, a glitch or two will remain on
the screen if you do not carefully bypass all unused locations.

As an aside, note that these unused locations are usually plowed anytime you
clear the HIRES screen. Thus, while these "free" locations are just sitting there,
you can't safely use them for anything. This is in contrast to the 64 bytes hidden
on the page 1 text and LORES1 screen which are used for 110 and are very
carefully protected during a screen clear.

There are also a few lines that do not remap exactly in the way you might
expect them to. These lines must each be "custom" mapped because they cause
a move from column to column in Fig. 7-6. Five of the special cases are 64 to
63, 128 to 127, 8 to 7, 72 to 71, and 136 to 13.5. There is a sixth special case
of Oto nowhere, but since nowhere is off screen, we can ignore this mapping.
Again, check into Fig. 7-6 to find out why these five mappings are special.

PROGRAM AND FLOWCHART

A flowchart of the gentle scroll program is shown in Fig. 7-7, while Program
7-1 gives you an assembler listing of the GENTLE SCROLL.SET program. Fig. 7-8
shows a hex dump of the GENTLE SCROLL.SET. Details for copying and using
the GENTLE SCROLL.SET program follow on page 192.

184 Enhancement 7

(8AFF) START

INITIALIZE
(8B00) AND SETUP

(8805) DISPLAY 1
MAP TO 2

DISPLAY 2 (8C06)
MAP TO 1

(8CF9)

(8005) RESTORE

(8D08) RTS

MAIN PROGRAM

} •)

OPTIONAL
LOCK TO
VBLANK

SWITCH TO
PAGE 1

REMAP
WHOLE
PAGES

REMAP
SPECIAL

LINES

ERASE
BOTTOM

LINE

DETAIL OF PAGE MAPPING

Fig. 7-7. Flowchart of GENTLE SCROLL.SET. Machine-language subroutine is called
whenever an 8-dot gentle scroll of HIRES page 1 is wanted.

(8805)

(8808)

(880B)

(8B05)

(88F5)

We begin by saving all registers and, then, going to SYNC subroutine that
optionally waits for the vertical blanking time before continuing. Page One is
then displayed. We then remap most of the lines on page One onto page Two,
moving each line up one dot row. We start at the right of the screen and make
our way rapidly down and slowly to the left. This oddball scheme lets us share
our loop timing 31 ways and it doesn't matter anyway since we aren't looking
at what we are mapping till we are finished.

Unused locations $F8 through $FF are never mapped. We ignore these by
beginning with an index value of $F7 and working down. Unused locations $78
through $7F are bypassed with a compare and fix. Should we get to an index
value of $7F, this value is immediately changed to $77, thus bypassing these
unused locations.

The bulk of the mapping is done six lines at a time, handling a total of 31 X
6 = 186 lines.

After the bulk of the mapping is complete, we then custom handle the five
special cases. These get remapped individually.

Gentle Scroll T 85

PROGRAM 7-1

GENTLE SCROLL SET

LANGUAGE:

BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:

BAFF:
BAFF:
BAFF:

BAFF:
BAFF:
BAFF:

BAFF:
BAFF:
BAFF:

BAFF:

BAFF:
BAFF:
BAFF:
BAFF:
BAFF:

BAFF:
BAFF:

APPLE ASSEMBLER

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

23
24
25

27
28
29

31
32
33

35

37
38
39
40
41

43
44

NEEDS: HIRES SUPPORT PROGRAM
SUCH AS HRCG.
HIMEM < 35583

* *
* GENTLE *
* SCROLL.SET *
* *
* VERSION 3 .1 *
* (3-18-81) *
* *
* COPYRIGHT 1981 *
* *
* BY DON LANCASTER *
* AND SYNERGETICS *
* *
* ALL COMMERCIAL *
* RIGHTS RESERVED *
* *

THIS PROGRAM CREATES A PAGE
ONE GENTLE SCROLL UNDER HRCG
FOR USE ON 48K APPLE II,

IT LOADS AS THE HIGHEST CHARACTER
SET AND USES HIRES PAGE TWO
FOR A WORKSPACE.

A VSYNC HARDWARE MOD CONNECTING
4/Cl4 TO 4/Hl4 IS RECOMMENDED
FOR BEST OPERATION,

IF YOU ARE NOT USING HRCG -

A MACHINE JSR $BAFF -OR-
AN INTEGER CALL -29953 -OR
AN APPLESOFT CALL 35583
GIVES YOU AN EIGHT SCAN LINE
GENTLE SCROLL ON HIRES 1

PROTECT THIS SPACE WITH
AN APPLESOFT HIMEM:35582.

7 86 Enhancement 7

PROGRAM 7-1, CONT'D ...

BAFF: 46 IF YOU ARE USING HRCG AND
BAFF: 47 MACHINE LANGUAGE

BAFF: 49 GENTLE SCROLL ON -- $9214: 00 BB
BAFF: ~iO GENTLE SCROLL OFF - $9214: 21 92

BAFF: :>2 IF YOU ARE USING HRCG AND
BAFF: 53 APPLESOFT --

BAFF: :,5 GENTLE SCROLL ON POKE 37396,0
BAFF: 56 AND POKE 37397, 139

BAFF: :,8 GENTLE SCROLL OFF - POKE 37396,33
BAFF: 59 AND POKE 37397,146
BAFF: 60 POKE ONLY AT TOP
BAFF: 61 OF SCREEN!

BAFF: 65 ****HOOKS****

FF3F: 67 IOREST EQU $FF3F
FF4A: 68 IOSAVE EQU $FF4A
C054: 69 PAGEl EQU $C054
C055: 70 PAGE2 EQU $C055
C060: 71 VSYNC EQU $C060 4/Cl4 VIA 4/Hl4 SYNC MOD

BAFF: 73 ****** MAIN PROGRAM ******

BAFF:EA 75 NOP ADJUST RELOCATE START
BB00:20 4A FF 76 START JSR IOSAVE SAVE ALL REGISTERS

8B03:AO 04 78 LDY #$04 FOR FOUR PAIRS OF MAPPINGS
8B05:20 09 8D 79 GOODD JSR SYNC OPTIONAL LOCK TO VBLANK
8B08:8E 54 co 80 STX PAGEl DISPLAY PAGE ONE

8BOB:A2 F7 82 LDX #$F7 BYPASS UNMAPPED BITS
8BOD:BD 00 24 83 NXODD LDA $2400,X LINES 1-65-129-9- ...
8B10:9D 00 40 84 STA $4000,X
8Bl3:BD 00 28 85 LDA $2800,X
8Bl6:9D 00 44 86 STA $4400,X
8Bl9:B0 00 2C 87 LDA $2COO,X
8B1C:9D 00 48 88 STA $4800,X
8B1F:BD 00 30 89 LOA $3000,X
8B22:90 00 4C 90 STA $4COO,X
8B25:BD 00 34 91 LOA $3400,X
8B28:90 00 50 92 STA $5000,X
8B2B:BO 00 38 93 LOA $3800,X
8B2E:9D 00 54 94 STA $5400,X
8B31:BD 00 3C 9,-_1 LDA $3COO,X
8B34:9D 00 58 96 STA $5800,X

Gentle Scroll T 87

PROGRAM 7-1, CONT'D ...

8B37:B0 00 21 98 LOA $2100,X ; LINES 16-80-144-24- ...
8B3A:90 80 5C 99 STA $5C80,X
8B30:B0 00 25 100 LOA $2500,X
8B40:90 00 41 101 STA $4100,X
8B43:B0 00 29 102 LOA $2900,X
8B46:90 00 45 103 STA $4500,X
8B49:B0 00 20 104 LOA $2000,X
8B4C:90 00 49 105 STA $4900,X
8B4F:BO 00 31 106 LOA $3100,X
8B52:90 00 40 107 STA $4000,X
8B55:BD 00 35 108 LDA $3500,X
8B58:9D 00 51 109 STA $5100,X
8B5B:BD 00 39 110 LDA $3900,X
8B5E:9D 00 55 111 STA $5500,X
8B61:BD 00 3D 112 LDA $3000,X
8B64:9D 00 59 113 STA $5900,X

8B67:BD 00 22 115 LDA $2200,X ; LINES 32-96-160-40- ...
8B6A:90 80 5D 116 STA $5080,X
8B60:B0 00 26 117 LDA $2600,X
8B70:9D 00 42 118 STA $4200,X
8B73:B0 00 2A 119 LDA $2AOO,X
8B76:9D 00 46 120 STA $4600,X
8B79:BD 00 2E 121 LDA $2EOO,X
8B7C:9D 00 4A 122 STA $4AOO,X
8B7F:BD 00 32 123 LDA $3200,X
8B82:9D 00 4E 124 STA $4EOO,X
8B85:BD 00 36 125 LDA $3600,X
8B88:9D 00 52 126 STA $5200,X
8B8B:BD 00 3A 127 LDA $3AOO,X
8B8E:9D 00 56 128 STA $5600,X
8B91:BD 00 3E 129 LDA $3EOO,X
8B94:9D 00 5A 130 STA $5AOO,X

8B97:BD 00 23 132 LDA $2300,X ; LINES 48-112-176-56- ...
8B9A:9D 80 SE 133 STA $5E80,X
8B9D:BD 00 27 134 LDA $2700,X
8BA0:9D 00 43 135 STA $4300,X
8BA3:BD 00 2B 136 LDA $2B00,X
8BA6:9D 00 47 137 STA $4700,X
8BA9:BO 00 2F 138 LDA $2FOO,X
8BAC: 9D 00 4B 139 STA $4B00,X
8BAF:BD 00 33 140 LOA $3300,X
8BB2:9D 00 4F 141 STA $4FOO,X
8BB5:BD 00 37 142 LDA $3700,X
8BB8:9D 00 53 143 STA $5300,X
BBBB:BO 00 3B 144 LDA $3B00,X
8BBE:9D 00 57 145 STA $5700,X
8BC1:BO 00 3F 146 LDA $3FOO,X
8BC4:9D 00 5B 147 STA $5B00,X

7 88 Enhancement 7

PROGRAM 7-1, CONT'D ...

8BC7:CA 149 DEX ONE MORE ROW?
8BC8:EO 7F 150 CPX #$7F BYPASS UNUSED LOCATIONS?
BBCA:DO 02 151 BNE NOFIX
8BCC:A2 77 152 LDX #$77
8BCE:EO FF 153 NOFIX CPX #$FF
8BDO:FO 03 154 BEQ ROWDUN
8BD2:4C OD BB 155 JMP NXODD
8BD5:A2 27 157 ROWDUN LDX #$27 HANDLE SPECIAL MAPPINGS
8BD7:BD 80 20 158 ODDTHD LDA $2080,X 8 TO 7
8BDA:9D 00 SC 159 STA $5COO,X
8BDD:BD 28 20 160 LDA $2028,X 64 TO 63
8BE0:9D 80 SF 161 STA $5F80,X
8BE3:BD AB 20 162 LDA $20A8,X 72 TO 71
8BE6:9D 28 SC 163 STA $5C28,X
8BE9:BD 50 20 164 LDA $2050,X 128 TO 127
8BEC:9D A8 SF 165 STA $5FA8,X
8BEF:BD DO 20 166 LDA $20DO,X 136 TO 135
8BF2:9D 50 SC 167 STA $5C50,X
8BF5:A9 00 168 LDA #00 ERASE BOTTOM LINES
8BF7:9D DO 3F 169 STA $3FDO,X OF PAGE ONE
8BFA:9D DO SF 170 STA $5FDO,X OF PAGE TWO
8BFD:CA 171 DEX
8BFE:10 D7 172 BPL ODDTHD

8C00:20 09 8D 174 JSR SYNC OPTIONAL LOCK TO VBLANK
8C03:8E 55 co 175 STX PAGE2 SWITCH TO PAGE TWO

8C06: 177 *** START REMAP BACK TO PAGE ONE ***

8C06:A2 F7 179 LOX #$F7 BYPASS UNMAPPED BITS
8C08:BD 00 44 180 GOEVN LDA $4400,X LINES 1-65-129-9- ...
8COB:9D 00 20 181 STA $2000,X
8COE:BD 00 48 182 LDA $4800,X
8Cll:9D 00 24 183 STA $2400,X
8Cl4:BD 00 4C 184 LDA $4COO,X
8Cl7:9D 00 28 185 STA $2800,X
8ClA:BD 00 50 186 LOA $5000,X
8ClD:9D 00 2C 187 STA $2COO,X
8C20:BD 00 54 188 LDA $5400,X
8C23: 9D 00 30 189 STA $3000,X
8C26:BD 00 58 190 LDA $5800,X
8C29:9D 00 34 191 STA $3400,X
8C2C:BD 00 SC 192 LDA $5COO,X
8C2F:9D 00 38 193 STA $3800,X

8C32:BD 00 41 195 LDA $4100,X LINES 16-80-144-24- ...
8C35:9D 80 3C 196 STA $3C80,X
8C38:BD 00 45 197 LDA $4500,X

Gentle Scroll T 89

PROGRAM 7-1, CONT'D ...

8C3B:9D 00 21 198 STA $2100,X
8C3E:BD 00 49 199 LDA $4900,X
8C41 :9D 00 25 200 STA $2500,X
8C44:BD 00 4D 201 LDA $4DOO,X
8C47:9D 00 29 202 STA $2900,X
8C4A:BD 00 51 203 LDA $5100,X
8C4D:9D 00 2D 204 STA $2DOO,X
8C50:BD 00 55 205 LDA $5500,X
8C53:9D 00 31 206 STA $3100,X
8C56:BD 00 59 207 LDA $5900,X
8C59:9D 00 35 208 STA $3500,X
8C5C:BD 00 5D 209 LDA $5DOO,X
8C5F:9D 00 39 210 STA $3900,X

8C62:BD 00 42 212 LDA $4200,X LINES 32-96-160-40- ...
8C65:9D 80 3D 213 STA $3D80,X
8C68:BD 00 46 214 LDA $4600,X
8C6B:9D 00 22 215 STA $2200,X
8C6E:BD 00 4A 216 LDA $4A00,X
8C71:9D 00 26 217 STA $2600,X
8C74:BD 00 4E 218 LDA $4EOO,X
8C77:9D 00 2A 219 STA $2AOO,X
8C7A:BD 00 52 220 LDA $5200,X
8C7D:9D 00 2E 221 STA $2EOO,X
8C80:BD 00 56 222 LDA $5600,X
8C83:9D 00 32 223 STA $3200,X
8C86:BD 00 5A 224 LDA $5AOO,X
8C89:9D 00 36 225 STA $3600,X
8C8C:BD 00 SE 226 LDA $5EOO,X
8C8F:9D 00 3A 227 STA $3AOO,X

8C92:BD 00 43 229 LDA $4300,X LINES 48-112-176-56- ...
8C95:9D 80 3E 230 STA $3E80,X
8C98:BD 00 47 231 LDA $4700,X
8C9B:9D 00 23 232 STA $2300,X
8C9E:BD 00 4B 233 LDA $4B00,X
8CA1:9D 00 27 234 STA $2700,X
8CA4:BD 00 4F 235 LDA $4FOO,X
8CA7:9D 00 2B 236 STA $2B00,X
8CAA:BD 00 53 237 LDA $5300,X
8CAD:9D 00 2F 238 STA $2FOO,X
8CB0:BD 00 57 239 LDA $5700,X
8CB3:9D 00 33 240 STA $3300,X
8CB6:BD 00 5B 241 LDA $5B00,X
8CB9:9D 00 37 242 STA $3700,X
8CBC:BD 00 SF 243 LDA $5FOO,X
8CBF:9D 00 3B 244 STA $3B00,X

190 Enhancement 7

PROGRAM 7-1, CONT'D ...

8CC2:CA 246 DEX
8CC3:EO 7F 247 CPX #$7F BYPASS UNUSED LOCATIONS?
8CC5:DO 02 248 BNE NOFlX
8CC7:A2 77 249 LDX #$77
8CC9:EO FF 250 NOFlX CPX #$FF
8CCB:FO 03 251 BEQ ROWDUM
8CCD:4C 08 BC 252 JMP GOEVN

8CD0:A2 27 254 ROWDUM LDX #$27 HANDLE SPECIAL MAPPINGS
8CD2:BD 80 40 255 EVNTHD LDA $4080,X 8 TO 7
8CD5:9D 00 3C 256 STA $3COO,X
8CD8:BD 28 40 257 LDA $4028,X 64 TO 63
8CDB:9D 80 3F 258 STA $3F80,X
8CDE:BD AB 40 259 LDA $40A8,X 72 TO 71
8CE1:9D 28 3C 260 STA $3C28,X
8CE4:BD 50 40 261 LDA $4050,X 128 TO 127
8CE7:9D AB 3F 262 STA $3FA8,X
8CEA:BD DO 40 263 LOA $40D0,X 136 TO 135
8CED:9D 50 3C 264 STA $3C50,X
8CFO:BD DO SF 265 LDA $5FDO,X RECOPY BOTTOM LINE
8CF3:9D DO 3F' 266 STA $3FDO,X
8CF6:CA 267 DEX
8CF7:10 D9 268 BPL EVNTHD

8CF9: 270 **** START REMAP BACK TO ONE****

8CF9:88 272 DEY ; NEXT SCREEN PAIR?
8CFA:FO 03 273 BEQ DONE
8CFC:4C 05 BB 274 JMP GOODD
BCFF:20 09 8D 275 DONE JSR SYNC OPTIONAL LOCK TO VBLANK
8D02:BC 54 co 276 STY PAGEl SWITCH TO PAGE ONE
8D05:20 3F FF 277 JSR IOREST RESTORE ALL REGISTERS
8D08:60 278 RTS AND RETURN

8D09: 280 **** VSYNC SUBROUTINE ****

8D09:2C 60 co 282 SYNC BIT VSYNC TEST FOR VBLANK
8D0C: 10 FB 283 BPL SYNC AND WAIT FOR VBLANK
BDOE:60 284 NOSYNC RTS

Fig. 7-8. Hex dump of GENTLE
SCROLL.SET.

BAFF-
8800-
BROB-
8R1n-
8B 18-
srnn-
RB28-
8830-
BR.18-
RB40-
81348-
8850-
8858-
8B60-
8868-
8870-
8878-
8B80-
BB:18-
8G90-
8898-
RBAO-
BRAB-
RBB()-
BRBB-
ABCO-
!JBCB-
8B00-
8808-
BREO-
BBEB-
88FO-
8BF8-

8COO-
8C08-
8C10-
8Cl8-
8C20-
8C28-
8C30-
BC38-
8C40-
8C48-
scsn-
8C58-
8C60-
8C68-
8C70-
8C78-
8C8Cl-
8C88-
8C90-
8C98-
BCAO-
8CA8-
GCBO-
8CB8-
scco-
8CC8-
BCDO-
8CD8-
BCEO-
8CF.:8-
BCFO-
8CF8-
8D00-
Bnns-

Gentle Scroll 7 9 7

GENTLE SCROLL

EA
20 4A FF An n4 2n i)C) 8D
BE 54 en A2 F7 BO 00 24
90 on 40 DD no 28 9D (\(l

44 no no 2C 90 no 48 BD
on 9D 00 4C RD 10 34
9D 0,1 so RD 00 38 9D 00
54 80 no 3C 9D on SR BD
nn 21 9D 80 SC BD 0,1 25
9D 00 41 BD on 29 90 nn
45 8D 00 20 9D on 49 BO
no 3 l 9D on 40 f3D on 35
90 00 51 80 00 39 9D nn
55 BO no 3D 90 nn 59 RD
on n 90 sn SD RD ')0 26
qD no 42 no ()() 2A 9D
46 BO no 2E 90 ()'\ 4A BD
()0]) 90 no 4C rm on 36
90 no 52 OD on 30 90
56 DD no :n:: 90 Oil SA 80
no 23 90 BO SE BO no 27
9n on 43 BD 00 2B 90 CHI

4 7 BO 00 2F 9D nn 4R RTJ

00 13 9D ()0 4F RD nn ,7

90 00 53 RD C)I) lR 9D 10

57 BO on JF OQ n,1 SR CA
EO 7F DO 07 '2 77 ED FF
FD 03 4C 11D BB ~2 27 RD
BO 20 90 ()0 SC BD 78 20
9D 80 SF BD 1\8 20 90 28
5C GD 50 20 90 AB SF 90
DO 2n 90 SD SC l\9 (F) 9D
DO 3F 9D Dn SF CA) 0 D7

20 09 BD SE 55 co A2 F7
BD 00 44 9D 00 20 BD no
48 90 00 24 BO 00 4C 90
on 28 BD 00 so 9D 0() 2C
RD on 54 9D 00 Jr) RD Oil

58 90 00 34 RD on SC 90
00 38 BO on 41 90 90 3C
RD 00 45 90 00 2l BO no
49 9D on 25 BD 00 40 on
on n BD no 5 l 9D no 20
RD 00 55 9D 00 3l BD nn
59 90 on 35 BO on 50 9D
00 39 BD no 47 90 80 30
BD 00 46 90 on 22 BD 00
4A 9D 00 26 BD 00 4E 91)

on 2A BD no 5? 9D on ?E
BD no 56 90 00 32 BO on
SA 90 00 36 BD no SE qD

00 3A BO on 43 9D 811 JE
BO 00 47 go 00 23 ED on
48 90 00 27 BO 00 4F 9D
00 28 BD 00 53 9D 00 2F
BD 00 57 90 00 33 BO on
SB 9D no 37 BD 00 5F 90
,,n 38 CA ED 7F DO 02 A?
77 EO FF FO 03 4C 08 BC
A2 77 BD BO 40 OD nn JC
BD 28 40 9D 80 3F BO 1\8
40 9D 28 1C RD 50 40 9D
1\8 3F RD DO 40 9D sn JC
RD DO SF qn on JF CA]()

l)9 BR FO ()] 4C 05 sn)()

()0 RD BC 54 C(1)() j],' FF

60 26 GO en 1 0 Fn u ·,

A final detail finishes the mapping from page One to page Two. We clear the
bottom line of both page One and page Two. If you don't do this, the descenders
of lower-case characters will elongate and look very strange.

When the mapping is completed, we jump to the optional SYNC subroutine
and, then, flip the switch to page Two.

The whole remapping process is then repeated, only this time we display page
Two and remap back to page One. A dot initially on page One gets mapped one
dot higher onto page Two and, then, gets remapped two dots up from where
it started back on page One.

Eight remappings are done in four groups of two each. We end up back on
page One with all the characters moved up exactly one dot row.

USE HINTS

Normally, you will save your program as a GENTLE SCROLL.SET on a disk con
taining the HRCG and LOADHRCG programs. When asked for the number of
alternate character sets, answer one more than what you intend to use, and enter
the GENTLE SCROLL.SET as your last alternate character font to be loaded.

192 Enhancement 7

A ready-to-go copy of the machine-lan
guage object code (GENTLE
SCROLL.SET) is provided on the com
panion disk to this volume. The Apple
HRCG will automatically load the object
code when it is entered by name as the
highest alternate character set.

Should you want to copy this program
"by hand," do the following:

1. Boot a DOS 3.3 disk that has room
on it for the GENTLE SCROLL.SET.

2. Get into the monitor by doing a
CALL -151 <er>.

3. Enter the hex dump code of Fig.
7-8. To do this, type BAFF : EA
<er> . Then, type : 20 4A FF AO
04 20 07 8D <er>. Continue this
process of entering a colon,
followed by eight op code bytes
and a <er> till you have entered
all the code.

4. Type BAFF L <er> and verify the
code by comparing it against
Program 7-1. Retype L <er> as
often as needed to go all the way
through the program.

5. Restore DOS by using 3DOG
<Cr>.

6. Type BSAVE GENTLE SCROLL.SET,
A$8AFF, L$210. This should save
your program to disk.

7. To use your gentle scroll, do a
BLOAD GENTLE SCROLL.SET
<er> as needed. If you are NOT
using, HRCG, note that (1) you must
protect the space 8AFF-8DOC, (2)
you must be displaying text on
HIRES page One, and (3) a CALL
35.583, a CALL - 29953, or a JSR
BAFF will move everything up eight
dots and, then, return to your main
program.

To activate your gentle scroll set, you have to go into the HRCG and find the
subroutine call to its own abrupt scroll program. In machine language, use
$9214: 00 8B to use the gentle scroll and use $9214: 21 92 to use the abrupt
scroll. Equivalent Applesoft locations appear in Program 7-1.

These locations assume that you are using the same version HRCG that I am
on a 48K Apple microcomputer. The hooks may change with a change in HRCG
version or a change of program. What you do is reach into the host program
and find that program's own call to its own abrupt scroll and, then, substitute
the gentle scroll subroutine's starting address when it is wanted. There are more
details on this in Enhancement 3.

Note that the GENTLE SCROLL.SET is not relocatable as is. It will only work
with a starting address of either $8AFF or $8B00. There are three absolute jumps
needed that are beyond the range of a relative branch, and there are absolute
calls to the SYNC subroutine.

Gentle Scroll 7 93

Should you want to use the gentle scroll with some other HIRES character
generator as host, just find the equivalent scroll hooks and use them. If you want
to test the gentle scroll without a character-generator program, make sure you
are displaying HIRES page One and do a JSR to $8B00, a CALL 35583, or a CALL
- 29953. This should move everything up one character row for you and then
return you to your host program.

Program 7-2 is an Applesoft demo called GENTLE SCROLL TESTER. You can
use this one without any HIRES character generator. The program puts a lower
case message on the screen, and slowly scrolls it up for you. The process repeats
over and over again until you press any key.

Once again, all that the GENTLE SCROLL.SET can do for you is move existing
HIRES characters or graphics up the screen. It cannot put anything new on the
screen. For best effects, you will have to use HRCC or something similar to first
enter your HIRES screen message.

If you do not have the field sync mod in place, change $8D09 to $60 in
Program 7-1. Otherwise, your gentle scroll may hang.

And, again repeating, you will get the smoothest results if you have the
hardware field sync modification of Enhancement 4 in place.

Naturally, the gentle scroll will only work when a HIRES page is being dis
played. Should you drop back to a conventional LORES/text page, the gentle
scroll will no longer work. A system RESET will sometimes drop you out of a
HIRES character-generator program. To restore your gentle scroll, reactivate the
HIRES display mode, and verify that the scroll hooks are still intact.

Two gotchas. If you are using Applesoft POKES to connect the GENTLE
SCROLL.SET to HRCG, make absolutely sure you do it at the top of a screen.
If you try this at the bottom of the screen, the first POKE sets up a scrolling
address that is only "one half" correct, and the next scroll attempt bombs the
program. And, never enter text while a gentle scroll is taking place as keys will
be ignored for the time it takes to complete the scrolling. You can beat this with
an add-on key buffer, but it is simpler to arrange your programs so as to never
call for or accept a key input until after the display is stable.

Like so

TWO USE RULES

1. If you are using Applesoft
POKE commands to connect
your GENTLE SCROLL.SET, do
so only at the TOP of the
screen!

2. Do not call for or allow any
text input while the gentle
scrolling is actually taking
place.

If your scroll seems slightly erratic, check first to make sure that the hardware
field sync mod is in place and that Program 7-1 is hooked into it. It also pays
to have the fastest possible entry of characters on the screen, since the gentle
scroll has to take time out to let the HRCG, or whatever else you use, put each

J 94 Enhancement 7

PROGRAM 7-2

GENTLE SCROLL TESTER

LANGUAGE: APPLESOFT

10 REM *********************
12 REM * *
14 REM * GENTLE SCROLL *
16 REM * TESTER *
18 REM * *
20 REM * VERSION 1.0 *
22 REM * (9-28-81) *
23 REM * *
24 REM * COPYRIGHT 1981 *
26 REM * BY DON LANCASTER *
28 REM * AND SYNERGETICS *
30 REM * *
32 REM * ALL COMMERCIAL *
34 REM * RIGHTS RESERVED *
36 REM * *
38 REM *********************

50 REM THIS PROGRAM TESTS AND
52 REM DEMONSTRATES THE GENTLE
54 REM SCROLL OF ENHANCEMENT 7
56 REM FOUND IN ENHANCING YOUR
58 REM APPLE II, VOLUME I.

60 REM THE SUBROUTINE "GENTLE
62 REM SCROLL.SET" IS NEEDED.

64 REM THE FIELD SYNC MOD
66 REM OF ENHANCEMENT #4 IS
68 REM NOT NEEDED, BUT WILL
70 REM GIVE A MUCH SMOOTHER
72 REM SCROLLING ACTION.

80 REM FOR BEST EFFECTS,
82 REM USE THE GENTLE SCROLL
84 REM WITH A HIRES CHARACTER
86 REM GENERATOR SUCH AS
88 REM HRCG OR HIGHER TEXT
90 REM INSTEAD OF THIS PROGRAM.

NEEDS: GENTLE SCROLL SET
FIELD SYNC MOD
(OPTIONAL)

100 TEXT HOME VTAB 20: PRINT "HELLO! I AM YOUR

PROGRAM 7-2, CONT'D ...

105 HIMEM: 35500: REM PROTECT GENTLE SCROLL SET SPACE
110 PRINT "BLOAD GENTLE SCROLL.SET": REM CTRL D

200 HGR: POKE - 16302,0: CALL - 1998: REM FULL HIRES
SCREEN

210 HCOLOR= 3
220 H = 100:V = 184: REM SET TEXT START

GOSUB 2000 230
235
240
245
250

FOR N = 1 TO 1000: NEXT N: CALL 3 5583: REM "GENTLE"
H = 100: GOSUB 2000
FOR N = 1 TO 1000: NEXT N: CALL 35583: REM "SCROLL"
H = 100: GOSUB 2000: REM "TESTER''

255 FOR N = 1 TO 3000: NEXT N
260 FOR N = 1 TO 9: CALL 35583: NEXT N
265 FOR N = 1 TO 3000: NEXT N
267 IF PEEK (49152) > 127 THEN POKE 49168,0: PRINT

PRINT "RUN MENU"
268 REM DELETE 267 IF AUTO MENU IS NOT IN USE.

270 IF PEEK (49152) > 127 THEN POKE 49168,0: TEXT
HOME : PRINT "PARTING IS SUCH SWEET SORROW": VTAB
22: END

280 CLEAR : HIMEM: 35582: GOTO 220: REM GO ROUND AGAIN
IF NO KEY HAS BEEN PRESSED

1000 REM CHARACTERS C,E,G,L,N,O,R,S,T FOLLOW IN ORDER

1010 HPLOT H + 4,V + 2 TOH + 1, V + 2: HPLOT H,V + 3 TO
H,V + 5: HPLOT H + 1, V + 6 TOH + 4,V + 6: RETURN

1020 HPLOT H,V + 4 TO II + 4,V + 4 TOH + 4, V + 3: HPLOT
H + 3,V + 2 TOH + l, V + 2: HPLOT H,V + 3 TO H,V +
5: HPLOT H + l ,V + 6 TO H + 4,V + 6: RETURN

1030 HPLOT H + 1, V + 2 TOH + 3, V + 2: HPLOT H,V + 3 TO
H,V + 4: HPLOT H + 1, V + 5 TO H + 4,V + 5: HPLOT H
+ 4,V + 3 TOH + 4,V + 6: HPLOT H + 1, V + 7 TO H +
3,V + 7: RETURN

1040 HPLOT H + 1, V TO H + 2,V TO H + 2, V + 6: HPLOT H +
1, V + 6 TOH + 3, V + 6: RETURN

1050 HPLOT H,V + 6 TO H,V + 2 TO H + 3, V + 2: HPLOT H +
4,V + 3 TOH + 4,V + 6: RETURN

1060 HPLOT H,V + 3 TO H,V + 5: HPLOT H + 1, V + 6 TO H +
3, V + 6: HPLOT H + 4,V + 5 TOH + 4,V + 3: HPLOT
H + 1, V + 2 TO H + 3, V + 2: RETURN

1070 HPLOT H,V + 2 TO H,V + 6: HPLOT H,V + 3 TO H + 1,
V + 3: HPLOT H + 2, V + 2 TO H + 4,V + 2: RETURN

Gentle Scroll 195

I 96 Enhancement 7

PROGRAM 7-2, CONT'D ...

1080 HPLOT H + 4,V + 2 TOH+ l,V + 2: HPLOT H,V + 3:
HPLOT H + l,V + 4 TOH+ 3,V + 4: HPLOT H + 4,V +
5: HPLOT H,V + 6 TOH+ 4,V + 6: RETURN

1090 HPLOT H,V + 2 TOH+ 4,V + 2: HPLOT H + l,V TOH
+ l,V + 5: HPLOT H + 2,V + 6 TOH+ 3,V + 6:
HPLOT H + 4,V + 5: RETURN

1999 REM

2000 FOR N = 1 TO 6: GOSUB 3000: H = H + 8: NEXT N:
RETURN: REM PUIT DOWN SIX LETTERS

3000 READ CHARACTER: ON CHARACTER GOSUB 1010,1020,1030,
1040,1050,1060,1070,1080,1090

3010 RETURN : REM FIND LETTER CODES

9999 DATA 3,2,5,9,4,2,8,1,7,6,4,4,9,2,8,9,2,7: REM
SAYS "GENTLE/SCROLL/TESTER"

Gentle Scroll 797

line of characters on the screen. If you make each character line the same length
and put them on the screen with fast machine-language code, you will get the
smoothest results.

Funny things may happen if you try to use GENTLE SCROLL.SET on a colored
background; particularly, if it's an "illegal" color. To handle colored back
grounds, you will have to suitably modify the "clear both bottom lines" code
into something that handles each color byte individually. One alternative is to
simply copy the bottom line of page One to the bottom line of page Two. This
gives you color but introduces a lower-case elongating descender bug.

To try this color background alternative, replace GENTLE SCROLL.SET 8BF5:
A9 00 9D 00 3F with 8BF5: BD DO 3F EA EA.

The GENTLE SCROLL.SET does not link well with Applewriter JI. It can be
done, but you probably won't be happy with the results.

Once your gentle scroll is working, you should be able to think up all sorts
of new possibilities. How would you handle the terrain flyby in a bomber
mission or a road in a road race? How about dice, roulette wheels, or menu
selectors that rotate? What about several things that are moving at once? Note
that partial screen gentle scrolls can run much faster than whole screen ones.
Note also that for graphics use, you might be able to jump two or more scan
lines at a time, rather than just one •

The programs GENTLE SCROLL.SET,
GENTLE SCROLL.SET.SOURCE, and
GENTLE SCROLL TESTER are included
on the companion diskette lo this
volume.

All are fully copyable.

SEEDS AND STEMS

On older Apples-

The "]" symbol is hidden as "<shift>
M"
The "[" symbol is available as
"CHR$(219)".

This Enhancement works on all Ap
ples, but Revision O versions will
have fewer colors. Also, a slight
change is needed for the Apple lie.
See the update section.

Enhancement

FAST BACKGROUNDER

A HIRES utility that gives you any
of 191 solid background colors or
18,446,744,073,709,551,616 pat
terns. It runs seven times faster
than you might expect and it is
easily made glitchless.

FAST BACKGROUNDER

There is a convenient and useful HIRES screen clear subroutine that is avail
able as part of your Apple's firmware. This code is provided both in the Ap
plesoft ROMs and in the Programmer's Aide that comes with the Integer ROMs.
The background clearing sub is easily reached from any language and is the
"standard" way of clearing either HI RES screen.

It is also pitiful.
It is pitifully slow in that it takes over eight times as long to clear the screen

as is necessary, resulting in a slow and ugly glitch during screen clearings. And,
it is pitifully weak in that it only lets you clear to a paltry 8 of the 191 HIRES
colors.

The FAST BACKGROUNDER is an incredibly fast machine-language module
that will give you a right-now clear of HIRES to your choice of any 32 of the
possible 191 color backgrounds or 18,446,744,073,709,551,616 color back-

799

200 Enhancement 8

ground patterns. The module is designed to load into the protected program
space of HRCG (High-Resolution Character Generator) as the highest alternate
character set, but the backgrounder can be used from any language or any
graphics system.

The FAST BACKGROUNDER is also useful in showing us quite a bit about the
Apple's HIRES color limits and capabilities. You can easily adapt parts of the
program for your own special uses. You can also use the magic bit combinations
to fill in your own colors in any way that you like.

As with any program, there are trade-offs. In exchange for the blinding speed
and the mind-boggling choice of colors and patterns, we end up with a fairly
long module (512 bytes) that only can do a full clear of HIRES page One. While
the module can handle any and all of the HIRES patterns and colors, its files are
presently set up to only hold 32 different colors or patterns at any one time.
More patterns or colors are easily swapped back and forth to disk or from your
controlling program. You can easily customize the backgrounder or use the ideas
behind it to handle almost any clear of any size, shape, or page that you like.

While the remaining visual glitch with this program is utterly negligible com
pared to the ugly transient that you get from the usual HIRES slow clear, we will
also show you a way to get an absolutely glitchless and "invisible" clear to any
color in the blink of an eye. You can also easily modify this upcoming FAST
BACKGROUNDER.SET program to handle either page Two or your choice of
either HIRES page.

Let's see how the Backgrounder works

Lotsa dots

How much do you know about the HIRES capabilities of the older Apples?
Which one of the following is correct?

() In HIRES, the Apple can put a single dot in any of 560
possible positions on any horizontal line.

() In HIRES, the Apple can only put a maximum of 280 dots
on any horizontal line.

() In HIRES, the Apple can only put a maximum of 140
green dots on any horizontal line.

() Under worst-case conditions, the Apple will only allow
40 HIRES color changes across the screen.

The answer, of course, is yes.
All of these statements are true. The Apple's horizontal resolution in HIRES

is 40 dots, 140 dots, 280 dots, or 560 dots, depending on what you care to call
a dot and how that dot has to relate to the others.

Let's see if we can't straighten this mess out some. Refer back to Fig. 7-5 of
the previous enhancement to get us started.

As Fig. 7-5 showed us, there are forty bytes stored in memory for each
horizontal line. Each byte is responsible for seven dots on the line. The leftmost
byte is called the base address. The bytes continue in memory as base address
+o, base address +1, base address +2, and so on, to base address +$27,
which is the fortieth and rightmost byte on the line. The actual HIRES addresses
for both pages were listed for you in Table 7-1 of the previous enhancement.

As the sketch in Fig. 7-5 shows us, each HI RES byte, in turn, has eight bits.
Seven of these bits are used to represent dots on one horizontal line. These dots
are lit if the bit is a "one" and are unlit or black if the bit is a "zero."

8
._ LEFT EDGE

OF SCREEN

Fast Backgrounder 20 7

The bottom seven bits in the byte map themselves backwards onto the screen.
Thus, the least significant bit is the earliest and the leftmost, and the next-to-most
significant seventh bit is the latest and, thus, the rightmost one to get plotted on
the screen.

What about the eighth, or most significant bit? This bit acts as a shifter that
either does nothing or else moves all of the other seven dots one-half of a dot
to the left. This shifting is detailed in Figs. 8-1 and 8-2.

A ZERO IN THE MSB
PICKS THE UNSHIFTED
COLORS OF GREEN
AND VIOLET \

\
\
\

\
\

\

\ I

A ''1"" IN A DOT POSITION
LIGHTS THAT DOT. A "O"
LEAVE THAT DOT OFF.

IO I I I I I I I I I O I I I I I I I I
FIRST HORIZONTAL
DISPLAY WORD

EVEN
DISPLAY

BYTE

SECOND HORIZONTAL
DISPLAY WORD

7~ 81.Ut '

__ @_(,w_·. _e_~;O,£ ___ I _e_GRE_f~---_.· -~-,.-~--_8_GRE-EN-~~-~-~"~~
DISPLAY POSITIONS OF

BYTE SHIFTED
COLOR DOTS.

Fig. 8-1. How unshifted colors are mapped onto HIRES screen. Note that even and odd word color bit positions are different.

If the most significant bit is a zero, all the dots go where you would expect
them to go. If the most significant bit is a one, all seven dots are all shifted
together one-half dot to the right of their normal position.

There are two reasons why you might like to shift all seven dots. In a black
and white HIRES display, a half-dot shift of a dot can appear to double the
apparent resolution on a slanty line, giving you the illusion of a 560-dot horizon
tal resolution. Unfortunately, all seven dots in a byte must shift or unshift to
gether, so this illusion fails if there is too much detail in the picture. The
double-resolution illusion works best on simple large line figures that do not
overlap.

Shifting is also useful to smooth out or "round" characters in a HIRES charac
ter set, or for other small and solid symbols where a half-step horizontal offset
will even things out. Once again, all seven dots of a single byte must be shifted
or unshifted at once.

The second reason why you would want to shift all seven dots is that it gives
you new colors on the screen.

202 Enhancement 8

A ONE IN THE MSB
PICKS THE SHIFTED
COLORS OF BLUE
AND ORANGE ·,

\
\
\

AS BEFORE A "1"
IN A DOT POSITION
LIGHTS THE DOT. A "O"
LEAVES THAT DOT OFF.

I

~ -~1

'-. LEFT EDGE
OF SCREEN

i

I 1 I I I I I I
FIRST HORIZONTAL

DISPLAY WORD

~

EVEN
DISPLAY

BYTE

I I

i

I 1 I I I I I I
SECOND HORIZONTAL

DISPLAY WORD

ODD
DISPLAY

BYTE

I VIOLET)

I I

(GREEN I

POSITION OF
UNSHIFTED
COLOR DOTS

Fig. 8-2. How shifted colors are mapped onto HIRES screen. MSB of each display word shifts or unshifts seven dots at once.

Each dot position on a black and white set can either be lit or unlit. Lit gives
you a white dot and unlit gives you a black dot. There are 280 possible dots on
a horizontal line, equal to 40 bytes of 7 bits each. These dots can be placed in
any of 560 possible positions, provided each group of 7 dots is shifted or not
shifted as a block.

You will get the same black and white display on a color tv set if you cancel
the color burst with the software-controlled color killer of Enhancement 2, or
if you back all the color controls completely off.

Things get much more complicated if you want a color display. There is no
way to produce a single white dot on a color tv set when the set is in its color
mode. Each dot has to be a color since each dot consists of some red, blue, or
green phosphor bars or dots on the screen.

One way to gain insight into how a color tv works in an Apple display is to
assume that the exact position of the dot determines the color that will be
displayed. If your dots are unshifted, you can assume dot-position zero will be
violet and dot-position one will be green and dot-position two will be violet
again, and so on across the screen.

If you have shifted your dots one-half dot, as we did in Fig. 8-2, you can
assume that dot-position zero will be blue and dot-position one will be orange
and dot-position two will be blue again, and so on across the screen. Your Apple
can give you either green and violet dots inside a 7 -dot byte, or else, it can give
you orange and blue dots, again inside a 7-dot byte. You get the green and violet
by unshifting the seven dots and you get the orange and blue by shifting the dots.

Fast Backgrounder 203

What actually goes on inside the tv is more complicated. Each dot pair
represents one cycle of the 3.58-megahertz color reference provided by the
Apple and used by the tv. The phase shift, or relative time delay, between this
reference burst and the presence of a dot decides the color for that dot. Once
the color is decided, the red, blue, and green phosphors are lit in the magic
combination needed to get the right color.

But, we are mainly interested in results rather than how those results are
obtained. Instead, simply assume that each dot position is a unique color.

Like so ...

Dot position 0.0 violet
Dot position 0.5 blue
Dot position 1 .0 green
Dot position 1 .5 orange

Dot position 2.0 violet
Dot position 2.5 blue
Dot position 3.0 green
Dot position 3.5 orange

... and so on across the screen.
Now for the tricky part. The way you get a white dot or line on a color set

is to light a pair of dots. Since green and violet are complementary colors,
lighting both of them beside each other will appear to give you a double-wide
white dot. Similarly, orange and blue are complementary colors. Lighting a pair
of these, side-by-side, will also give you a white dot.

Thus, it takes two dots, side-by-each, to give you the illusion of a white dot
on a color tv. What really happens is that two adjacent dots of complementary
colors get lit and you end up with the illusion of white light.

All of which says that the color resolution of your Apple is only half as good
as the black and white resolution. You can only put down 140 green dots on
a horizontal line. Similarly, you can only put down 140 dots of any of the three
other colors of violet, orange, or blue. You also can only put down 140 white
dots, since a white dot really is a pair of adjacent color dots.

Now, that sounds really awful, but most of it is the fault of the color tv, owing
to the subcarrier method used to extract color. You can beat all this by going
to a direct red, blue, and green video, like we may do in a later enhancement.
If you are willing to directly enter the color guns, and if you are willing to add
a small and very fast RAM after your Apple's circuitry, there is virtually no limit
to the resolution, color range, or grey scale that you can get from your
Apple.

Right now though, there is also a further limitation, since each seven adjacent
dots must be shifted or unshifted together. Thus, you cannot normally have a
blue dot and a green dot right beside each other. Color changes are best left for
different 7-dot bytes, rather than being done inside a single 7-dot byte. At worst,
you could be limited to as few as forty color changes across your screen if you
are not careful about which colors have to go together.

By the way, these are "nominal" colors. Your color tv settings can make a
big difference in what you see or get.

So, we see that there are absolute color limits which are set by the way the
Apple and your color tv interact. We must obey these rules, at least for now.
But, we are free to play any games within these limits to create the illusion of
more colors than you'd think possible. This gets tricky, but it really works
good.

204 Enhancement 8

Let's sum all this up

APPLE COLORS AND
RESOLUTION

1. In black and white, the Apple
can put 280 dots or undots
across the screen.

These dots or undots can go
in any of 560 possible loca
tions so long as 7 dots or un
dots in a byte are shifted at
the same time.

2. In color, the Apple can only
put down 140 dots of a given
color on a horizontal line. The
only dot colors are green, vio
let, orange, and blue.

Green and violet are done
with unshifted 7-dot bytes.
Orange and blue are done
with shifted 7-dot bytes. You
cannot mix shifted and unshift
ed dots inside a 7-dot byte.

3. Also in color, the Apple can
only give you a black and
white resolution of 140 dots
since a complementary dot
pair must be lit to get the illu
sion of white light.

The general idea is to use larger areas and many dots to trick the eye into
seeing colors that are not there. This, of course, is the way all color printing
works. Fortunately, the eye is much better at resolving detail than it is in resolving
color, so we can get away with stunts like this. Let's see what we can get in the
way of

More colors

A color tv only has three colors it can produce. These are red, blue, and green.
But, it obviously plays games with combinations of these colors to give you a
wide spectrum of colors; even some that do not exist elsewhere.

You can do the same thing with your Apple. One possibility is to flash different
colors in the same position on alternate fields. We may look at this in a future
enhancement. This method will give you some apparently individual lines and
some dots of different colors, but it also tends to flicker and it has other limiting
factors.

Fast Backgrounder 205

Instead, we will note that most colors used on your Apple will be used over
a fairly large area. The days of stick figures and open lines on Apple HIRES are
long since gone. Most colors will be presented over a wide area, rather than as
a single line. Our Backgrounder will use the entire screen to create the illusion
of having lots of HIRES colors. The same ideas are easily used to fill in colors
inside any shape you like.

The key to more colors is tricking the eye. One trick we can pull works in the
vertical direction. If you take a pair of adjacent horizontal lines, and make one
blue and the other green, you will see aqua, particularly if there are many line
pairs in use. By itself, use of line pairs of color should take the basic 6 colors
and extend them to 21. This happens since 6 + 5 + 4 + 3 + 2 + 1 = 21,
the number of possible pairs of 6 colors available.

Most of these "new" colors formed by pairs of horizontal lines are very
appealing and useful. A few are downright awful. Some look very good on a
color set, while others stand out on a black and white display. A very careful
choice of colors can give you the best of both worlds, with stunning colors that
can still be resolved easily on a black and white display. This little detail can
get very sticky if you are designing programs that must run on either type of tv
set.

Can we gain still more colors? What about the horizontal direction? Suppose
we mix a color, then black, a color, then black, and so on? Or white, then a
color, white, then a color, and continue this. Or, even alternate pairs of white
and black spaced colors one line above the other? What you end up with is lots
more colors. Some of these will have a texture to them and others will have lots
of individual dots, sort of like the colors in the Sunday comics. Many of these
new colors will be very useful.

We will look at fourteen of these "new" colors. This brings up the total of solid
or nearly solid colors per horizontal line to 20. Now, go to your alternating line
pairs, and you end up with a total 20 + 19 + ... + 2 + 1 = 210 possible
HIRES colors. Nineteen of these have ugly black stripes in them, but I count 191
that are genuinely useful HIRES colors so far. You might find more when you
start to look at odd-ball bit combinations.

The theoretical number of different HI RES colors is much higher than 21 0, but
there are many duplicate, ugly, or useless results along the way.

We will define our background colors with an 8-byte color cell as shown in
Fig. 8-3. The cell is 4 bytes long by 2 bytes high. We have to be 4 bytes long
since some of the color patterns will not repeat exactly until 28 dots. We end
up with 2 bytes in height because we may use alternating line pairs for some
colors.

Our cell is two scan lines deep, starting with an even scan line and ending with
an odd scan line. We then are free to use our second line in any of several ways.
For instance, we can simply repeat the upper line for the traditional colors. We
can make this second line white to lighten the color. In theory, we can leave
the second line black to darken the color, but this tends to be too striped for
most uses. We can also use our second line to mix hues for us, perhaps combin
ing blue and green to get aqua, and so on.

Finally, we can use our second scan line to mess with the texture of our
screen. We can use it to minimize the texture of the "comic book" colors as
we will see shortly. Also, we can use this second scan line to purposely enhance
texture-say, to emphasize a pattern or a design.

Each 8-byte color cell will be controlled by an 8-entry color pattern file. The
file values start at the top and work across. Thus, the first pattern is in the upper
left, the fourth one is in the upper right, the fifth one is in the lower left, and,
finally, the eighth one controls the bottom right seven dots in the cell.

206 Enhancement 8

8-BYTE
COLOR

PATTERN I $2A I $55 I $2A I $55 I $D5 I $AA I $D5 I $AA I
F ILE

0 = LIT

FTED
• = OUT
D = UNSHI
0 = SHIFT ED

+

I I
I

i
4 X 2

SCREEN • 0. 0
PATTERN Q. Q. •0•0•0•0•01•0•0•0•10•0•0•01

CELL
oeoeoeoeoe1oeoeoeo1eo•o•c•1

~ t t

I I
I I I

In this example. green is used on even scan lines and blue issued on odd scan lines to give an aqua screen.

Fig. 8-3. Fast BACKGROUND.SET program uses an 8-byte color pattern file to map a 56-dot, 4x2-byte color block on the screen.

If our colors are going to appear to be continuous over the entire screen, we
have to obey an important rule ...

For continuous background color,
the bit patterns must repeat
EXACTLY when going across both
7-dot byte boundaries and 8-byte
cell boundaries.

What this says is that you have to be very careful in your choice of the ones
and zeros in your individual bits and bytes. Otherwise, you will get lots of stripes
across the screen and end up with a pattern instead of a color.

Now, if you want patterns, that's fine. Just stuff any old 64 bits into your cell
(56 color dots and 8 half-dot shifts) and out comes a pattern. Some of these
patterns are stunning. Some are ugly, others awful. Many are boring. Some can
be used to, say, do a chain-link fence, or frost glass, or simulate a lace dress.
Others are nice for curtain effects, used either in a window or as a full-screen
stage.

There are more than several patterns available to you. Quite a few, in fact.
Run through the mathematics and you'll find that there is a grand total
of 186,446,744,073,709,551,616 possible patterns for your 8-byte cell.

This is so many patterns, in fact, that you might never be able to get through
them all. So we will all share the work. Assume that there are only 125,000
readers of this book. A gruesomely conservative thought, but let's assume it
anyway. Your share of the patterns will then only be a measly one and a half
quadrillion patterns, give or take a few.

What I'd like you to do is this. Go through your share of the patterns one by
one and when you find some really and truly outstanding ones, jot them down
on the card that is in the back of this book and mail it in, and we'll publish the
best patterns, textures, and colors that we get in a future volume of enhance
ments.

Fast Backgrounder 207

Pattern codes

Back to our colors. Seven is a nasty number. It is both odd and prime.
Remember that we must get the dot patterns to repeat every byte and every cell,
continuously, if we are to have a solid color rather than a pattern. This severely
restricts the codes you can use. There are only two patterns that will repeat
identically with every byte. There are four new patterns that will repeat identical
ly with every second byte.

If we wait for a period of three bytes for our patterns to repeat, we pick up
four more new and different patterns. Actually, these won't quite map into our
upcoming 4-cell backgrounder space, and we will be violating our "it must fit
exactly" rule. But, we will show you these three-byters just in case you want
to play with them.

For maximum flexibility and the greatest possible choice of colors, we have
to be willing to make four bytes in a row have different codings. We also have
the option of stacking two different pairs of four bytes for even more color
combinations.

The 4-byte patterns will give us ten new and useful combinations, Actually,
there are many more 4-byte patterns possible, but these are either offset replicas
of other 4-byte patterns, or else, they give the same color but a different texture.
More details on this will be given shortly.

Summing things up

NEW HIRES COLORS

NO.OF BYTES NO. OF NEW COLORS

One 2
Two 4
Three 4
Four 10

-
Total 20

Total number of combinations of pairs of
20colors = 20+19+18+17+ ... ,or
n(n + 1)/2 = 210.

possible colors 210
- ugly colors 19

-
total 191

Total number of obvious and useful
HIRES colors = 191.

Someone else will most likely come up with some more subtle bit combina
tions that can lead to even more HIRES colors. But, no matter whose math you
use, you will see that ...

There are many more HIRES colors
available on an Apple than there
are LORES colors!

The big advantage of the 121 LORES colors of Enhancement 5 was that you
got more hues, while with the HIRES combinations, you tend to get more shades

208 Enhancement 8

of fewer actual hues. Either route will lead to some mind-blowing color

displays.
Let's look at these 1-, 2-, 3-, and 4-byte color combinations in detail. We will

first look at combinations that only involve a single horizontal line.
There are only four possible bit patterns that leave all four bytes identical. Two

of these are white, and two are black. Here's what they look like ...

$00-00-00-00 ooooooococ,c,c,0000000000000000 (white)

$80-80-80-80 0000000000000000000000000000 (white)·

$ 7F- 7F- 7F- 7F ••••• ••• •••••••••••••••••••• (black)

$FF-FF-FF-FF •••••••••••••••••••••••••••• (black)'

·=shifted color. o= lit dot

There are two black patterns and two white ones. Both blacks will look the
same. The whites will be pretty much the same, although one may end up
slightly "warmer" than the other. Usually, you use unshifted black and white
with the upcoming green and violet, and use shifted black and white with
orange and blue.

Note that there is no way to get any other continuous HIRES color by writing
the same value to each and every byte. You can only get white and black this
way. Any other values will give you stripes or patterns rather than solid colors.

If we go to pairs of horizontal bytes, we add these four solid colors ...

$2A-55-2A-55 e0e0e0e0e0e0e0e0e0e0•0•0•0•0 (green)

$AA-D5AA-D5 e0e0e0e0e0e0•o•o•0•0e0e0e0e0 (orange)•

$55-2A-55-2A 0•0e0e0e0e0•0•0•0e0e0e0•0•0• (violet)

$D5-AA-D5-AA 0•o•o•o•o•o•o•o•0e0e0e0e0e0e (blue)•

·=shifted color

These are the usual "eight" colors provided by Apple in its HIRES routines.
You have four solid colors, two blacks, and two whites.

Note particularly how each second byte has to have a different bit pattern
for the colors. The bit pattern has to be continuous over the screen. Since there
are an odd number of bits per byte, this means that the 2-byte colors have to
be stored as different values.

To make things more interesting, let's now look at four more new 3-byte
patterns

$49-25-12 eooeooeooeooeoo•ooeor=> (3/1)

$C9-A5-92 eoo•ooeoo•oo•oo•oo•oo (312r

$36-5s-6o oeeoe•o••o••o••o••o•• (3/3)

$86-os-rn o••o••o••o••o••o••o•• (3/4).

• = shifted color

At first glance, you might think we would have more 3-color patterns than this.
We already have used up the all-white and all-black patterns as 4-byte colors.

Fast Backgrounder 209

And, the other combinations are simply "phase shifts" or offsets of what we
already have. For instance, the pattern $25-12-49 gives us the same color as
$49-25-12, only with the actual dot pattern shifted one byte to the right. This
offset shift will give us nothing new in the way of color, but might be useful to
minimize any background pattern. We will see a good example of this with our
4-color patterns.

In general, the 3-color patterns are kind of bland greys and are not too
exciting. Their use gets complicated by the need for us to handle things "by
fours" in our upcoming fast background program. While we won't be using these
too much here, you might find the 3-byte colors useful additions to your bag
of tricks.

Some of the 4-byte patterns are really neat. There are ten new and useful ones.
We pick up four new pastels, two greys, and four dark colors. Let's start with
the pastels

$11-22-44-08 •oooeoooeoooeoooeoooeoooeooo (lime green)

$91-A2-c4-88 eoooeoooeoooeoooeoooeoooeooo (sky bluer

$22-44-08-11 oeoooeoooeoooeoooeoooeoooeoo (lilac)

$A2-c4-88-91 oeoooeoooeoooeoooeoooeoooeoo (beige)'

·=shifted color

These four new "pastel" colors will also have four identical other ones, offset
by two bytes. These add nothing new in the way of color, but give us a way
to break up any background pattern.

For instance, we can do this for lime green ...

eoooeoooeoooeo
eoooeoooeoooeo
eoooeoooeoooeo
eoooeoooeoooeo
eoooeoooeoooeo

... here we used the same pattern on all four scan lines. But, if we alternate
the regular and the offset pattern on alternate scan lines, note how the texture
"breaks up"

eoooeoooeoooeo
ooeoooeoooeooo
eoooeoooeoooeo
ooeoooeoooeooo
eoooeoooeoooeo

Both displays are lime green. But the bottom choice will give us a more
uniform lime green, since the texture is broken up. This becomes most obvious
with the upcoming dark colors.

We will shortly be listing some of these color patterns. A "normal" color
pattern should usually be used on the even scan lines of any color area, while
an "offset" color pattern should be used on the odd scan lines of any color area.
You are, of course, free to do whatever you like for special effects. Sometimes,
you might want to enhance texture rather than trying to minimize it.

2 IO Enhancement 8

Here are our two new greys ...

$33-66-4c-19 ••ooeeooeeooeeooeeooeeooeeoo (grey 1)

$B3-E6-cc-99 ••ooeeooeeooeeooeeooeeooeeoo (grey 2)·

·=shifted color

Once again, there really are at least four greys-one normal and one offset by
two bytes. Notice one more time how we can emphasize or reduce texture with
the choice of regular or offset colors

••ooeeooeeooee
••ooeeooeeooe•
••ooeeooeeooee
••ooeeooeeooee
••ooeeooeeoo••

eeooeeooeeoo••
ooeeooeeooeeoo
eeooeeooeeoo••
ooeeooeeooeeoo
••ooeeooeeoo••

These are subtle differences to be sure, but they get important real quick when
you try to build something that looks good both on a black and white and a color
tv screen.

Our final four colors are dark ones, since they hit one color dot, miss the next
dot of the same color, then hit the next one, and so on. Here is what they look
like

$6E-5D-3B-77 Oeeeo•••o•••o•••o•••o•••o••• (purple)

$DD-BB-F7-EE o•••o•••o•••o•••o•••o•••o••• (navy blue)'

$5D-3B-77-6E •o•••o•••o•••o•••o•••o•••o•• (forest green)

$EE-DD-BB-F7 •o•••o•••o•••o•••o•••o•••o•• (brown)'

·=shifted color

These tend to give a "comic book" or "Sunday funnies" effect at close range
and are just what you need to add variety to a HIRES color palette.

You could probably go on to 5-byte colors, and 6-byte colors, and so on, but
things would most likely end up so spread out that you no longer would see any
apparently solid colors. You could also go to patterns of two lit, three off, and
so on, as well. Chances are that most of these new patterns will either be obvious
or else very near to what we already have. But-check them out anyway, since
there are bound to be some useful surprises along the way.

If you do go into your own exotic patterns, be sure to remember our rule that
the bit pattern on the screen must repeat exactly across each byte boundary and
for each 8-byte, 4 X 2 cell.

Add everything useful up so far, and you get 20 one-line colors. We are now
free to use our second scan line to add to our basic 20 colors. As we have seen,
you can use this second line to duplicate colors, to offset bytes for minimum
patterns, to mix hues together, to lighten, to darken, or to actually emphasize
patterns. These new combinations give you at least 220 colors. This drops to 191
when you remove the 19 uglies that you get when you try to darken with a black
line.

Table 8-1 shows my choice of color file values for the thirty-two most useful
colors and patterns. We start with Apple's own six colors. Here the first and
second scan lines are identical. Then we add fourteen of the 4-byte colors. With
the 4-byte colors, we use the second scan line to offset and minimize any screen
patterns.

Fast Backgrounder 2 7 7

Table 8-1. File Values for "Stock" Background Colors

NO. COLOR HEX FILE VALUES DECIMAL FILE VALUES

0
1
2
3

4
5
6
7

8
9
10
11

12
13
14
15

16
17
18
19

20
21
22
23

24
25
26
27

28
29
30
31

blackl
green
blue
whitel

black2
violet
orange
white2

purple
navy
forest
brown

greyl
grey2
lime
lilac

beige
sky
aqua
steel

yellow
powder
pink

$00-00-00-00-00-00-00-00 00-00-00-00-00-00-00-00
$2A-55-2A-55-2A-5 5-2A-55 42-85-42-85-42-85-42-85
$D5-AA-D5-AA-D5-AA-D5-AA 213- l 70-213-170-21 3-170-213-1 70
$7F-7F-7F-7F-7F-7F-7F-7F 127-127-127-127 -127-12 7-127-127

$80-80-80-80-80-80-80-80 128-128-128-128-128-128-128-128
$55-2A-55-2A-55-2A-55-2A 85-42-85-42-85-4 2-85-42
$AA-D5-AA-D5-AA-D5-AA-D5 170-213-170-213-170-213-170-213
$FF-FF-FF-FF-FF-FF-FF-FF 255-255-25 5-255-2 55-25 5-255-255

$11 -22-44-08-44-08- 11 -22
$91-A2-C4-88-C4-88-91-A2
$22-44-08-11-08-11-22-44
$A2-C4-88-91-88-91-A2-C4

$33-66-4C- l 9-4C- l 9-33-66
$ B 3-E6-CC-99-CC-99-B 3-E6
$6E-5D-3 B-77-3B-77-6E-5D
$5 D-3 B-77-6E-7 7-6E-5 D-3 B

$EE-DD-BB-F7-BB-F7-EE-DD
$DD-BB-F7-EE-F7-EE-DD-BB
$2A-55-2A-55-D5-AA-D5-AA
$2A-55-2A-55-5 5-2A-55-2A

$2A-55-2A-55-AA-D5-AA-D5
$D5-AA-D5-AA-55-AA-55-AA

17-34-66-08-66-08-17-34
145-162-196-136-196-136- 145-162
34-66-08- 1 7-08-1 7-34-66
162-196-136-145-136-145-162-196

51-102-76-25-76-25-51-102
179-230-204-153-204-153-179-230
110-93-59-119-59-119-110-93
93-59-119-110-119-110-93-59

238-221-187-247-187-247-238-221
22 l-187-247-238-247-238-221- 187
42-85-42-85-213-170-213- l 70
42-85-42-85-85-42-85-42

42-85-42-85-170-21 3-1 70-213
213-170-213-170-85-42-85-42

$D5-AA-D5-AA-AA-D5-AA-D5 213-170-2 l 3-170-170-213-170-2 l 3
magenta $AA-D5-AA-D5-55-2A-55-2A 170-213-l 70-213-85-42-85-42

olive $2A-55-2A-55-7F-7F-7F-7F 42-85-42-85-127-127-127-127
silver $D5-AA-D5-AA-FF-FF-FF-FF 213-170-213-170-255-255-255-255
salmon $AA-D5-AA-D5-FF-FF-FF-FF 170-213-l 70-213-255-255-255-255
mauve $55-2A-55-2A-7F-7F-7F-7F 85-42-85-42-127-127-127-127

drapel $Cl-A3-A5-89-2C-08-CD-FE 193-163-165-137-44-8-205-254
drape2 $9A-43-54-18-05-26-53-01 154-67-84-24-5-30-83-1
chainl $00-7F-00-7F-7F-00-7F-OO 0- 1 2 7 -0- 1 2 7 -1 2 7 -0- 1 2 7 -0
chain2 $0F-OF-OF-OF-78-78-78-78 15- l 5-15- l 5-120-120-120-120

NOTE: Colors will vary with tv and its adjustments.

SECOND
LINE USE

duplicate
duplicate
duplicc1te
duplicate

duplicate
duplicate
duplicate
duplicate

offset
offset
offset
offset

offset
offset
offset
offset

offset
offset
mix hues
mix hues

mix hues
mix hues
mix huPS
mix hues

lighten
lighten
lighten
lighten

pattern
pattern
texture
texture

Next, in the file, are six mixed hue colors. Of these, aqua and magenta are
particularly good looking. We do the mixing by putting down one color on one
scan line and a second color on the second scan line. Following this are four
colors in which the second scan line is white, giving us some additional pastels.
Finally, we have four examples of patterns in which the scan lines are used to
emphasize, rather than minimize the texture. Two stage "curtains" and two
"chain" effects are shown.

Naturally, you are free to mix and match things anyway you want for your
own color files. You can also use the same patterns to fill much smaller areas
than the whole screen, although it will often take several scan lines and a few
bytes of width to get a pleasing result.

Well, that's about all we need in the way of HIRES color theory. All you have
to do to color any part of the screen 191 ways is to paint an 8-byte block of
the screen with the magic bytes. If you need partial blocks, you simply continue
the bit pattern up to the border of whatever it is you are coloring. Some colors
will not be compatible with some borders, so you have to experiment to get the
best overall results.

212 Enhancement 8

For patterns instead of colors, you do the same thing. The only difference is
that you now have a mind-boggling choice of special effects at your disposal.

By the way, our color names are only rough guidelines. The actual colors you
get will vary with the tv and ilts color settings.

Now all we need is a snappy program to rapidly clear the HIRES screen for
us. Something like

FAST BACKGROUND.SET

Program 8-1 is a machine-language subroutine called FAST BACKGROUND.
SET. While it is designed to fit in an alternate character slot in the HRCG of the
DOS Toolkit you can use it with any program in any language that needs a fast
clear of HIRES1. Remember that the program must be located in a protected
space.

Many of the ideas behind this program are the same as we used in the GENTLE
SCROLL.SET of the previous enhancement. To give us the fastest possible screen
erasure, we work only with the entire screen at once, use fast indexed store
instructions, and share our loop overhead sixteen ways at once.

There are two main parts to the program. The operating code goes from
$BAFF to 8BFF, while a 32-value color file resides from $8C00 to $8CFF. To
use the program, you poke or load your choice of color or pattern into location
$8B00, which is the same as an Applesoft POKE to 35584. This color value will
be a number from Oto 31. You then activate the fast background clear by jump
ing to a subroutine at $8B01 or calling 35585.

Table 8-2 shows you the color-file values as they are now. Each color takes
up 8 successive bytes in the file, giving us 32 total colors or patterns in the
one-page-long file. You can change any or all of these color values to suit your
own needs.

A flowchart of the FAST BACKGROUND.SET is shown in Fig. 8-4. We first
calculate a file pointer by multiplying the color times eight. Then, we get the first
color byte and use this byte in 1024 places, arranged as sixteen lines of 64 bytes
per line. Note that we only map every fourth byte of only the even scan lines
whe~ we put this byte down.

We theQ get tl:)e second byte and put it down, again in 1024 locations. This
is followed by the third byte and, finally, the fourth, which completes the even
scan line mappings.

After that,"we repeat the process on the odd scan lines, starting with the fifth
byte in the selected color file and going on until we end up on the eighth and
final value. When you are done, you have mapped 8 cells of 4 X 2 bytes into
1024 locations, or 8192 bytes total. Most of these bytes are on screen, while
a few are off screen but not otherwise used.

Program 8-2 is an Applesoft demo that either shows you your choice of all
32 colors or patterns in order, or lets you enter and view your own patterns, or
gives you a random-background show. It is menu driven.

For a 32-color show, the desired color gets POKED and the FAST
BACKGROUND.SET is called. Then, a several second delay takes place, and
you go on to the next color. Be sure to note that the screen clear takes place
on the color change, and not on the long viewing delay. The screen clears or
changes literally as fast as you can blink your eye.

To enter your own color or pattern, color-file location 0, or the eight bytes
from $8C00 to $8C07, is borrowed, and the pattern is stuffed in here. This pat
tern is then displayed.

The random-color show does pretty much the same thing except the program
throws its own eig~t random numbers into color file Zero. Should you want to

Fast Backgrounder 2 7 J

PROGRAM 8-1

FAST BACKGROUND SET

LANGUAGE APPLE ASSEMBLER

BAFF: 4
BAFF: 5
BAFF: 6
BAFF: 7
BAFF: 8
BAFF: 9
BAFF: 10
BAFF: 11
BAFF: 12
BAFF: 13
BAFF: 14
BAFF: 15
BAFF: 16
BAFF: l7
BAFF: 18
BAFF: 19
BAFF: 20

BAFF: 22
BAFF: 23
BAFF: 24

BAFF: 26

BAFF: 28
BAFF: 29
BAFF: 30
BAFF: 31
BAFF: 32

BAFF: 34

BAFF: 36
BAFF: 37

BAFF: 39

BAFF: 41
BAFF: 42
BAFF: 43

NEEDS: FIELD SYNC
MOD (OPTIONAL)

* *
* FAST *
* BACKGROUND.SET *
* ($8AFF.8CFF) *
* *
* VERSION 1.1 *
* (10-9-81) *
* *
* COPYRIGHT 1981 *
* BY DON LANCASTER *
* AND SYNERGETICS *
* *
* ALL COMMERCIAL *
* RIGHTS RESERVED *
* *

THIS PROGRAM GIVES A FAST HIRES
CLEAR TO ANY OF THIRTY TWO
BACKGROUND COLORS OR PATTERNS

FROM HRCG

LOAD AS HIGHEST CHARACTER SET
SET USER SUB A TO $8B01
BY $9150: 01 8B
STORE COLOR (0-$1F) AT $8B00
CTRL-A CTRL-Y DOES IT

FROM MACHINE LANGUAGE --

PUT COLOR ($0-$1F) IN $8B00
JSR $8B01

FROM INTEGER BASIC -

SET HIMEM > -29953
POKE -29952, COLOR (0-31)
CALL -29951

2 7 4 Enhancement 8

PROGRAM 8-1, CONT'D ...

BAFF:

BAFF:
BAFF:
BAFF:

BAFF:
BAFF:
BAFF:
BAFF:
BAFF:
BAFF:

BAFF:

BAFF:

BAFF:

BAFF:

C057:
C056:
C060:

BAFF:

BAFF:00
BB00:00
8B01:4C 04 BB
8B04: 18
8B05:AD 00 BB
8B08:0A
8B09:0A
BBOA:OA
8B0B:A8
8BOC:A2 00
BBOE:98
8B0F:48

8Bl0:B9 00 BC
8Bl3:AO 40
8Bl5:9D 00 20
8Bl8:9D 00 21
8BlB:9D 00 22

45

47
48
49

51
52
53
54
55
56

58

60

62

64

FROM APPLESOFT

SET HIMEM < 35583
POKE 35584, COLOR (0-31)
CALL 35585

THERE IS AN OPTIONAL "INVISIBLE"
GLITCH ELIMINATOR BUILT INTO
THIS PROGRAM. TO USE IT, YOU
MUST CLEAR THE LORES SCREEN TO
GREY A.ND SHOULD HAVE THE FIELD
SYNC MOD IN PLACE.

TO ACTIVATE THE INVISIBLE SWITCHER

POKE 35586,159 OR $8B01: 9F

TO TURN OFF THE INVISIBLE SWITCHER

POKE 35586,04 OR $8B02: 04

66 HIRES
67 LORES
68 SYNC

EQU $C057
EQU $C056
EQU $C060

71 ****** MAIN PROGRAM******

73 DFB $00 ADJUST HRCG SET START
74 COLOR DFB $00 COLOR POKES HERE
75 PICK JMP ERASE OPTIONAL INVISIBLE LOCK
76 ERASE CLC FILE POINTER* 8
77 LDA COLOR GET COLOR
78 ASLA
79 ASLA
80 ASLA
81 TAY SAVE COLOR FILE START
8:2 LDX #$00 AND PUT DOWN COLOR
83 NXTBYT TYA RESTORE POINTER
84 PHA AND SAVE ON STACK

86 LDA CFILE,Y CHANGE EVEN SCAN LINES
87 LDY #$40 FOR 64 TRIPS
88 MAPEVN STA $2000,X
89 STA $2100,X
90 STA $2200,X

Fast Backgrounder 2 7 5

PROGRAM 8-1, CONT'D ...

8BlE:9D 00 23 91 STA $2300,X
8B21:9D 00 28 92 STA $2800,X
8B24:9D 00 29 93 STA $2900,X
8B27:9D 00 2A 94 STA $2AOO,X
8B2A:9D 00 2B 95 STA $2BOO,X
8B2D:9D 00 30 96 STA $3000,X
8B30:9D 00 31 97 STA $3100,X
8B33:9D 00 32 98 STA $3200,X
8B36:9D 00 33 99 STA $3300,X
8B39:9D 00 38 100 STA $3800,X
8B3C:9D 00 39 101 STA $3900,X
8B3F:9D 00 3A 102 STA $3AOO,X
8B42:9D 00 3B 103 STA $3BOO,X
8B45:CA 104 DEX GO FOUR BLOCKS TO LEFT
8B46:CA 105 DEX
8B47:CA 106 DEX
8B48:CA 107 DEX AND REPEAT
8B49.: 88 108 DEY DONE WITH 64 BYTES?
8B4A:DO C9 109 BNE MAPEVN
8B4C:E8 110 INX FOR NEXT COLOR BYTE
8B4D:68 111 PLA GET BYTE COUNTER
8B4E:69 01 112 ADC #$01 AND INCREMENT
8B50:A8 113 TAY SAVE NEXT COLOR FILE

POINTER
8851:29 03 114 &"JD #$03 CHECK FOR FOURTH TRIP
8B53:DO B9 115 BNE NXTBYT REPEAT FOR NEXT BYTE

8B55:A2 00 117 LDX #$00 AND PUT DOWN COLOR
8B57:98 118 NXBYTE TYA RESTORE POINTER
8B58:48 119 PHA AND SAVE ON STACK
8B59:B9 00 BC 120 LDA CFILE,Y CHANGE ODD SCAN LINES
8B5C:AO 40 121 LDY #$40 FOR 64 TRIPS
8B5E:9D 00 24 122 MAPODD STA $2400,X
8B61:9D 00 25 123 STA $2500,X
8B64:9D 00 26 124 STA $2600,X
8B67:9D 00 27 125 STA $2700,X
8B6A: 9D 00 2C 126 STA $2COO,X
8B6D:9D 00 2D 127 STA $2DOO,X
8B70:9D 00 2E 128 STA $2EOO,X
8B73:9D 00 2F 129 STA $2FOO,X
8B76:9D 00 34 130 STA $3400,X
8B79:9D 00 35 131 STA $3500,X
8B7C:9D 00 36 132 STA $3600,X
8B7F:9D 00 37 133 STA $3700,X
8B82:9D 00 3C 134 STA $3COO,X
8B85:9D 00 3D 135 STA $3D00,X
8B88:9D 00 3E 136 STA $3EOO,X
8B8B:9D 00 3F 137 STA $3FOO,X
8B8E:CA 138 DEX GO FOUR BLOCKS TO LEFT

216 Enhancement 8

PROGRAM 8-1, CONT'D ...

8B8F:CA 139 DEX
8B90:CA 140 DEX
8B91:CA 141 DEX AND REPEAT
8B92:88 142 DEY ONE LESS TRIP
8B93:DO C9 143 BNE MAPODD
8B95": EB 144 INX FOR NEXT COLOR BYTE
8B96:68 145 PLA GET BYTE COUNTER
8B97:69 01 146 ADC #$01 AND INCREMENT
8B99:AB 147 TAY SAVE COLOR FILE LOCATION
8B9A:29 03 148 AND #$03 FOURTH TRIP?
8B9C:DO B9 149 BNE NXBYTE REPEAT FOR NEXT BYTE

8B9E:60 151 RTS EXIT WHEN DONE

8B9F: 15,4 *** INVISIBLE SWITCHER***

8B9F:2C 60 co 156 TESTl BIT SYNC LOOK FOR VBLANK
8BA2: 10 FB 157 BPL TESTl
8BA4:2C 56 co 158 BIT LORES SWITCH TO LORES GREY
8BA7:20 04 8B 159 JSR ERASE DO FAST HIRES CLEAR
8BAA: 2C 60 co 160 TEST2 BIT SYNC FIND ANOTHER VBLANK
BBAD:10 FB 161 BPL TEST2
8BAF:2C 57 co 162 BIT HIRES SWITCH BACK TO HIRES
8BB2:60 163 RTS AND EXIT

8BB3: 165 ***** COLOR PATTERN FILE *****

BCOO: 167 ORG COLOR+256

BC00:00 00 00 169 CFILE DFB $00,$00,$00,$00,$00,$n0,$00,$00
8C03:00 00 00
8C06:00 00
8C08:2A 55 2A 170 PATl DFB $2A,$55,$2A,$55,$2A,$55,$2A,$55
8COB:55 2A 55
8COE:2A 55
8Cl0:D5 AA D5 171 PAT2 DFB $D5,$AA,$D5,$AA,$D5,$AA,$D5,$AA
8Cl3: AA D5 AA
8Cl6:D5 AA
8Cl8:7F 7F 7F 172 PAT3 DFB $7F,$7F,$7F,$7F,$7F,$7F,$7F,$7F
8C1B:7F 7F 7F
8ClE:7F 7F

Fast Backgrounder 2 7 7

PROGRAM 8-1, CONT'D ...

8C20:80 80 80 173 PAT4 DFB $80,$80,$80,$80,$80,$80,$80,$80
8C23:80 80 80
8C26:80 80
8C28:55 2A 55 174 PATS DFB $55,$2A,$55,$2A,$55,$2A,$55,$2A
8C2B: 2A 55 21\.
8C2E:55 2A
8C30:AA D5 AA 175 PAT6 DFB $AA,$D5,$AA,$D5,$AA,$D5,$AA,$D5
8C33:D5 AA D5
8C36:AA D5
8C38:FF FF FF 176 PAT7 DFB $FF,$FF,$FF,$FF,$FF,$FF,$FF,$FF
8C3B:FF FF FF
8C3E:FF FF
8C40: 11 22 44 177 PATS DFB $11,$22,$44,$08,$44,$08,$11,$22
8C43:08 44 08
8C46: 11 22
8C43:91 A2 C4 178 PAT9 DFB $91,$A2,$C4,$88,$C4,$88,$91,$A2
8C4B:88 C4 88
8C4E:91 A2
8C50:22 44 08 179 PATlO DFB $22,$44,$08,$11,$08,$11,$22,$44
8C53:ll 08 11
8C56:22 44
8C58:A2 C4 88 180 PATll DFB $A2,$C4,$88,$91,$88,$91,$A2,$C4
8C5B:91 88 91
8C5E:A2 C4
8C60:33 66 4C 181 PAT12 DFB $33,$66,$4C,$19,$4C,$19,$33,$66
8C63:19 4C 19
8C66:33 66
8C68:B3 E6 cc 182 PAT13 DFB $B3,$E6,$CC,$99,$CC,$99,$B3,$E6
8C6B:99 cc 99
8C6E:B3 E6
8C70:6E 5D 3B 183 PAT14 DFB $6E,$5D,$3B,$77,$3B,$77,$6E,$5D
8C73:77 3B 77
8C76:6E SD
8C78:5D 3B 77 184 PAT15 DFB $5D,$3B,$77,$6E,$77,$6E,$5D,$3B
8C7B:6E 77 6E
8C7E:5D 3B
8C80:EE DD BB 186 PAT16 DFB $EE,$DD,$BB,$F7,$BB,$F7,$EE,$DD
8C83:F7 BB F7
8C86:EE DD
8C88:DD BB F7 187 PAT17 DFB $DD,$BB,$F7,$EE,$F7,$EE,$DD,$BB
8C8B:EE F7 EE
8C8E:DD BB
8C90: 2A 55 2A 188 PAT18 DFB $2A,$55,$2A,$55,$D5,$AA,$D5,$AA
8C93:55 D5 AA
8C96:D5 AA
8C98:2A 55 2A 189 PAT19 DFB $2A,$55,$2A,$55,$55,$2A,$55,$2A
8C9B:55 55 2A
8C9E:55 2A
8CA0:2A 55 2A 190 PAT20 DFB $2A,$55,$2A,$55,$AA,$D5,$AA,$D5
8CA3: 55 AA D5

218 Enhancement 8

PROGRAM 8-1, CONT'D ...

8CA6:AA DS
8CA8:D5 AA D5 191 PAT21 DFB $D5,$AA,$D5,$AA,$55,$2A,$55,$2A
BCAB:AA 55 2A
BCAE:55 2A
8CBO:D5 AA DS 192 PAT22 DFB $D5,$AA,$D5,$AA,$AA,$D5,$AA,$D5
8CB3:AA AA DS
8CB6:AA DS
8CB8:AA D5 AA 193 PAT23 DFB $AA,$D5,$AA,$D5,$55,$2A,$55,$2A
8CBB:D5 55 2A
BCBE:55 2A
8CC0:2A 55 2A 194 PAT24 DFB $2A,$55,$2A,$55,$7F,$7F,$7F,$7F
8CC3:55 7F 7F
8CC6:7F 7F
8CC8:D5 AA DS 195 PAT25 DFB $D5,$AA,$D5,$AA,$FF,$FF,$FF,$FF
8CCB:AA FF FF
8CCE:FF FF
8CDO:AA DS AA 196 PAT26 DFB $AA,$D5,$AA,$D5,$FF,$FF,$FF,$FF
8CD3:D5 FF FF
8CD6:FF FF
8CD8:55 2A 55 197 PAT27 DFB $55,$2A,$55,$2A,$7F,$7F,$7F,$7F
8CDB: 2A 7F 7F
8CDE:7F 7F
8CEO:Cl A3 AS 198 PAT28 DFB $Cl,$A3,$A5,$89,$2C,$08,$CD,$FE
8CE3:89 2C 08
8CE6:CD FE
8CE8:9A 43 54 199 PAT29 DFB $9A,$43,$54,$18,$05,$26,$53,$01
8CEB: 18 05 26
8CEE:53 01
8CFO:OO 7F 00 200 PAT30 DFB $00,$7F,$00,$7F,$7F,$00,$7F,$00
8CF3: 7F 7F 00
8CF6:7F 00
8CF8:0F OF OF 201 PAT31 DFB $0F,$0F,$0F,$0F,$F8,$F8,$F8,$F8
8CFB:OF F8 F8
8CFE:F8 FB

Fast Backgrounder 2 7 9

Table 8-2. Color-File Locations Used in FAST BACKGROUND.SET

PATTERN HEX LOCATION DECIMAL LOCATION

0 $8C00 35840
1 $8C08 35848
2 $8C10 35856
3 $8C18 35864

4 $8C20 35872
5 $8C28 35880
6 $8C30 35888
7 $8C38 35896

8 $8C40 35904
9 $8C48 35912
10 $8C50 35920
11 $8C58 35928

12 $8C60 35936
13 $8C68 35944
14 $8C70 35952
15 $8C78 35960

16 $8C80 35968
17 $8C88 35976
18 $8C90 35984
19 $8C98 35992

20 $8CA0 36000
21 $8CA8 36008
22 $8CB0 36016
23 $8CB8 36024

24 $8CC0 36032
25 $8CC8 36040
26 $8CD0 36048
27 $8CD8 36056

28 $8CEO 36064
29 $8CE8 36072
30 $8CF0 36080
31 $8CF8 36088

In hex, LOCATION= $8CO0 +$PATTERN* 8.
In decimal, LOCATION = 35840 + PATTERN* 8.

hold these values for later use, stop the program with a "Control C" at that point.
To resume, type "RUN" as usual.

By the way, all the programs in this book have been modified to automatically
exit you to the AUTO MENU program on the demo disk, so you can continuous
ly run things without lots of extra keystrokes. Be sure to delete the "RUN
MENU" exit lines if you do not want this feature in any of your programs.

ADD-ONS AND MODIFICATIONS

You can relocate the FAST BACKGROUND.SET anywhere you like, but notice
that the file values will change. It is also important to start the color file on an
exact page boundary. The space you pick must be protected from use by any
other program. Usually, an Applesoft HIMEM command will do this for you
either as a direct command or early in a program.

Naturally, you cannot see a fast background HI RES clear if you are in the text
or LORES screen modes. To actually see the fast clear, you must be in HIRES1
when you do the erasure.

220 Enhancement 8

Fig. 8-4. Flowchart of FAST
BACKGROUND.SET program.

{$889F)

!$889F)

($88A7}

($88AA)

($88AF)

($8882)

Fig. 8-5. Flowchart of optional "Invisible
Switcher."

There are several different ways you can pick up a clear of HIRES page Two. To
only clear HIRES2, just replace all the "2XXX" addresses with "4XXX" and
all the "3XXX" addresses with "SXXX" ones. You can also duplicate the entire
program and put it above $8000, sharing a common color file at $8C00, with
calls to the lower part giving you a HI RES 1 clear and calls to the upper part giving
you a HIRES2 clear.

Finally, if saving code space is important, you can also rework the MAPEVN
and the MAPODD stores into subroutines. Jump to the "2XXX" and "3XXX"
subs for a page One clear and to the "4XXX" and "SXXX" subs for a page Two

Fast Backgrounder 22 T

PROGRAM 8-2

FAST BACKGROUND DEMO

LANGUAGE: APPLESOFT NEEDS FAST BACKGROUND SET

10
12
14
16
18
20
22
23
24
26
28
30
32
34
36
38

50
52
54
56
58
60

70
72
74
76

80
82
84
86
88

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM

REM
REM
REM
REM
REM
REM

REM
REM
REM
REM

REM
REM
REM
REM
REM

* *
* FAST BACKGROUND *
* DEMO *
* *
* VERSION 1.0 *
* (10-6-81) *
* *
* COPYRIGHT 1981 *
* BY DON LANCASTER *
* AND SYNERGETICS *
* *
* ALL COMMERCIAL *
* RIGHTS RESERVED *
* *

THIS PROGRAM TESTS AND
DEMONSTRATES THE FAST
BACKGROUNDER FOUND IN
ENHANCEMENT EIGHT OF
ENHANCING YOUR APPLE II
VOLUME 1.

THE PROGRAM "FAST
BACKGROUND. SET" IS
IS ALSO NEEDED ON
THE SAME DISK.

THE FIELD SYNC MOD
OF ENHANCEMENT #4 IS
NOT NEEDED, BUT WILL
GIVE BETTER RESULTS
IF INSTALLED.

100 TEXT: HOME : CLEAR: PRINT : HTAB 08: PRINT
"HIRES FAST BACKGROUND DEMO"

105 HIMEM: 35583: REM PROTECT FAST BACKGROUND.SET
SPACE

110 PRINT " · · · · · · · · · ·
PRINT: PRINT

115 PRHJT "BLOAD FAST BACKGROUND. SET": REM CTRL D

222 Enhancement 8

PROGRAM 8-2, CONT'D ...

117
120
130
140
150
160
170

200
210
220
2 3 0

POKE 35584,0: CALL 35585: REM HIDE THE HGR GLITCH
HTAB 6: PRINT "SHALL I ... II: PRINT : PRINT : PRINT
HTAB 9: PRINT " (s) SHOW STOCK COLORS": PRINT
HTAB 9: PRINT "(E) ENTER A NEW PATTERN": PRINT
HTAB 9: PRINT "(R) CREATE RANDOM PATTERNS": PRINT
HTAB 9: PRINT "(Q) QUIT"
PRINT PRINT : HTAB 18: PRINT "<) II ; : HTAB 19:
REM PRINT MENU

GET A$: IF A$ = "S" THEN GOTO 1000
IF A$ = IIE" THEN GOTO 2000
IF A$ = "R'' THEN GOTO 3000
IF A$ 11011 THEN PRINT : PRINT "RUN MENU": REM
EXIT

235 PRINT"": REM DING-DING-DING
140 HTAB 19: VTAB 19: GOTO 200: REM PICK MENU VALUE OR

KEEP TRYING
1000 GOSUB 4000: i!GR: REM GREY LORES FOR ERASE TIME
1010 VTAB 24: HTAB 5: PRINT "HIT ANY KEY TO RETURN TO

MENU";

1015
1030

1040
1050

VTAB 22: HTAB 12: PRINT "HIRES COLOR#";
FOR C = 0 TO 31: POKE 35584,C: HTAB 25: PRINT C;:
CALL 35585
FOR N = 1 TO 2000: NEXT N: REM DISPLAY TIME
IF PEEK (- 16384) > 128 THEN POKE - 16368,0:
GOTO 100

1060 FOR N = 1 TO 9:A = PEEK (- 16336): NEXT N:

2000
2005
2010

2020
2030

2040
2050
2060
2065
2070
2080
2085

2090
2100
2110
2120

NEXT C: HTAB 25: PRINT " ";: GOTO 1030
HGR: PRINT
VTAB 21
PRINT "ENTER DECIMAL PATTERN VALUES--": PRINT
PRINT
FOR N = 1 TO 8
VTAB 23: HTAB 1: INPUT""; A$(N):A(N) = VAL
(A$ (N))
VTAB 24: HTAB (N * 4 + 2): PRINT A(N);
VTAB 23: HTAB 1: PRINT" ",. HTAB l: NEXT N
FOR N = 1 TO 8: POKE 35839 + N,A(N): NEXT N
FOR N = 1 TO 9:A = PEEK (- 16336): NEXT N
POKE 35584,0: CALL 35585
PRINT VTAB 24: PRINT
PRINT : PRINT "<SPACE> NEW PATTERN <M> MENU
() 11 ;

HTAB 37: GET A$
IF A$ = " " THEN
IF A$ = "M" THEN
GOTO 2090

PRINT: PRINT
GOTO 100

GOTO 2010

PROGRAM 8-2, CONT'D ...

3000

3010
3020

3030

3035
3040
3050

3060
4000

4010
4020
9999

HGR: VTAB 24: HTAB 5: PRINT "HIT ANY KEY TO
RETURN TO MENU" ;
VTAB 22: HTAB 1: PRINT " ";
HTAB 5: FOR N = 1 TO 8:A(N) = INT (256 * RND (1)):
PRINT A(N);: PRINT " ";: POKE 35840 + N,A(N): NEXT
N
POKE 35584,0: CALL 35585: REM ENTER PATTERN ON
SCREEN
FOR N = 1 TO 9:A = PEEK (- 16336): NEXT N
FOR N = 1 TO 3000: NEXT N: REM DISPLAY TIME
IF PEEK (- 16384) > 128 THEN POKE - 16368,0:
GOTO 100
GOTO 3010
GR: COLOR= 5: FOR V = 0 TO 39: HLIN 0,39 ATV:
NEXT V: REM GREY LORES
POKE 35586,159: REM INVISIBLE SWITCH ON
RETURN
END

Fast Backgrounder 223

224 Enhancement 8

clear. Note that you can fake an indirect subroutine jump with a subroutine jump
followed by a jump indirect command.

Since there are lots of page Two options, we've purposely left them off the
program to keep things simple. Add things on in any way that you like.

If you watch the background color demo, with line 4010 omitted, you will
notice a faint "boxwork" glitch as you change colors. This glitch is utterly
insignificant when compared to the royal mess you got with the old HIRES clear,
but it is there.

There is an add-on to the FAST BACKGROUND.SET that totally eliminates this
tiny remaining glitch for those of you who are program perfectionists. For this
to work, you must have the field sync mod of Enhancement 4 in place and be
willing to clear your text screen to LORES grey or some other suitable color.

Fig. 8-5 shows us the flowchart of the "Invisible Switcher." What this does
is wait till a vertical blanking time, switches you to a perfect grey screen, does
a new fast HIRES clear with the Backgrounder, waits for another blanking time,
and, then, returns you to HIRES. Your eye sees only an instantaneous fade from
one color through grey to another color, totally glitch free.

If you do not have the field sync mod in place, delete or bypass line 4010
of Program 8-2. Otherwise, the program may hang.

To use the Invisible Switcher, just poke 35586, 159 or enter $8B01 : 9F. Note
that this invisible switcher is not for everyone, and it may in fact do more harm
than good if you are always returning to the same background color. Neverthe
less, it's there for those of you who are antiglitch purists. The Invisible Switcher
is included in the demo of Program 8-2 9

SEEDS AND STEMS

There is a bug in the 6502's Jump Indirect
($6C) op code, as it wraps around, rather
than crosses page boundaries.

Do not put a Jump Indirect into locations
$FE or $FF of any page.

Appendix

SPECIAL UPDATE SECTION

APPLE lie

All of the enhancements in this volume can be done one way or another on
the Apple lie. In general, field sync gets much simpler, easier to use, and more
powerful. This happens because the magic field-sync wire is already built-in
and ready to go. The color killer gets more complicated and takes some extra
hardware. Hardware or software changes of one sort or another will be
needed for just about all of the enhancements. The same hardware contained
in the original parts kit can be reused in different ways on your Apple lie.

There is now a special Apple lie support disk available with everything
debugged and ready to go. Just use the order card in the back of the book and
be sure to specify the Apple lie version. If you have already bought an older
support diskette, send it back to us with $5.00 if you want to change to the
new Apple lie-only version.

Let's check into the differences.

Enhancement One

The two glompers will work on any version Apple. You only need them if
you are using an rf modulator and an ordinary tv set, or if you are testing tv sets
for Apple compatibility, or are connecting certain music synthesizers.

Enhancement Two

The programmable color killer is somewhat harder to build for the lie than
for some older Apples. Since no glitch stomper is needed, the extra hardware
in the parts kit can be used without buying anything new. The software activa
tion of the color killer stays the same, so the Color Killer tester is the same on
the Apple lie support diskette as on the regular version.

One advantage of the Apple lie color killer is that it does a very thorough job
of color killing. Performance is much better than in many earlier Apples, and

225

226 Appendix

set settings are far less critical. This happens because the color burst is killed
with gated logic, rather than stomping on the burst with a transistor after it is
generated.

We'll show you how to use the existing parts in the parts kit to make an
Apple lie color killer. Then we'll show you an improvement that you might like
to make. As usual, everything plugs in easily and is removable should any war
ranty repair be needed.

Here are the parts involved ...

PARTS NEEDED FOR
APPLE lie COLOR KILLER

2-74LS02 LSTTL NOR gate.

1-14-pin machined-contact
socket.

1-16-pin machined-contact
socket.

1-piece of No. 24 solid wire,
10 inches long.

1-piece of solder, 4 inches
long.

The tools needed are the same as for the old glitch stamper. Here is a sche
matic (Fig. A-1) of the color killer modification ...

SOCKET
11/BS

14/A14
OR

11/E5

AN1

BREAK OLD
CONNECTION

CLRGA TE* ~_/ ____ ..___ DEVICE

/"\ 11/BS

74LS02 74LS02

74LS02 "PIGGYBACK"
ONTO EXISTING BS.

PIN 7 = GROUND
PIN14=+5VDC
PINS 1-6= NO CONNECTION

Fig. A-1. Schematic for the Apple lie color killer modification.

And, Fig. A-2 shows how you build one ...

INSTRUCTIONS FOR BUILDING
THE APPLE lie COLOR KILLER

1. Cut a piece of insulated No. 24 solid wire to a length of 7-1/2
inches. Then strip 1/4 inch of insulation off each end.

Form a tight loop in each end as shown.

2. Take a 16-pin machined-contact DIP socket and identify pin
No. 14 by inking the plastic. Plug any old nonvaluable in
tegrated circuit that you might have on hand into this socket.
This will keep the pins aligned should the plastic soften.
Secure this socket in a vise so you can work with it.

Note that this MUST be the type of premium socket that has
small machined-pin contacts that are safe to plug into another
socket.

3. Solder one end of the 7-1/2 inch wire to pin No. 14 of the
16-pin DIP socket, EXACTLY as shown. Be careful not to melt
the plastic.

Be sure that no solder gets on the part of the pin that must fit
into the 1/0 socket at A14 on the Apple lie main board. Also, be
sure there is not a short to adjacent pins 13 and 15.

Remove the nonvaluable integrated circuit and set it out of
sight.

4. Take a 14-pin machined-contact DIP socket and identify pin
11 by inking the plastic.

Temporarily plug this 14-pin socket into the 16-pin one, so the
14-pin socket is on top. This will keep the pins aligned should
the plastic soften.

Secure this socket-pair in a vise so you can work with them.

5. Cut a piece of insulated No. 24 solid wire to a length of 1
inch. Strip 3/16 inch from either end.

Plug one end of this 1-inch wire into socket No. 11 of the 14-pin
IC socket. Press the wire in as far as it will go and then bend
the wire straight out.

Solder the wire to the socket as shown.

Remove the 16-pin integrated-circuit socket and set it aside
tern porari ly.

6. Take a 74LS02 quad NOR gate and bend pin 11 outward as
shown.

Fig. A-2. How to build the Apple lie color killer.

Special Update Section 227

~
'lLOO; BOTH ENDS

90•8 10 • 0 • 7
11 • • 6
12 • 5
13 • • 4

PIN 14- • 3
15 • 0 • 2
16 • • 1

TOP VIEW

sa· • 7
9 • 0 6
10 @ • 5

PIN11-• •'
12 @ • 3
13 • 0 • 2
14 1

SOLDER

13

TOP VIEW

{FULL SIZE)

w
N
00
..J
..J
::J
lL

228 Appendix

END VIEW

UP 45°
(10 O'CLOCK) ~

v /t1
TRIM 1/16"
NO BEND

BEND
STRAIGHT

OUT

~ :::::s CUT OFF

::?
up 45 ° -------

TRIM 1/16" if
NO BEND D

FLAT AND
SQUARE

REFLOW SOLDER
#7 TO #7 AND

#14 TO #14
~--------/

1 2 3 4 5 6

8 9 10 11 12 13 14

SOLDER #8, #9, AND #13
USING NEW WIRE

8 '.:I 10 11 1:? : 1 14

LONG WIRE FROM 16-PIN SOCKET
SOLDERS TO TOP PIN #12

8 9 10 11 12 1J 14

Fig. A-2-cont. How to build the Apple lie color killer.

Plug this 74LS02 into the 14-pin integrated-circuit socket, be
ing sure that the notch on the socket aligns with the notch on
the IC.

Be sure that this IC is firmly seated in the socket and that there
is no short between the short wire and pin 11 of the 74LS02.

Secure the IC and socket-pair in a vise.

7. Take a second 74LS02 quad NOR gate and cut off pins 1
through 6. Then, bend pins 10, 11, and 12 straight out.

Next, bend pins 8, 9, and 13 so they point "up" by 45 degrees.
Finally, cut 1/16 inch off the very ends of pins 7 and 14. Tin
these pins with a small amount of solder on the cut ends.

8. Piggyback the second 74LS02 quad NOR gate onto the first
74LS02 quad NOR gate so that pins 7 and 14 of each IC contact
each other and so that the top IC sits square and flat on the
bottom one.

It is very important to have the top IC flat on the bottom one
and the bottom IC all the way into the socket.

Solder pin 7 to pin 7 and separately solder pin 14 to pin 14.
Make certain that both IC's "point" the same way.

9. Bend pin 11 of the bottom IC and pin 10 of the top IC
together to where they can contact each other but nothing
else. Solder these two pins together.

Then, solder the short wire end (of Step 5) to pin 12 of the upper
integrated circuit.

10. Next, cut a 3/4-inch piece of No. 24 insulated wire. Strip 1/4
inch off one end and strip 1/8 inch off the other.

Solder the long bare end of this wire to pins 8 and 9 of the up
per integrated circuit. Solder the other end of this wire to pin
13 of the same integrated circuit.

Position this wire so that it is below the top of the upper
integrated circuit. Check to be sure that this wire does not
contact pins 10, 11, 12, or 14.

11. Solder the long wire from the 16-pin DIP socket to pin 12 of
the upper integrated circuit.

Arrange the wire as shown in the pictorial.

This completes the assembly. See text for checkout and
possible modifications.

Special Update Section 229

Installation goes like this ...

INSTALLING YOUR APPLE
lie COLOR KILLER

1. Turn off the Apple I le
power and remove BOTH
ends of the line cord.

2. Remove the lid by snap
ping the two tabs at the
rear sharply upwards.

3. Remove anything plugged
into the 1/0 socket at A 14.
Remove the disk control
ler card from slot No. 6.

4. Remove the 74LS02 inte
grated circuit at BB, using
an IC puller if you have
one available. Set this IC
aside for later warranty
repairs should they be
needed.

5. Plug the piggyback 74LS02
pair into BB. Be sure the
notches and dots all point
towards the keyboard. Be
careful not to bend any
pins.

6. Put a straightedge over the
slot No. 6 connector so
that it extends over the
74LS02 pair at BB. There
must be some clearance
between the straightedge
and the 74LS02 pair, of at
least the thickness of a
sheet of paper.

7. Plug the 16-pin socket end
of your color killer into
the 1/0 socket at A 14. Be
sure the notch points to
ward the keyboard.

8. Route the wire EXACTLY
as shown in the pictorial.
Verify that the soldered
connections are on the
LEFT side of both ends of
the Color Killer adaptor.

230 Appendix

9. Plug anything removed
from the 1/0 connector at
A 14 back into the color
killer. Plug the disk con
troller card back into slot
No. 6. Check the disk
drive connectors to be
sure they are secure.

10. Replace the lid and the
line cord. BRIEFLY apply
power with a nonvaluable
disk in the drive. The Ap
ple should power up nor
mally.

Here's a pictorial (Fig. A-3) that shows what your installed color killer should
look like ...

Fig. A-3. Pictorial of the Apple lie color killer modification.

ADAPTOR
SOCKET

It is very important to keep the overall height of your Color Killer adaptor
low enough that it does not interfere with your disk controller card. If your IC's
are mounted flatly against each other, and if they are firmly seated in the
socket, there should be just barely enough clearance. Double check this point.

Special Update Section 231

The quickest way to test your Color Killer is with the Color Killer Demo
code.

The method we have just shown you is cheap, simple, and uses existing
parts from the parts kit that would otherwise be unneeded. But there is a better
way.

The Color Killer tends to hold onto anything plugged into itself much
stronger than it does to stay in the 1/0 connector on the Apple lie main board.
This can lead to disaster, particularly with kids and with changes of paddles or
joysticks that use the old 1/0 connector.

One way to fix this is with some silicon rubber, hot glue, or other "semi
permanant" glop. But, a much better solution involves picking up the AN1 sig
nal on pin 11 of integrated circuit BS, the IOU.

You can do this with a somewhat more expensive 40-pin machined-contact
DIP socket. This socket fits under the IOU, just like the 16-pin job fitted the 1/0
socket. Instead of grabbing pin 14 of the 16-pin socket at A 14 with the Color
Killer wire, you grab pin 11 of the 40-pin socket at BS instead.

Be very careful not to bend any leads on the IOU at BS if you try this alter
nate method.

Enhancement Three

The Tearing Method will work on any Apple, or, for that matter, on any
microcomputer or dino of your choice. A few of the monitor, DOS, and 1/0
locations will change when you tear into an Apple lie program.

Specifically, the old monitor Single Step and Trace locations are no longer
available, while there are bunches of new soft switches, new monitor loca
tions, and new control commands. We won't repeat these new locations here.
You'll find complete details on their use in the Apple lie Technical Reference
Manual.

Another hassle with the tearing method that is unique to the Apple lie is that
the system monitor has an obscene hole blaster in it that prevents you from
getting an undamaged reset into the system monitor. Two locations on each
memory page are altered when you do a cold restart.

There are two ways around this problem. One is to do a very fast double
cold reset by holding down the control and Open Apple keys and hitting
RESET. Then, very quickly, release the Open Apple key and hit RESET again.
This is best done with the disk drive door open.

You can now use the Tearing Method to inspect 2S4/2S6ths of any program
of your choice. The remaining two locations on each page will be wrong, but
since they sequentially step down each page, once you find any of them, the
rest can be tagged. From here, all you have to do is "guess what got blasted",
which can range from trivial to nearly impossible, depending on the location in
the code.

What has happened here, of course, is that the copy-protection fanatics have
freely and generously given us whole new worlds of incentive to tear into their
programs, adding to the fun and challenge of doing so at the same time.

Just when things were getting too easy. Thanks, guys.
The other way to do an absolute and undamaged reset is to change the sys

tem monitor. This is easily done by burning one or two of your own 2764
EPROMs. We'll find full details on this in Volume 2. With your own custom
EPROMs, you can easily do an unconditional and safe reset while preserving
just about everything in the machine. The cost is around $10.00. You can also
put the Single Step and Trace back in where they belong.

There is much more on this in Volume 2.

232 Appendix

Enhancement Four

Field sync is much easier to do and much more powerful in the Apple lie.
The needed magic wire is already installed and sitting there awaiting your use.
No hardware mods are needed. And, since there are now bunches of new soft
switches to flip, all sorts of exciting new possibilities open up.

Since no hardware changes are needed, you can now include field sync in
your commercial software that will run on any Apple lie without modification.

Here's how to access field sync on an Apple lie ...

APPILE lie FIELD SYNC

The VERTICAL BLANKING sig
nal of an Apple lie is read at
hex $C019 or decimal 49177.

A BIT test of this location will
SET the N flag during live vid
eo times and will CLEAR the N
flag during blanking times.

A PEEK to this location will
show a value GREATER than
127 during live video times
and a value LESS than 128 dur
ing blanking times.

Two points here. First, this is "backwards" from the field sync we used for
older Apples in this volume, so many of your BNE's and BPL's involved in field
sync will have to be swapped. The field sync location will also have to be
changed from $C060 to $C019.

Secondly, while we have just shown you how to do a decimal PEEK from
Applesloth in the box above, it's not clear at all why you would try this, since
Applesloth is so pitifully, ludicrously, and abysmally slow. It might be possible
to catch a blanking edge for a clean screen change with Applesloth, but that's
probably near the limit.

Field sync DEMANDS machine language as does everything else, of course,
that's to be decently done in your Apple. If you want to sharpen your machine
language and assembly language programming skills, check into Don Lancas
ter's Micro Cookbook, Volumes 1 and 2 (SAMS #21828 and #21829) and Don
Lancaster's Assembly Cookbook for the Apple II and lie (SAMS #22331).

Now, back to the program. To use field sync on an Apple lie, you read
memory location $C019 instead of $C060, and the sense is backwards, so that
old BNE's become new BPL's, and vice versa.

Returning to Enhancement 4, ignore all the hardware construction and
installation details, since you won't need them.

Once again, all corrected and running programs appear on the Apple lie
companion diskette, all ready to go. If you DO NOT get the companion disk
ette, here are the changes involved.

Special Update Section 233

Change the title to:

Program 4-lA FIELD SYNC UTILITY SUBS.SOURCE

and change ...

10 * VERSION 1.1 *
11 * (10-15-83) *
34 SYNC EQU $C019 VBLANK VIA IIE HOOK

51 BMI CRUDE AND REPEAT TILL FOUND

68 BMI FEDGE ; AND RETRY TILL BLANK

70 BPL BLANK ; AND RETRY TILL LIVE

87 BPL BEDGE AND REPEAT TILL LIVE

89 BMI FIELD AND REPEAT TILL BLANK

138 BMI EXACTF

140 BPL BLENK WITH JITTER

142 BMI STALL STALL FOR 3 CYCLES

150 BMI STALL NO, GO BACK ONE MORE

174 BPL EXACTB

176 BMI BLUNK WITH JITTER

178 BPL STAUL STALL FOR 3 CYCLES

186 BPL STAUL . NO, GO BACK ONE MORE I

Then, insert line 12

12 J * (FOR APPLE IIE) *

The simplest way to change FIELD SYNC UTILITY SUBS, of course, is to reas
semble FIELD SYNC UTILITY SUBS.SOURCE after making the above changes.

But, judging from countless hotline calls, I simply can't believe how many of
you are actually handloading and then playing around with object code when
the source code is sitting right in front of you.

So, for those of you who seem to enjoy hitting yourself over the head with a
hammer, here in Fig. A-4 is a hex dump of FIELD SYNC UTILITY SUBS for the
Apple lie ...

234 Appendix

0300.03Al

0300- 2C 19 co 30 FB 60 AO AO
0308- AO AO AO AO AO C9 AO AO
0310- 2C 19 co 30 FB 2C 19 co
0318- 10 FB 60 Bl AO cc AO AO
0320- 2C 19 co 10 FB 2C 19 co
0328- 30 FB 60 C2 AO AO AO AO
0330- 20 10 03 8D 50 co 20 10
0338- 03 8D 51 co 2C 00 co 10
0340- EF 60 AO AO Cl AO AO AO
0348- 81 l\.O AO AO AO AO AO AO
0350- 2C 19 co 30 FB 2C 19 co
0358- 10 FB EA 30 00 A9 38 20
0360- A8 FC A9 34 20 A8 FC A9
0368- 01 20 AS FC 2C 19 co 30
0370- EC 60 AO AO AO 83 AO AO
0378- AO l\.O AO AO AO C3 AO AO
0380- 2C 19 co 10 FB 2C 19 co
0388- 30 FB EA 10 00 A9 3B 20
0390- A8 FC A9 34 20 A8 FC A9
0398- 01 20 AS FC 2C 19 co 30
03AO- EC 60

Fig. A-4. Hex dump of the Apple lie FIELD SYNC UTILITY SUBS.

And that should just about wrap up this enhancement. The theory behind an
exact lock stays the same. We'll find a much faster "vapor lock" scheme in
Volume 2.

With all the new soft switches and operating modes, you should find all sorts
of exciting and innovative new uses for field sync on the Apple lie.

Enhancement Five

Extensive software revIsIons are needed to get the original FUN WITH
MIXED FIELDS demo to work. Once again, everything you need is on the
Apple Ile companion diskette and ready to go. What follows is needed if you
do NOT use this diskette.

First, you'll have to upgrade VFFS.EMPTY .SOURCE to test SYNC at $C019
rather than $C030, and you will have to interchange the BPL's and BNE's as
follows.

Special Update Section 235

Use the title:

Program 5-1 A VFFS. EMPTY .SOURCE

and make the following changes ..

12

50 SYNC

62

64

66

* VERSION 1.1

EQU $C019

BMI EXACTF

BPL BLENK

BMI STALL

*

1 VBLANK VIA IIE HOOK

WITH JITTER

STALL FOR 3 CYCLES

Then, insert line 13:

13 1 * (FOR APPLE IIE) *

The sane way to fix VHS.EMPTY, of course, is to reassemble
VFFS.EMPTY.SOURCE. Then, transfer a patch from $8AFF to $8B10 over to
VFFS.BOXES, VFFS.GRAPH, VFFS.GIRLS, VFFS.BYE, VFFS LORES, and any
newer VFFS files you may have created.

For those of you whose heart is set on working directly with object code,
here's the hex dump of the locations that need patching. Let's call it a hex
dump of VFFS REPAIR PATCH.

BAFF- EA

8B00- 20 FE SC 2C 19 CO 30 FB

8B08- 2C 19 CO 10 FB EA 30 00

You then do a BSAVE PATCH, A$8AFF, L$11. To use the patch, do a BLOAD
VFFS.BOXES, followed by a BLOAD PATCH, followed by a BSAVE BOXES,
A$8AFF, L$208. Repeat this process for all of your other VFFS.WHA TEVER
files.

Your patched code will now work on an Apple lie, but not on older Apples.
The field sync signal at $C019 seems to run one microsecond late, compared

to the signal you got when you added the $C060 wire to VB on your older
Apple. This means that there are great heaping bunches of changes needed in
the FUN WITH MIXED FIELDS program to get it to perform on an Apple lie.

A complete listing of the modified code is given in Program A-1.

236 Appendix

PROGRAM A-1

UPDATED FUN WITH MIXED FIELDS (FOR APPLE lie)

10 REM *********************
12 REM * *
14 REM * FUN WITH *
16 REM * MIXED FIELDS *
18 REM * *
20 REM * VERSION 1.1 *
21 REM * (FOR APPLE IIE) *
22 REM * (9-25-83) *
23 REM * *
24 REM * COPYRIGHT 1981 *
26 REM * BY DON LANCASTER*
28 REM * AND SYNERGETICS *
30 REM * *
32 REM * ALL COMMERCIAL *
34 REM * RIGHTS RESERVED *
36 REM * *
38 REM *********************

50 REM THIS PROGRAM SHOWS YOU
52 REM HOW TO MIX AND MATCH
54 REM TEXT, LORES, AND HIRES
56 REM ANYWHERE ON THE SCREEN
58 REM IN ANY COMBINATION.

60 REM THE FIELD SYNC HARDWARE
62 REM MOD AND SUBROUTINES
64 REM VFFS.BOXES, VFFS.GRAPH,
66 REM VFFS.GIRLS AND VFFS.BYE
68 REM ARE NEEDED.

70 REM SEE ENHANCEMENTS #4,
72 REM #5, AND #6 OF ENHANCING
74 REM YOUR APPLE II, VOL 1
76 REM FOR MORE USE DETAILS.

100 HIMEM: 35500: REM
VFFS SPACE

110 HGR: TEXT: HOME
INITIALIZE ALL

PROTECT

GR: REM

PROGRAM A-1 CONT'D.

1000 REM ** TITLE BOXES**

1004 PRIN'r
1005 PRINT "BLOAD VFFS.BOXES": REM

CTRL D
1010 SPEED= 10
1020 VTAB 8: HTAB 10: PRINT" F

UN ";: HTAB 26: PRINT" W
ITH ";

1030 VTAB 15: HTAB 10: PRINT" M
IXED ";: HTAB 26: PRINT" F
IELDS"

1040 SPEED= 255: REM

1050 COLOR= 9
1080 FOR N = 1 TO 3500: NEXT N
1090 HLIN 7,17 AT 11: HLIN 24,33

AT 11: HLIN 7,17 AT 18: HLIN
24,33 AT 18

1100 HLIN 7,17 AT 25: HLIN 24,33
AT 25: HLIN 7,17 AT 32: HLIN
24,33 AT 32

1110 VLIN 11,18 AT 7: VLIN 25,32
AT 7: VLIN 11,18 AT 17: VLIN
25,32 AT 17

1120 VLIN ll,18 AT 23: VLIN 25,3
2 AT 23: VLIN 11,18 AT 33: VLIN
25,32 AT 33

1125 REM

1130 PRINT""· FOR N = 1 TO 3500
: NEXT N

1140 PRINT""· POKE 36091,208: CALL
35584

1145 REM

1150 HGR: HCOLOR= 2: POKE 49234
,o

1160 HPLOT 12,8 TO 274,8 TO 274,
85 TO 12,85 TO 12,8

1169 POKE 49168,0
1170 HPLOT 12,90 TO 274,90 TO 27

4,170 TO 12,170 TO 12,90
1180 FOR N = 1 TO 3500: NEXT N: PRINT

1111

1190 CALL 35584: REM MIX FIELDS

Special Update Section 237

238 Appendix

PROGRAM A-1 CONT'D ...

2000 REM ** GRAPH AND TITLE**

2010 TEXT: HOME: SPEED= 100
2012 POKE - 16293,0: REM KILL

COLOR
2015 PRINT 11 BLOAD VFFS.GRAPH 11 : REM

CTRL D
2020 PRINT II DIPTHONG-SNORG

EL CORRELATIONS:"
2030 PRINT 11 •••••••••••••••••••

2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170

PRINT II

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
: PRINT
PRINT
PRINT :
1 2

40 - 11

PRINT II

PRINT II s
N
0
R
G 20 -
E
L
s

10 -
: PRINT II

PRINT II

PRINT II

3 4 5
2180 PRINT: PRINT"

DIPTHONGS";

II

II

30 -"

0 -"
0

6 7"

"

2190 VTAB 1: HTAB 0: PRINT" "· SPEED= 255
2191 HGR: HCOLOR= 1: POKE 49234

,0
2192 HPLOT 63,156 TO 255,156
2193 HCOLOR= 1: HPLOT 87,157 TO

87,165: HPLOT 115,157 TO 115
,165: HPLOT 143,157 TO 143,1
65

2194 HPLOT 171,157 TO 171,165: HPLOT
199,157 TO 199,165: HPLOT 22
7,157 TO 227,165: HPLOT 255,
157 TO 255,165

2210 GOSUB 20000: REM PLOT
2220 HCOLOR= 7: HPLOT 63,23 TO 6

3,164
2300 POKE 36091,208: CALL 35584
2400 FLASH: VTAB 5: HTAB 34: PRINT

"1066"
2405 PRINT 1111 : REM DING
2410 VTAB 15: HTAB 34: PRINT 11 14

92"
2418 HCOLOR= 7: HPLOT 229,28 TO

229,31: HPLOT 229,121 TO 229
,128

PROGRAM A-1 CONT'D ...

2420 NORMAL : CALL 35584: REM M
IX FIELDS

2430 HGR
2440 POKE - 16294,0: REM UNKIL

L COLOR
2999 REM

3000 REM ** GIRLS**

3010 GR: CALL - 1998: POKE
16302,0

3020 PRINT "BLOAD VFFS.GIRLS": REM

3100 FOR N = 1 TO 10: READ L: COLOR=
N: HLIN 0,L AT (4 * N - 1): FOR
K = 1 TO 200: NEXT K,N

3105 : FOR N = 1 TO 2000: NEXT N
3107 HGR: HCOLOR= 3: HPLOT 4,17

4 TO 240,174 TO 243,179 TO 2
46,169 TO 249,174 TO 279,174

3108 POKE - 16302,0:
3110 HPLOT 4,175 TO 4,180: HPLOT

46,175 TO 46,180: HPLOT 88,1
75 TO 88,180: HPLOT 130,175 TO
130,180: HPLOT 172,175 TO 17
2,180

3111 HPLOT 214,175 TO 214,180: HPLOT
270,175 TO 270,180

3115 FOR N = 1 TO 23 STEP 2
3116 VTAB (N): FORK= 0 TO 39: PRINT

" " ; : NEXT K , N
3120 FOR N = 1 TO 10: READ G$: VTAB

1 + 2 * N: PRINT G$: NEXT N
3130 PRINT: PRINT: PRINT "O

2 4 6 8 10
!";: POKE 2039,160: REM
AVOID SCROLL

3190 POKE 36091,220
3200 CALL 35584: REM MIX FIELDS

3210 TEXT: HOME
3990 POKE 16368,0: REM RESET K

EY STROBE
4000 REM *** BYE BYE***

4005 PRINT: PRINT "BLOAD VFFS.B
YE": REM CTRL D

4008 GR: TEXT
4009 : POKE - 16368,0: GR: TEXT

Special Update Section 239

240 Appendix

PROGRAM A-1 CONT'D ...

4010 HOME: VTAB 7: HTAB 20: PRINT
"BYE";

4015 FOR N = 1 TO 1000: NEXT N
4020 HGR: HCOLOR= 5: HPLOT 143,

86 TO 143,79: HPLOT 145,86 TO
145,79: HPLOT 141,78 TO 141,
77: HPLOT 139,78 TO 139,77: HPLOT
147,78 TO 147,77: HPLOT 149,
78 TO 149, 77

4022 HPLOT 137,76 TO 137,73: HPLOT
135,76 TO 135,73: HPLOT 151,
76 TO 151,73: HPLOT 153,76 TO
153, 73

4024 HPLOT 107,73 TO 107,86: HPLOT
109,73 TO 109,86: HPLOT 119,
75 TO 119,78: HPLOT 121,75 TO
121,78: HPLOT 119,81 TO 119,
84: HPLOT 121,81 TO 121,84

4026 HPLOT 107,73 TO 117,73: HPLO~
107,74 TO 117,74: HPLOT 107,
79 TO 117,79: HPLOT 107,80 TO
117,80: HPLOT 107,85 TO 117,
85: HPLOT 107,86 TO 117,86

4027 HPLOT 163,73 TO 163,86: HPLOT
165,73 TO 165,86: HPLOT 163,
73 TO 179,73: HPLOT 163,74 TO
179,74

4028 HPLOT 163,85 TO 179,85: HPLOT
163,86 TO 179,86: HPLOT 163,
79 TO 175,79: HPLOT 163,80 TO
175,80

4029 COLOR= 0: FOR N = 25 TO 39:
HLIN 0,39 AT N: NEXT N

4030 COLOR= 3: HLIN 11,14 AT 25:
HLIN 11,14 AT 28: HLIN 11,1
4 AT 31: VLIN 25,31 AT 11: VLIN
26,27 AT 15: VLIN 29,30 AT l
5

4032 VLIN 25,26 AT 18: VLIN 27,2
7 AT 19: VLIN 28,31 AT 20: VLIN
27,27 AT 21: VLIN 25,26 AT 2
2

4034 VLIN 25,31 AT 25: HLIN 25,2
9 AT 25: HLIN 25,28 AT 28: HLIN
25,29 AT 31

4099 POKE 36091,128
4100 CALL 35584: REM MIX FIELDS

4110 TEXT : HOME
4200 PRINT: PRINT "RUN MENU": REM

CTRL D
4201 REM DELETE 4200 IF AUTO-ME

NU IS NOT IN USE
4210 END

PROGRAM A-1 CONT'D ...

20000 REM ** SNORGEL CURVES**

20005
20009

20010
20020

20025
20030

20035
20040

20050

20060
29999
30000

30100

HCOLOR= 3
XO= 61:Xl = 61:Y0 = 159:Yl
= 159
FOR X = 1 TO 195
Y = (1 - (2 . 718) " (- X /
50))
Y2 = INT (159 - 137 * Y)
Z = Y * (2. 718 " (- X / 60
))
Z = INT (159 - 457 * Z)
HPLOT X0,Y0 TO X + 61,Y2:X
0 =XO+ l:Y0 = Y2
HPLOT Xl,Yl TO X + 61,Z:Xl
= Xl + l:Yl = Z
NEXT X
RETURN
DATA 2,6,9,16,21,24,27,29
,31,39

DATA VELMA,GERTRUDE,CHARI
TY,NOREEN, EMILY,PEGGY,ELAIN
E,SAMANTHA,RACHAEL,YVONNE

Special Update Section 24 I

242 Appendix

We'll find a better way to do a fast lock in Volume 2 that will avoid the tim
ing differences between the lie and older Apples.

There will also be a slight glitch in the LORES COLORS 121 demo. Again,
this is caused by the Apple lie version of VFFS switching one character to the
right compared to older Apples. To fix this, change line 200 of LORESl CRE
ATE to ...

200 VTAB 12: HTAB 10: PRINT " 121 LORES COLORS n

Note that there are two spaces before the 121 and two spaces after COLORS.
You then rerun LORES1 CREATE, making sure that your LORESl file module

is either unlocked or else missing from your diskette. When you are finished,
you should get a flawless and flickerless text display in the middle of the 121
LORES colors.

All of the Apple lie programs on the new lie support diskette have all of
these changes picked up and are ready for your use.

Enhancement Six

The special glitch stomper hardware is not needed on an Apple lie. Besides,
it won't fit, since there is no place to put it. However, some of the kit parts that
you would have used for a glitch stomper are needed for the Apple lie color
killer. See the Enhancement Two update section for more details.

You can still get on-screen glitches when you change modes on the visible
part of the screen of your Apple lie, but these are simpler and much more
manageable than any glitches you got on older Apples.

Usually, there is no problem in going from TEXT to HIRES, from HIRES to
TEXT, from LORES to HIRES, or from HIRES to LORES. But you can get glitches
on a TEXT to LORES or a LORES to TEXT transition. Here's the rule to stomp
these glitches ...

TO STOMP APPLE lie GLITCHES

Make the last LORES plotting
BLACK before switching into
TEXT.

Make the last TEXT character a
SPACE before switching into
LORES.

Generally, the switching in an Apple lie is much cleaner than in older
Apples, and most glitches will be your own doing. The usual cause is not hav
ing what you think you have in your VFFS files, or else forgetting that the Apple
lie switches one character to the right, compared to the older Apples.

All sorts of new possibilities might crop up if you switch, say, from 40 to 80
columns midscreen, or into and out of the 560-dot double HIRES mode. Let us
know what exciting new field switchers you come up with.

Special Update Section 243

Enhancement Seven

The gentle scroll will work pretty much as is on an Apple lie in its 40-column
mode. A simple software patch is needed for the smoothest operation.

I have not yet found a good way to do a flawless and fast 80-column gentle
scroll. At the very least, it is bound to take twice as long and, since there is nor
mally no alternate HIRES page two, some collision and sugar on the screen is
probably inevitable. Auxiliary memory cards that hold more than 64K can
solve this, but these are not yet widely used.

The following changes to GENTLE SCROLL.SET are recommended, and have
already been picked up for your use in the Apple lie demo diskette. Change
the title to:

Program 7-1A GENTLE SCROLL.SET.SOURCE

and change the following:

10

71 VSYNC

283

* VERSION 1.1

EQU $C019

BMI SYNC

Then, insert line 11

11 : * (FOR APPLE IIE)

*

*

VBLANK VIA IIE HOOK

AND WAIT FOR VBLANK

To correct GENTLE SCROLL.SET, just reassemble. Here's a direct object
code patch for all you hammer hitters. Change GENTLE SCROLL.SET to .

8D09- 2C 19 CO 30 FB 60

Once again, these corrections are only needed for the smoothest possible
gentle scroll. Since speed and smoothness are the main features of this particu
lar program, you really should make the changes. As usual, these changes
have been made and are ready to go on the companion diskette.

Enhancement Eight

The Fast Backgrounder will run as is on an Apple lie, but a minor software
change is recommended so you can use the Invisible Switcher. The Fast Back
grounder is presently set up to only work with "normal" HIRES.

You can rework this program to handle double HIRES by reusing FAST
BACKGROUND.SET twice and flipping to alternate memory between uses.
Thus, you will do a fast color clear to main memory on the first pass and a fast
color clear to auxiliary memory on the second pass. The total time involved
will, of course, be doubled. This technique will only work on Revision B or
newer Apple lle's and it requires a 64K or larger auxiliary memory card and the
special AN3 control jumper.

One of the big advantages of double-resolution HIRES is that all of the
LORES colors are now available on the HIRES screen. When these colors are
combined into the existing color pattern files, you'll get many hundreds more
HIRES colors.

244 Appendix

All corrections needed for a normal resolution HIRES gentle scroll are picked
up and are ready to go on the Apple lie companion diskette. The double-reso
lution Backgrounder has not yet been completely checked out, so you will be
on your own on this.

Anyway, here are the code changes. Set the title to . . .

Program 8-1A FAST BACKGROUND.SET.SOURCE

and change the lines as follows

10 :

68 SYNC

157

161

* VERSION 1.2

EQU $C019

BMI TESTl

BPL TEST2

Then, insert line 11

11 * (FOR APPLE IIE)

*
VBLANK VIA IIE HOOK

*

The direct patch to the FAST BACKGROUND.SET object code looks like
this ...

8BAO- 19 CO 30 FB 2C 56 CO 20

8BA8- 04 8B 2C 19 CO 30 FB

All that these patches do is make sure the Invisible Switcher flips from
HIRES to LORES grey and back again during the blanking time. The
improvement is rather subtle, but it is there and the change should be made.

FRANKLIN COMPUTERS

All of the enhancements in this volume can be done one way or another on
the Franklin Ace™ 1000 or 1200. There are several important differences
between Franklins and Apples that you will have to get around.

The Franklin computer uses nonstandard horizontal timing and generates its
colors in a bizarre way. Because of these differences, just about all the
enhancements need significant changes. Very little of the Volume 1 Enhancing
Your Apple II® hardware or software will run as is.

You can now get a special Franklin support disk with everything debugged
and ready to go, however. Just use the order card in the back of the book and
be sure to specify the Franklin version. If you have already bought an older
support diskette, send it back to us with $5.00 if you want to update to this
new Franklin-only version.

Let's check into the differences.

Enhancement One

The two glompers will work on any version Franklin computer. You only

Special Update Section 245

need them if you are using an rf modulator and an ordinary tv set, or if you are
testing tv sets for Franklin compatibility, or are connecting certain music
synthesizers.

Enhancement Two

Color is generated on the Franklin in a totally different way than on the
Apple. This was presumably done to "beat" the Apple patents. The results are
that the color is not as good. The method uses bunches of extra integrated cir
cuits, has a noticeable moving hum bar, and provides a video display that is
generally noisier.

Anyway, you can provide a color killer for your Franklin computer by adding
a single wire between two of the integrated circuits on the main board. Instead
of a single resistor going to a color killer transistor, you use a single wire that
starts at the same point and goes to a lifted leg of an integrated circuit. Here
are the ...

PARTS NEEDED TO KILL
FRANKLIN COLOR

l-74LS27 LSTTL NOR gate
1-16-pin machined-contact

socket
1-No. 24 solid wire, 11

inches long
1-piece of solder, 4 inches

long

The 74LS27 is not in the companion parts kit. These cost all of a quarter. If
you are brave, you can reuse the chip already present in your Franklin at
board location B 14.

The tools needed are the same as for the old color killer. Fig. A-5 is a sche
matic of the color killer modification.

/
G) BREAK OLD CONNECTION

BY LIFTING PIN.

2

@ ADD NEW WIRE JUMPER
/ DIRECTLY TO LIFTED PIN.

10
G14

Fig. A-5. Schematic of the Franklin 1000 color killer modification.

Fig. A-6 illustrates how you build your modification ...

246 Appendix

INSTRUCTIONS FOR BUILDING
THE FRANKLIN COLOR KILLER

1. Cut a piece of insulated No. 24 solid wire to a length of 10-1/2
inches. Then strip 1/4 inch of insulation off each end.

Form a tight loop in one end and a fold in the other end as shown.

2. Take a 16-pin machined-contact DIP socket and identify pin 10
by inking the plastic.

Plug any old nonvaluable integrated circuit into this socket. This
will keep the contacts aligned should the plastic soften.

Secure this socket upside down in a small vise.

3.Solder the open looped end of the 10-1/2-inch wire to pin No.10
of the 16-pin DIP socket EXACTLY as shown. Be careful not to
melt the plastic.

Be sure that no solder gets on the part of the pin that must fit the
Franklin main board at G14. Also, be sure that there is no short
to adjacent pins 9 and 11.

Remove the nonvaluable IC and set it aside and out of sight.

4. Take the 74LS27 LSTTL NOR gate and bend pin No. 1
straight out as shown. Secure this circuit in a piece of protec
tive foam.

Tin the portion of this pin NEAREST THE PLASTIC by applying
a very small amount of solder as shown.

Avoid getting any solder on the end of the pin.

5. Solder the folded end of the 10-1/2-inch wire to the tinned por
tion of pin No. 1 of the 74LS27 exactly as shown.

Arrange the color killer as shown in the pictorial below. You
might like to add a very small amount of silicone rubber or hot
glue to both wire ends. This will act as a strain relief.

BE SURE THAT PIN #1 IS BENT STRAIGHT OUT and that it will
NOT contact anything when this circuit is plugged into a
socket.

Fig. A-6. How to build the Franklin color killer.

/cf/f
"'FOLD

LOOP OTHER END
ONE END

PIN 10

8

9

10

11
12
13
14

PREMIUM
DIP SOCKET

I

BEND PIN 1
OUT 90°

:/
PIN 1

TIN HERE WITH VERY
LITTLE SOLDER

Special Update Section 247

This completes the Franklin color killer. Refer to the following installation
and check out procedures for further details. The installation goes like this ...

INSTALLING YOUR
FRANKLIN COLOR KILLER

1. Turn off the Franklin pow
er and remove BOTH
ends of the line cord.

2. Remove the lid by pushing
the two lid tabs rearward
and lifting the rear end of
the lid upwards.

3. Remove anything plugged
into the 1/0 socket. Re
move any and all plug-in
cards, being careful to
note which card goes into
which slot.

4. Put a rug or towel on your
work area. Then turn the
Franklin upside down and
put it on the rug. Remove
only the OUTERMOST 14
screws, using a Phillips
screwdriver. Then, flip the
Franklin right side up.

DO NOT LET THE TWO
HALVES OF YOUR
FRANKLIN SEPARATE
WHEN YOU DO THIS!

5. GENTLY lift up the front of
the case only far enough
to see inside. Note the flat
keyboard connector ca
ble. Rotate the Franklin
cover so it is standing
straight up, WITHOUT
PUTTING ANY STRESS
ON THE KEYBOARD
CONNECTOR CABLE.

Secure the cover in this
position.

6. Verify that the integrated
circuit at B14 is a 74LS27.
Remove this chip with an
IC puller if you have one.
Set the 74LS27 aside in a
safe place should warranty
repairs ever be needed.

248 Appendix

7. Plug the 74LS27 integrated
circuit with the wire on
pin 1 into B14. Be sure the
notch points to the
FRONT and that the wire
is on the RIGHT side of
B14.

BE CERTAIN THAT PIN 1
CONT ACTS ONLY THE
WIRE AND NOT THE
SOCKET!

8. Verify that the integrated
circuit at G14 is a 74LS259
or a 9334. Then remove
this chip, using an IC pull
er if you have one avail
able.

9. Plug the machined DIP
socket end of the color
killer into G14, being sure
that the notch points to
the FRONT and that the
wire is on the LEFT side of
G14.

10. Plug the 74LS259 or 9334
back into the machined
DIP socket at G14. Be
sme the notch points to
the FRONT, towards the
keyboard.

11. Check your installation
against the pictorial in Fig.
A-7. Once again, all dots
and notches face towards
the keyboard, and the
wire goes left from G14
and right from B 14.

12. Gently reseat the key
board connector by press
ing down on it. Close the
case back down over the
chassis. Flip both case and
chassis over onto the rug.

DO NOT LET CASE AND
CHASSIS SEPARATE
WHEN YOU DO TH IS!

13. Replace the fourteen Phil
lips head screws. Note
that a projection on the
case must fit in the rear
center hole. Note also that

Special Update Section 249

four roundhead screws
with washers go to the
front; the other flathead
screws go along the sides
and rear.

14. Replace all plug-in cards
and anything plugged into
the 1/0 socket. Be sure to
reseat any cables plugged
into your cards, especially
the disk controller cables.

15. Replace the lid, by center
ing and inserting the front
end first. Then snap the
rear end in place. Turn the
power switch off and plug
in the line cord.

16. Open the disk drive door
and BRIEFLY apply power.
The red light on the drive
should come on. If not,
STOP IMMEDIATELY! If
everything seems all right,
then hit the RESET key un
der the machine.

Double check everything
by hand by entering and
running a simple BASIC
program, such as one that
prints the numbers from 1
to 10.

17. Run the COLOR KILLER
DEMO for a final check
out.

The Franklin color killer is a very simple and easy modification and you
should have no problems with it. The most common troubles in completing
this mod include forgetting to reseat any cables that might have worked loose,
particularly the keyboard cable and the disk drive cable. Other problems that
have cropped up via the hotline have included integrated circuits placed in
backwards or with a pin tucked up underneath, and a pin-to-socket short at
pin one of B14. Fig. A-7 is a pictorial of the color killer as installed.

The use of your color killer stays the same as before, and no changes to the
demo are needed. Bit $C0SB turns the killer ON, while Bit $C0SA shuts it OFF
Equivalent Applesloth pokes are -16293,0 for ON and -16294,0 for OFF.

Some extra set adjustment may be needed for your computer since the
Franklin color is flakier than that of the Apple II or lie.

250 Appendix

CD ADAPTOR MADE FROM
PREMIUM DIP SOCKET

GOES INTO G14. ~~-~

@EXISTING 9334 OR 74L.S259
PLUGS INTO ADAPTOR

@NEW WIRE CONNECTS
10/G14 TO 1/B14.

@PIN #1 OF 74LS27
REMOVED FROM B14
SOCKET AND SOLDEFlED
TO NEW WIRE.

-- ·~
"-·

~_r.
~(

G·:'
;,:
'.\
~;~
,:,;

~\;
"·:
.1.,

Fig. A-7. Pictorial of the Franklin color killer modification.

Enhancement Three

RIGHT EDGE OF
FRANKL.IN MAIN
PC BOARD

The Tearing Method works on any Apple or Apple look-alike, or, for that
matter, on any computer at all. There are a few monitor differences spelled out
in the Franklin user's manual. These are minor, except for the Franklin not sup
porting cassette operation.

The Franklin computer uses ordinary 2716 EPROMs for all its ROM chips.
There is a pin incompatibility with the ROMs used on older Apples. Thus,
besides some minor software differences, you cannot plug an "old" absolute
reset Apple ROM into your Franklin and expect it to work.

The simplest way to pick up absolute reset is to clone a 2716 EPROM off an
Apple ROM. To do this, use an Apple to move an image of the absolute reset
ROM ($F800 to $FFFF) onto disk. Then, move the disk image to the workspace
of your EPROM burner. EPROM burners and erasers should be borrowable
through your local computer club, so ask around. A good price for a 2716
EPROM today is under $5.00

Enhancement Four

Field sync and exact field sync can be easily done on the Franklin computer.
There are minor hardware changes since the Franklin is bigger and disassem
bles differently. There are major software differences.

These differences occur because the Franklin uses 262 lines of 64 clock
cycles each for a total of 16768 clock cycles per field, rather than following
Apple's 262 Ii nes of 65 clock cycles each for a total of 17030 clock cycles per
field ...

Special Update Section 251

The Franklin computer uses 262 hori
zontal Ii nes of 64 clock cycles each
for a total of 16768 cycles per field.

The Apple uses 262 horizontal lines of
65 clock cycles each for a total of
17030 cycles per field.

All of the existing field sync software has been updated and put on the
Franklin support diskette, and all of the original programs will work one way or
another on a Franklin computer.

A bonus program called the TRIPLE DELAY FINDER is also included on the
support diskette. It will let you find any oddball exact-time delay magic values
that you may need for special effects.

If you are going to include field sync in commercial software, please note
that you will have to separately test and patch exact field sync for the Franklin
computer. This test-and-patch routine must be done if you want the same ver
sion of your software to run on both Franklins and Apples.

The tools, parts list, schematic, and construction details for the Franklin field
sync stay pretty much the same as the original. One exception is that the wire
needed for the modification must be 10½-inches long instead of 7½, since the
Franklin is physically larger.

To install your field sync on a Franklin computer, you will have to remove
the case from the chassis. Just follow the instructions given in the preceding
color killer update to do this.

On the FIELD SYNC UTILITY SUBS software, modules CRUDE, FEDGE,
BEDGE, and ALTFLD stay the same. EXACTF and EXACTB need their delay val
ues adjusted. The Apple values were $3B, $34, and $01. The new Franklin val
ues are $39, 31, and $13.

Here are the source code patches ...

Program 4-lA FIELD SYNC UTILITY SUBS

Change ...

10 * VERSION 1.1 *
11 * (10-6-83) *

143 STALL LDA #$39 DELAY FOR 16767

145 LDA #$31 USING THE MONITOR

147 LOA #$13 THIS LOOP TIMING

179 STAUL LDA #$39 DELAY FOR 16767

181 LDA #$31 USING THE MONITOR

183 LDA #$13 THIS LOOP TIMING

252 Appendix

Then, insert line 12:

11 * FOR FRANKLIN 1000 *

Here's the direct patches to FIELD SYNC UTILITY SUBS object code ...

035E: 39

0363: 31

0368: 13

038E: 39

0393: 31

0398: 13

Once again, all of these patches have been made on the Franklin update
diskette.

The FIELD SYNC QUICK TEST works as is. Remember that some flicker is
normal with field alternators. Most other uses of exact field sync will be totally
glitch and flicker free.

Enhancement Five

Extensive modifications to VFFS.EMPTY are needed, since the Franklin com
puter has 64 clock-cycle horizontal lines and a 16768 clock-cycle total field.
Once these modifications are made to all the VFFS modules, the programs
FUN WITH MIXED FIELDS and LORES COLORS 121 will run without any
changes.

VFFS.EMPTY has been modified in such a way that you now have 64 clock
cycle lines and a 16768-cycle total field. This was done without changing any
of the HPAT, CONTROL, or VPATRN locations. Thus, you can simply move
any file values over from your older VFFS modules.

The STALL code has been modified to the Franklin values of $39, $31, and
$13. The horizontal line length has been modified by interchanging the ending
HPAT branches and mask ANDing with a page zero, rather than an immediate
value. The branch swap shortens the code by two clock cycles, and the page
zero AND lengthens the code by one clock cycle. You end up with a 64-cycle
line, compared to the 65-cycle line needed by the Apple computer. Finally, the
VBSTAL routine has new magic values entered to handle the 80 fewer clock
cycles needed during Franklin vertical blanking.

Once you have reassembled VFFS.EMPTY, you can move all file values over
to recode such modules as VFFS.BOXES, VFFS.GRAPH, VFFS.GIRLS,
VFFS.BYE, and VFFS.LORES. You can similarly move anything new you have
on hand over to this new Franklin-only VFFS scheme.

Program A-2 is the new Franklin source code ...

PROGRAM A-2

VIDEO FIELD FORMATTER SUB. VFFS. EMPTY

8AFF:
BAFF:
BAFF:
8AFF:
BAFF:
8AFF:
8AFF:
8AFF:
BAFF:
8AFF:
8AFF:
BAFF:
8AFF:
8AFF:
BAFF:
8AFF:
8AFF:
8AFF:
8AFF:
BAFF:

8AFF:
BAFF:
8AFF:

BAFF:
8AFF:
BAFF:

8AFF:
BAFF:
BAFF:
8AFF:
BAFF:

8AFF:
8AFF:
BAFF:

8AFF:
8AFF:
8AFF:
8AFF:

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

25
26
27

29
30
31

33
34
35
36
37

39
40
41

43
44
45
46

*
*
*
*
*
*
*

VIDEO FIELD
FORMATTER SUB

VFFS.EMPTY

{$8AFF.8D07)

*
*
*
*
*
*
*

* VERSION 1.0 *
* FOR FRANKLIN 1000 *
* { 8-25-81) *
* *
* COPYRIGHT 1981 *
* BY DON LANCASTER*
* AND SYNERGETICS *
* *
* ALL COMMERCIAL *
* RIGHTS RESERVED *
* *

THIS PROGRAM LETS YOU MIX
AND MATCH SCREEN MODES IN
MANY DIFFERENT COMBINATIONS.

SCREEN MODE CAN BE CHANGED
ONCE EACH HBLANK TIME USING
FILE "VPATRN".

SCREEN MODE CAN BE CHANGED
UP TO TEN TIMES PER H SCAN
USING FILES "HPATl" THROUGH
"HPAT4". FOUR OR FEWER
H PATTERNS ARE ALLOWED.

SEE ENHANCEMENT #5 OF
ENHANCING YOUR APPLE II,
VOL 1 FOR FULL USE DETAILS.

TO USE, SET UP PATTERN FILES
THEN JSR $8B00 FROM MACHINE
LANGUAGE OR CALL 35584 FROM
APPLESOFT.

Special Update Section 253

254 Appendix

PROGRAM A-2 CONT'D ...

C060: 49 DUMMY EQU $C060 LOCATION FOR NO-SWITCH H
C000: 50 KEYBD EQU $C0O0 KEY PRESS CHECK
C060: 51 SYNC EQU $C060 VBLANK VIA "SW3"
C000: 52 SWITCH EQU $C000 VFILE SWITCH LOCATION
FCA8: 53 WAIT EQU $FCA8 MONITOR DELAY SUB

004F: 55 RNDH EQU $4F HOLDS MASK TO FIX FRANKLIN
007F: 56 MASK EQU $7F HLINE TIME TO 64 CYCLES

8AFF: 59 **** EXACT LOCK TO FIELD START****

8AFF:EA 61 NOP EVEN PAGE START (FOR HRCG)

8B00:20 FE SC 63 START JSR SETUP INITIALIZE KEYBOARD AND
TIMEOUT

8B03:A0 co 65 NEWFLD LDY :ft$C0 FOR 192 LINES
8B05:2C 60 co 66 EXACTF BIT SYNC LOCK TO FIELD EDGE
8B08:10 FB 67 BPL EXACTF
8B0A:2C 60 co 68 BLENK BIT SYNC FIND FIELD START
8BOD:30 FB 69 BMI BLENK WITH JITTER
8B0F:EA 70 NOP STALL FOR 2 CYCLES
8Bl0:10 00 71 BPL STALL STALL FOR 3 CYCLES
8Bl2:A9 39 72 STALL LDA #$39 DELAY FOR 16761
8Bl4:20 A8 FC 73 JSR WAIT CLOCK CYCLES TOTAL
8B17:A9 31 74 LDA #$31 USING THE MONITOR
8B19:20 A8 FC 75 JSR WAIT DELAY ROUTINE AND
8BlC:A9 13 76 LDA #$13 THIS LOOP TIMING.
8BlE:20 A8 FC 77 JSR WAIT
8B21:2C 60 co 78 BIT SYNC HAVE WE BACKED TO START?
8B24:10 EC 79 BPL STALL NO, GO BACK ONE MORE

8B26: 81 **** START OF FIELD ****

8B26:B9 00 8C 83 NXTLNl LDA VPATRN,Y GET LINE PATTERN
8B29:30 63 84 BMI HPAT2
8B2B:10 00 85 HPATl BPL HPl
8B2D:25 4F 86 HPl AND RNDH MASK SWITCH COMMAND
8B2F:AA 87 TAX
8B30:9D 00 co 88 STA SWITCH,X
8B33:8D 60 co 89 STA DUMMY
8B36:8D 60 co 90 STA DUMMY

Special Update Section 2S5

PROGRAM A-2 CONT'D ...

8B39:8D 60 co 91 STA DUMMY i *
8B3C:8D 60 co 92 STA DUMMY i **
8B3F:8D 60 co 93 STA DUMMY ; *
8B42:8D 60 co 94 STA DUMMY ; *
8B45:8D 60 co 95 STA DUMMY ; *
8B48:8D 60 co 96 STA DUMMY ; *
8B4B: 80 60 co 97 STA DUMMY ; ***
8B4E:8D 60 co 98 STA DUMMY ;
8B51:88 99 DEY ; ONE LESS LINE
8B52:DO 02 100 BNE NXTLNl
8B54:FO 30 101 BEQ BOTTOM . AT SCREEN BOTTOM? ,
8B56:B9 00 8C 105 NXTLN4 LOA VPATRN,Y ; GET LINE PATTERN
8B59:30 DO 106 BMI HPATl i
8B5B:10 00 107 HPAT4 BPL HP4 ;
8B5D:25 4F 108 HP4 AND RNDH ; MASK SWITCH COMMAND
8B5F:AA 109 TAX ;
8B60:9D 00 co ll0 STA SWITCH,X ;

8B63:8D 60 co 111 STA DUMMY ;
8B66:8D 60 co ll2 STA DUMMY ;
8B69:8D 60 co 113 STA DUMMY ; *
8B6C:8D 60 co ll4 STA DUMMY ; **
8B6F:8D 60 co ll5 STA DUMMY i * *
8B72:8D 60 co ll6 STA DUMMY ; * *
8B75:8D 60 co ll7 STA DUMMY ; *****
8B78:8D 60 co ll8 STA DUMMY ; *
8B7B:8D 60 co ll9 STA DUMMY ; *
8B7E:8D 60 co 120 STA DUMMY ;
8B81:88 121 DEY ; ONE LESS LINE
8B82:D0 D2 122 BNE NXTLN4
8B84:F0 00 123 BEQ BOTTOM ; AT SCREEN BOTTOM?

8B86:4C C2 8C 125 BOTTOM JMP 8OTTM1 ; "SPLICE" RELATIVE BRANCH

8B89:B9 00 8C 127 NXTLN2 LDA VPATRN,Y ; GET LINE PATTERN
8B8C:30 30 128 BMI HPAT3 ;
8B8E:10 00 129 HPAT2 BPL HP2 ;
8B90:25 4F 130 HP2 AND RNDH ; MASK SWITCH COMMAND
8B92:AA 131 TAX i
8B93:9D 00 co 132 STA SWITCH,X ;
8B96:8D 60 co 133 STA DUMMY ;
8B99:8D 60 co 134 STA DUMMY ;
8B9C:8D 60 co 135 STA DUMMY ;
8B9F:8D 60 co 136 STA DUMMY ; ***
8BA2: 8D 60 co 137 STA DUMMY ; * *
8BA5:8D 60 co 138 STA DUMMY ; *
8BA8:8D 60 co 139 STA DUMMY ; *
8BAB: 8D 60 co 140 STA DUMMY ; *
8BAE:8D 60 co 141 STA DUMMY ; *
8BB1: 8D 60 co 142 STA DUMMY . ****** ,
8BB4:88 143 DEY ; ONE LESS LINE

256 Appendix

PROGRAM A-2 CONT'D ...

8BB5:D0 D2 144 BNE NXTLN2
8BB7:F0 CD 145 BEQ BOTTOM AT SCREEN BOTTOM?
8BB9:B9 00 SC 149 NXTLN3 LOA VPATRN,Y GET LINE PATTERN
SBBC:30 9D 150 BMI HPAT4
8BBE:10 00 151 HPAT3 BPL HP3
8BC0:25 4F 152 HP3 AND RNDH MASK SWITCH COMMAND
8BC2: AA 153 TAX
8BC3: 9D 00 co 154 STA SWITCH,X
8BC6:8D 60 co 155 STA DUMMY
8BC9:8D 60 co 156 STA DUMMY
8BCC:8D 60 co 157 STA DUMMY *****
8BCF:8D 60 co 158 STA DUMMY *
8BD2: 8D 60 co 159 STA DUMMY *
8BD5:8D 60 co 160 STA DUMMY **
8BD8:8D 60 co 161 STA DUMMY *
8BDB:8D 60 co 162 STA DUMMY * *
8BDE:8D 60 co 163 STA DUMMY ***
8BE1:8D 60 co 164 STA DUMMY
8BE4:88 165 DEY ONE LESS LINE
8BE5:D0 D2 166 BNE NXTLN3
8BE7:F0 9D 167 BEQ BOTTOM AT SCREEN BOTTOM?

8BE9: 170 ***** VBLANKING DELAY*****

8BE9:2C 50 co 172 VBSTAL BIT $C050 AFFIRM RETRACE COLOR
8BEC:EA 173 NOP ADJUST DELAY
8BED:A0 co 174 LOY #$CO FOR FRANKLIN TIMING
8BEF:A9 lA 175 LDA #$1A DELAY FOR 4392
8BF1:20 A8 FC 176 JSR WAIT CPU CYCLES
8BF4:A9 17 177 LOA #$17
8BF6:20 AS FC 178 JSR WAIT
8BF9:A9 OE 179 LOA #$OE
8BFB:20 AS FC 180 JSR WAIT
8BFE:60 181 RTS

Special Update Section 257

PROGRAM A-2 CONT'D ...

8C00: 183 ORG START+256

8C00:60 60 60 185 VPATRN DFB 96,96,96,96,96,96,96,96,
8C03:60 60 60 96,96,96,96,96,96,96,96
8C06:60 60 60
8C09:60 60 60
8C0C:60 60 60
8C0F:60

8Cl0:60 60 60 186 DFB 96,96,96,96,96,96,96,96,
8Cl3: 60 60 60 96,96,96,96,96,96,96,96
8Cl6:60 60 60
8Cl9:60 60 60
8ClC:60 60 60
8ClF:60

8C20:60 60 60 187 DFB 96,96,96,96,96,96,96,96,
8C23:60 60 60 96,96,96,96,96,96,96,96
8C26:60 60 60
8C29:60 60 60
8C2C:60 60 60
8C2F:60

8C30:60 60 60 188 DFB 96,96,96,96,96,96,96,96,
8C33:60 60 60 96,96,96,96,96,96,96,96
8C36:60 60 60
8C39:60 60 60
8C3C:60 60 60
8C3F:60

8C40:60 60 60 189 DFB 96,96,96,96,96,96,96,96,
8C43:60 60 60 96,96,96,96,96,96,96,96
8C46:60 60 60
8C49:60 60 60
8C4C:60 60 60
8C4F:60

8C50:60 60 60 190 DFB 96,96,96,96,96,96,96,96,
8C53:60 60 60 96,96,96,96,96,96,96,96
8C56:60 60 60
8C59:60 60 60
8C5C:60 60 60
8C5F:60

8C60:60 60 60 191 DFB 96,96,96,96,96,96,96,96,
8C63:60 60 60 96,96,96,96,96,96,96,96
8C66:60 60 60
8C69:60 60 60
8C6C:60 60 60
8C6F:60

8C70:60 60 60 192 DFB 96,96,96,96,96,96,96,96,
8C73:60 60 60 96,96,96,96,96,96,96,96
8C76:60 60 60
8C79:60 60 60
8C7C:60 60 60
8C7F:60

258 Appendix

PROGRAM A-2 CONT'D ...

8C80:60 60 60 195 DFB 96,96,96,96,96,96,96,96,
8C83:60 60 60 96,96,96,96,96,96,96,96
8C86:60 60 60
8C89:60 60 60
8C8C:60 60 60
8C8F:60

8C90:60 60 60 196 DFB 96,96,96,96,96,96,96,96,
8C93:60 60 60 96,96,96,96,96,96,96,96
8C96:60 60 60
8C99:60 60 60
8C9C:60 60 60
8C9F:60

8CA0:60 60 60 197 DFB 96,96,96,96,96,96,96,96,
8CA3:60 60 60 96,96,96,96,96,96,96,96
8CA6:60 60 60
8CA9:60 60 60
8CAC:60 60 60
8CAF:60

8CB0:60 60 60 198 DFB 96,96,96,96,96,96,96,96,
8CB3:60 60 60 96,96,96,96,96,96,96,96
8CB6:60 60 60
8CB9:60 60 60
8CBC:60 60 60
8CBF: 60

8CC0:60 60 199 DFB 96,96

8CC2: 201 **** KEYPRESSED AND TIMEOUT****

8CC2:20 CB SC 203 BOTTMl JSR KEYTIME TAKE CARE OF EXIT
8CC5:20 E9 8B 204 JSR VBSTAL DELAY TILL NEXT

FIELD
8CC8:4C 26 88 205 JMP NXTLNl AND DO IT SOME

MORE
8CCB:2C FB BC 209 KEYTIME BIT CONTROL IS KEY EXIT

ACTIVE?
BCCE:10 08 210 BPL NOKEY
8CD0:2C 00 co 211 BIT KEYBD LOOK FOR KEY
8CD3:10 06 212 BPL KEYOK NOT THERE?
8CD5:68 213 PLA POP SUBROUTINE
8CD6:68 214 PLA
8CD7:60 215 RTS EXIT
8CD8:EA 216 NOKEY NOP EQUALIZE 6
8CD9:EA 217 NOP

Special Update Section 259

PROGRAM A-2 CONT'D ...

BCDA:EA 218 NOP
BCDB:EE FD BC 219 KEYOK INC TIMEX ; INCREMENT TIMEOUT

MULTIPLIER
8CDE:2C FB BC 220 BIT CONTROL IS TIMER ACTIVE?
BCEl: 50 OF 221 BVC NOTIME ;
8CE3:A9 lF 222 LOA #$1F MASK FOR 1/64
8CE5:2D FD BC 223 AND TIMEX AND TEST

MULTIPLIER
BCEB:D0 oc 224 BNE NOMULT
BCEA:CE FC BC 225 DEC TIMER ONE LESS COUNT
BCED:D0 OB 226 BNE TIMEOK . DONE? I

BCEF:68 227 PLA POP SUBROUTINE
BCF0:68 228 PLA ;
BCFl:60 229 RTS EXIT
8CF2:EA 230 NOTIME NOP EQUALIZE 8
8CF3:EA 231 NOP
8CF4:EA 232 NOP
8CF5:EA 233 NOP ;
8CF6:EA 234 NOMULT NOP EQUALIZE 8
8CF7:EA 235 NOP
BCFB:EA 236 NOP
8CF9:EA 237 NOP
BCFA:60 238 TIMEOK RTS RETURN TO NEXT

SCAN

8CFB:C4 240 CONTROL DFB $C4 ARMS KP AND SETS
TIMEOUT

8CFC:00 241 TIMER DFB $00 . COUNTER FOR I

TIMEOUT
8CFD:00 242 TIMEX DFB $00 TIMEOUT* 64

MULTIPLIER

8CFE:AD FB BC 244 SETUP LOA CONTROL INITIALIZE TIMEOUT
8001:29 3F 245 AND #$3F MASK TIMEOUT BITS
8003:80 FC BC 246 STA TIMER

8D06:A9 7F 248 LOA #MASK MOVE MASK FOR
FRANKLIN ADJUST

8008:85 4F 249 STA RNDH
8D0A:60 250 RTS AND CONTINUE

260 Appendix

All of these files have been recoded and are ready to go on the Franklin sup
port diskette. As a reminder, once your VFFS modules have been updated, the
demos will work without any changes.

There is one difference that the Franklin shares with the Apple I le:

The blank dot row on each character is the bottom row, unlike
the blank top row on the Apple II or II+. This causes the
VFFS.GIRLS display to run the characters into the horizontal color
bars. You can beat this by throwing in a HIRES blank line just above
each name in the demo. Do this by reworking VFFS.GIRLS.

Enhancement Six

The glitch stamper hardware is not needed on a Franklin computer. Besides,
there is no place to put it. Since the Franklin has its own special color circuitry,
the glitches behave totally differently. Most of the glitches that are involved in
an on-screen switch to or from LORES can be handled by obeying this simple
rule ...

FRANKLIN GLITCH STOMPING
RULE

When doing any on-screen
field mixing, always enter into
LORES black or enter into
TEXT spaces.

Apparently all of the original demos obey this rule, for there were no glitches
at all on any of the mixed field displays. The usual way that a Franklin glitch
shows up is in a "jagged" first text character.

Enhancements Seven and Eight

Enhancements 7 and 8, the Gentle Scroll and the Fast Backgrounder, will
work as is on the Franklin computer. Note that the field sync wire should be
installed for the smoothest possible scrolling and for "invisible" HIRES color
switching. You do this by following the field sync instructions given earlier.

Copies of these programs and their source codes are ready-to-go on the
Franklin support diskette.

Is Anybody Out There?

I know of lots of people that own Franklin computers, but not one of them is
a hacker interested in how his machine works or genuinely interested in push
ing the hardware and software limits. To me, the Franklin computer is a knock
off machine that is "better" than an Apple II+ but which cannot hold a candle
to the Apple Ile. The Franklin is too big and too noisy to suit me, and has less
than-perfect color video displays.

So, if you are a Franklin hacker, please write "I AM A FRANKLIN HACKER!"
on your response card. Unless we get at least a dozen of these cards back,
explicit support of Franklin computers will be dropped from the remaining vol
umes in this series.

Special Update Section 261

ODDBALL APPLES

In this section, we are calling anything except an ordinary Apple II, Apple
lie, or a Franklin, an oddball Apple. This will include the Hong Kong "knock
offs," the BASIS 108, and the European Apples. Once again, just about all of
the enhancements can be made to work, one way or another, with just about
any oddball Apple.

Hong Kong "Knockoffs"

If your Hong Kong knockoff is an exact duplicate of the original Apple II+,
everything should work with no problems. On the other hand, if the knockoff
considered such niceties as avoiding patent hassles, they may have changed
their horizontal timing to the Franklin scheme. The usual symptom of this is
severe screen tearing and rolling during the field sync enhancements.

If this happens, try the Franklin codes as your second option. If that fails, use
the TRIPLE DELAY FINDER bonus program on the support diskette to find the
timing you need. This can be done by calculation, by measurement, or simply
by trial and error.

On Hong Kong Apples, the Glitch Stamper may or may not work. Try it only
if you have on-screen text/LORES glitches, and then only if you really are going
to use this sort of thing.

The color killer may or may not work as shown. If it looks like there is a
place to put it, try it and see. Some knockoffs will have different color genera
tion and color killing schemes.

European Apples

I have reluctantly decided not to support enhancements for European Apples
at the present time. Reasons include technology export hassles, post office
inconveniences, unavailability of machines and monitors, and the fact that I
am years behind in doing the things I really want to do and feel are really
important.

Companion diskettes and parts kits are not for, and will not be shipped to, a
foreign address, so don't bother asking.

The European Apples have wildly different system timing, television stand
ards, and color generation methods, when compared against domestic Apples.
In theory, anything you can do with a domestic Apple can also be done with a
European Apple. All of the enhancements in this book are possible, given
enough time and effort.

The differences in timing will tear up the mixed fields demos, unless the soft
ware is suitably rewritten. Color killing and glitch stomping will almost cer
tainly need extensive rework. Excessive flicker may prevent you from using
field alternators and certain other mixed field routines.

Careful study of the Franklin and Apple lie update sections will give you
some hints as to what is involved a

262 Appendix

PARTS KITS, DISKETTES, AND FEEDBACK CARDS

CONTENTS OF COMPANION
PARTS KIT

1 each 7 4LS 1 51 1 / 8 Selector IC.
2 each 7 4LS02 Quad NOR Gate IC.
2 each Tv clothespin connector.
4 each Phono jack, upright pc type.

4 each Spade lug, crimp style.
1 each 4.7K resistor, 1 / 4 watt.
3 each 16-pin DIP socket, premium

machined-pin style.
each 14-pin DIP socket, premium

machined-pin style.

each machined-pin socket contact.
6 inches No. 22 stranded wire, red

insulation.
24 inches No. 24 solid wire, blue

insulation.
6 inches No. 24 solid wire, red

insulation.
12 inches Electronic solder.

The parts kit costs $11.95 plus shipping and may be ordered using the
attached card or directly from PAIA Electronics ..

PAIA Electronics
Box 14359
1020 West Wilshire
Oklahoma City, OK 73114
Tel: 405-842-5480

CONTENTS OF COMPANION
DISKETTE

Auto Menu
Color Killer Demo
Field Sync Utility Subs.Source
Field Sync Utility Subs
Field Sync Quick Test
VFFS.EMPTY.SOURCE
VFFS.EMPTY
VFFS.BOXES

VFFS.GRAPH
VFFS.GIRLS
VFFS.BYE
VFFS.LORES

Fun With Mixed Fields
LORES Colors 121
LORESl Create
LORES2 Create

LORESl
LORES2
Gentle Scroll Set.Source
Gentle Scroll Set

Gentle Scroll Tester

Special Update Section 263

Fast Background.Set.Source
Fast Background.Set
Fast Background Demo

PLUS - Two mystery "bonus"
programs!

The 26-program DOS 3.3 diskette costs only $19.95. It is fully copyable for
your personal use only and includes complete source code. All source code
and programs and modules are easily changed using either EDASM or the 5-C
Assembler. You can order this diskette using the attached card or directly from
SYNERGETICS ...

SYNERGETICS
Box 1300
7 46 First Street
Thatcher, AZ 85552
Tel: 602-428-4073

There are three different diskette versions available for older Apples, the
Apple lie, and the Franklin. Be sure to tell us which version you need.

IMPORTANT!

For fastest service, please send
each card to the correct address!

Be sure to tell us which version
(older Apple, Apple lie, Franklin)
you want on diskette orders!

YOUR ENHANCING HOTLINE IS
602-428-4073

(8-5 MOUNTAIN STANDARD TIME)

264 Appendix

In future volumes, we will be looking at lots of exciting new ways to add
variable resolution color and grey scale to your Apple, and ways to do spinners,
animation, and other partial screen scrolls. We will also do in the iron statue and
the golden clockwork canary once and for all. See you there.

PREVIEW OF VOLUME 2

Here's a sampler of some of the exciting new stuff you'll find in future volumes of Enhancing
Your Apple II.

DAISY DUMPERS-
Some exceptionally high quality and very fast graphics screen dumps for daisywheel
printers. You get sharp and solid lines with perfectly square corners.

ABSOLUTE RESET FOR THE APPLE lie-
How to use custom monitor EPROMs to put the essentials back into the Apple lie sys
tem monitor.

TEN-CENT FIX-
A quick and easy modification of your cassette recorder that will dramatically increase
reliability and ease of use.

ADVENTURE EMERGENCY TOOLKIT-
Do in the iron statue and the golden clockwork canary once and for all. Learn about the
three ultra-challenging "hidden" adventures buried in ALL Adventure programs.

SIX-WAY KEYBOARD IMPROVER-
Simple and super cheap add-on hardware card that will give you auto repeat, shift key
mod, external keypad, lap keyboard, key duration mode, and user-defined keys. Since it
goes between the existing keyboard and the encoder, it's compatible with all existing
software.

SHOW-N-TELL AUTO MENU-
A very user-friendly menu system for noncomputer people. Show only what you want
and where and how you want it, with full sound and animation.

VAPOR-LOCK FIELD SYNC-
A zero-cost method that gives you an exact screen lock in any field. Does everything the
mod of Enhancement 4 does, only it does it faster, simpler, and much more flexibly and
conveniently.

ULTRASONIC BSR INTERFACE-
A two-dollar hardware add-on that lets you control the world with your Apple by way of
an ultrasonic link and a BSR controller .

. . . . PLUS MUCH MORE !

WE NEED YOUR HELP!

A response card is included in the back. Please use it to tell us the best uses
that you find for your mixed fields and the best HI RES background patterns that
you found, along with any requests you have for future enhancements. This card
will automatically register you for future corrections and updates•

INDEX

A

Action files, 32-33
Add-ons and modifications, 219-224
Address filter, 63-66
Address, synergetics, 262
ALTFLD subroutine, 106, 110
Apple lie, update

color killer, 225-231
fast backgrounder, 243-244
field sync, 225, 232-234
gentle scroll, 243
glitch stomper, 242
mixed fields, 234-242

fast lock, 242
patched code, 235
program, 236-241
VFFS, 235

tearing method, 231
two glompers, 225

Applesoft, 37, 39-43, 51, 96, 99,119,135,
149,150, 176-177

ASCII filter, 62-63
Attack methods, 75
Autocolor circuitry, 28
Autostart

monitor, 42, 46
reset, 18, 20, 24
ROM,81

B

Background colors, 199-224
Backup copies, 8
Bar graphics, 115, 149
Base addresses, 178, 179, 180-183, 200

265

Basis, 261
BEDGE subroutine, 105, 110
Breakpoints, 81, 82
"Brute force" coding, 175
Bugs, 35
Bulk files, 32-33, 48-49, 61, 68-69, 75

C

Cell, color, 205-206, 207, 210
Chain, timing, 92
Change detection, 83-84
Changeover switch, 10, 11-12
Character display, 170
Clock cycles, 91-93, 94, 105, 106-109
Code(s), 84

dead, 59
machine-language, 33, 37
modules, 32, 105
pattern, 207-212
rational, 47, 48, 58, 59-60
source, 34
tearing into machine language, 29-87
video display, 62
working, 32

Color killer, Apple lie, 225-231
installing, 229-231

pictorial, 230
instructions for building, 227-228
parts needed, 226
schematic, 226

"piggyback", 226
testing, 231

Color killer, Franklin computer, 245-250
illustrated, 245
installing, 247-249

266 Index

Color killer, Franklin computer-cont
instructions for building, 246
parts needed, 245

Color(s)
background, 199-224
band, 24-28
burst, 18, 19, 44, 93
cell, 205-206, 207,210
combinations, 203, 204-205
complementary, 203, 204
dots, 200-204, 206
file, 212,219
HIRES .. 205, 207
killer

automatic, 19
programmable, 17-29
what is?, 18

lines, 18
LORES, 207
pastel, 209
patterns, 206, 208-209
shifted and unshifted, 201-204

Companion diskette, content, 262
Complementary colors, 203, 204, 208
Control commands, software, 18
CRUDE, 99, 105, 110, 173

D

Dead code, 59, 87
Debug programs, 31
Decoding circuits, color, 18
Delay subroutine, 108
Demo programs, 148, 149
Diagnostic helps, 81
Disassembler, 87
Diskette, 262

ordering information, 262-263
Display

code, video, 62
file, 116

Documentation, 8, 34
DOS, 38-39, 44, 51, 67, 82

file, 38-39
hooks, 38, 176

Dot(s)
color, 200-204, 206
patterns, 207-212
positions, 202-203

Dummy soft switches, 134, 135-140

E

Edge detector, 105
Exact sync, 106-108, 110
European apples, 261

F

Fast backgrounders, 243-244
Apple lie

direct patch, 244
HIRES, 243
LORES colors, 243

Franklin, 260

FEDGE subroutine, 105-106, 108, 109, 110

Feedback cards, 262
Field(s)

alternator, 106, 113
mixed, 115-152, 234-242, 252-260

rate timing, 91
switch modification, 96-98
switching, 116
sync, 89-114, 172

Apple I le, 23.2-234
access, 232
source code, 233

Franklin, 250-252
modification, 173, 172, 193, 224

File(s)

action and bulk, 32-33
bulk, 48-49, 61, 68-69

color, 212,219
design, 140
display, 116
filters, 60-61, 67, 69
flag, 66-67
locations, 140
working, 119-145

Filter
address, 63-66
ASCII, 62-63
file, 60-61, 67, 69
stash, 60-61, 63

Flag file, 66-67
Force feeder, 83
Franklin computer, 244-260

color killer, 245-250
continued support, 260
fast backgrounder, 260
field sync, 250-252
gentle scroll, 260

quick test 252
software differences, 250-2.51
source code patches, 251-252
triple delay finder, 251

glitch stamper, .260
mixed field, 252-260

LORES COLORS 21,252
source code, 253-259

tearing method, 250
two glompers, 245

Full-color mixed graphics, 18

G

Garbage, 8, 59, 90
Gentle scroll, 169-197

Apple lie, 243
flowchart, 183-184
Franklin, 260
program, 176,177,178,183, 185-191

Glitch(es), 157-168, 199, 200, 224
riddance, 146-147
stamper, 146, 147, 157-168

Apple lie, 242
Franklin, 260

Glomper(s)
of the first kind, 12-14, 225

Glomper(s)-cont
of the second kind, 14-16, 225
two, 10, 11-16

Graph, 148,149
Graphics, 38, 90, 106, 110, 134, 158

full-color mixed, 18

H

Hardware, 157-158, 170
color killer, 19, 24-28
modifications, 10, 89, 158, 160-161, 193

Hex dumps, 148-149, 150-151, 191,
233-234, 235

High
memory pointer; (see) HIMEM
RAM, 35, 38-39
-Resolution Character Generator·

(see) HRCG '

HIMEM, 39-41, 99, 119
pointer, 176, 177

HIRES, 9, 10, 17, 19, 24, 37, 38, 90, 110,
115, 176, 242

base addresses, 66
colors, 148, 157, 205, 207
demo program, 148
display, 149
graphics, 66, 193
screen(s), 66, 75, 149

pages, 33
subroutines, 178, 199
utility, 199

Hong Kong "knockoffs", 261
Hook(s), 36, 59, 81

DOS, 176
programs, 32
scroll, 35, 85

Horizontal
patterns, 117, 134-135
-rate timing, 91, 92-93
scan lines, 118-119, 145
sync pulse, 92, 93

Hotline number, 264
HRCG, 33-35, 44, 46, 48, 62, 75-76, 99, 170,

176-177, 200
Hues, 205, 208, 210-211

Installing color killer
Apple lie, 229-231

pictorial, 230
Franklin, 247-249

pictorial, 250
Instructions for building Apple

lie color killer, 227-228
end view, 228
top view, 227

Integer BASIC, 37, 39-41, 51,119
1/0 sockets, 7, 27
Irrational code, 58

K

Keyboard
buffer, 37, 38, 43, 176

Keyboard-cont
entry hooks, 36
strobe, 41-42

L

Light pens, 89, 90, 95, 106, 109
Logic analyzer, 83
LOMEM, 39-41, 99
Loops, 58, 174-175

Index 267

LORES, 9, 10, 17, 19, 37, 38, 90, 115,
176,242

colors, 150-151, 153-154, 156,207
Low

-memory pointer; (see) LOMEM
RAM, 35-38

Luminance video, 93

M

Machine-language
code, 33, 37, 135, 199

tearing into, 29-87

programs, 30, 32, 41, 43-44, 49, 119
subroutine, 96,169,212

Machined-pin contacts, 23
Master timing reference, 91
Memory

map, 176-183
mapping, 35

Mixed
field, 115-142, 157,158,173

Apple lie, 234-242
Franklin, 252-260

graphics, 18, 19
Modification(s), 19-20, 150, 219-224

field-switch, 96-98
field sync, 95-98, 171, 173
hardware, 10, 26

Modulator, rf, 10, 11-12, 16, 28
Monitor(s), 42, 46, 51, 81, 82

system, 8
Motion perception, 171-173
Multiplexer, 91
Music synthesizer card, 16

0

Oddball Apples, 261
European apples, 261
Hong Kong "knockoffs", 261

p

Partial boot, 83
Parts kit, 225
Parts needed

Apple lie color killer, 226
Franklin color killer, 245

Pastel colors, 209-211
Pattern(s)

codes, 207-212
color, 206, 208-209
dots, 207-212

Pictorial, Apple lie color killer, 230

268 Index

Preview of volume 2, 263
Print output hooks, 36
Program(s)

bugs, 35
gentle scroll, 176,177,183, 185-191
hook, 32
locations, 44-46, 51-56
machine-language, 30, 32, 34, 41, 43-44,

49, 119
structure, 33
test and debug, 31

Programmable color killer, 17-29, 225
Programming, machine-language, 30-31

RAM
high, 35, 38-39
low, 35-38
user, 46

R

Raster scan collisions, 172-174
Rational code, 47, 48, 58, 59-60
Relocatable programs, 58, 176
Remapping, 171, 174-176, 178-179, 192
Reset, autostart, 18, 20, 24,231
Response card, 263
Rf modulator, 10, 11-12, 16, 28, 225

s
Scan lines, 141, 145, 149, 205, 209,

210-211, 212
horizontal, 117-118

Schematic, Apple lie color killer, 226
Screen switches, 41-42
Script, 75-76
Scroll, 35, 83, 169-197

gentle, 90
hooks, 35, 85
subroutine, 85

Shape table, 66

Shifted colors, 201-204, 208
Signal, black and white, 18
Socket(s)

1/0, 7, 27
Soft switch, 116-117, 119, 134-135, 141,156
Software, 8, 106, 157-158, 170

color killer, 19, 23-24, 28
control commands, 18
support, 96-113, 115

Source code, 34, 233, 253-260
Split screens, 89

Sprite maps, 66
Stack, 3 7
Start-of-program pointer, 41
Stash filter, 60-61, 63
Stashes, 32-33, 37, 59-60, 75
Strobe, keyboard, 41-42

Subroutine(s), 33, 49-51, 56, 64-65, 81, 82, 99,
105, 109,148,220, 224

HIRES, 199

machine-language, 96, 169, 212
scroll, 85

Support software, 96-113, 115

Switch, changeover, 10, 11-12

Synergetics, address, 262

System monitor, 8

T

Tearing

attack method, 34, 35

Apple lie, 231

Franklin, 250

into machine-language code, 29-87

Test and debug programs, 31

Testing, Apple lie color killer, 231

Text displays, 38

Timing

chain, 92, 94

reference, master, 91

video, 91
waveforms, 91-95

Two glompers, 10, 11 16

Apple lie, 225

Franklin, 244-45
TXTAB; (see) start-of-program

pointer

u

Unshifted colors, 201-204, 209

Utility

HIRES, 199

subs, 96

V

Vertical rate timing, 93
VFFS,117-152
Video

display code, 62
Field Formatter Sub, 119; (see

also) VFFS
glitch-free, 91
luminance, 93

timing, 91

WAIT, 108
Warranty, 23

Working
code, 32
files, 119-145

w

Cl
C:
-~
.E
Q) ...
ca
Cl)

"E ca u
Q)
Cl)
Q)
.c -:t:::
Cl)
Q)

~I
C.
Cl)
::,
0 ·s;
~
C.
Q)
Q)
Cl)

Q)

~
Q)

c::

RESPONSE CARD
D Please keep me informed of any updates

and additions to the Enhancing series.
D "IT" has been revealed to me.

D I now have a modem on line and would
like to use it for updates.

The best uses of MIXED FIELDS that I've thought of so
far are: ________________ _

The NEXT ENHANCEMENTS I want to see are:

The most mind-blowing BACKGROUND PATTERNS
I've found are:

PATTERN DESCRIPTION

NAME _______________ _

STREET ______________ _

CITY ______ STATE __ ZIP ___ _
VOICE PHONE ______________ _

DATA PHONE _______________ _

DISKETTE
Please send me ___ copies of the 26 program,
DOS 3.3 COMPANION DISKETTE to Enhancing Your
Apple II, Volume 1, at $19.95 each. I understand this
disk is fully copyable for my personal use only .

Send me the D OLDER APPLE VERSION

D APPLE lie VERSION

D FRANKLIN VERSION

Please also send me ___ autographed copies of
Don Lancaster's The Incredible Secret Money
Machine, a must-have, how-to guide for forming your
own computer, technical, or craft venture, at $7.50
each postpaid.

D I enclose check for $ _________ _

D Please charge my VISA account number

Expiration Date ___________ _

Signature _____________ _

NAME_

ADDRESS _____________ _

CITY _____ STATE __ ZIP ___ _
Please. no purchase orders. We also cannot ship to a foreign address.

- -1--·-·- - -- - - - - -~- -- -----··-----·

PARTS KIT
Please send me __ PARTS KITS for Enhancing
Your Apple II, Volume 1, at $11.95 per kit plus ship
ping. I understand this kit gives me everything I need
to build:

four glompers,

one software color killer,

one field sync modification,

and one glitch stomper.

D I enclose check for $ __ _

D Please charge my VISA account number

Expiration Date ___ _

Signature ______________ _

NAME _______________ _

ADDRESS _______ _

CITY _____ STATE __ ZIP
Please, no purchase orders. We also cannot ship to a foreign address.

FROM

SYNERGETICS
BOX 1300
THATCHER, AZ 85552

PLACE

POSTAGE

HERE

-=-"""=-·.=::~-----:--=-=--=--. - - -----------------------·-·- ·--- -------~ '

FROM

SYNERGETICS
BOX 1300
THATCHER, AZ 85552

PLACE

POSTAGE

HERE

·--=-------~-=·r-r:r- -- ---- - ~-- - - ---- ------ ----- --- -----·==.m--~-----=----~-'- ------
FROM

PAIA
ELECTRONICS
BOX 14359
OKLAHOMA CITY, OK 73114

PLACE

POSTAGE

HERE

SJJNd.

co
0
0
~

~
0
0
~

Sams Books cover a wide range of technical topics. We are always looking for
more information from you, our readers, as to which additional topics need cover
age. Please fill out this questionnaire and return it to us with your suggestions.
They will be appreciated.

Please check the areas of interest:

1. CURRENT TECHNOLOGIES

D Electronics

D Circuit Design

D Computers

D Business Applications

D Fundamentals
D Languages ____ _

Specify

D Machine Specific: __ _

D Microprocessors

D Networking

D Servicing/Repair

0
Other

2. NEW TECHNOLOGIES

D Fiber Optics

D Robotics

D Security Electronics

D Speech Synthesis

D Telecommunications

D Cellular

D Satellite

D Video
D Other _______ _

3. Do you Down D operate a personal computer? Model ______ _

4. Have you bought other Sams Books? Please list: ________ _

5. OCCUPATION
D Business Professional __ _

Specify

D Educator
D Engineer ______ _

Specify
D Hobbyist

D Programmer

D Retailer

D Student

D
Other

COMMENTS

(OPTIONAL)

NAME

ADDRESS

CITY

21822

STATE

6. EDUCATION

D High School Graduate

D Tech School Graduate

D College Graduate

D Post-graduate degree

ZIP

Book MarloyJEv\[)JOO£[

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 1076 INDIANAPOLIS, IND.

POSTAGE Will BE PAID BY ADDRESSEE

HOWARD W. SAMS & CO., INC.
4300 WEST 62ND STREET
P.O. Box 7092
Indianapolis, IN 46206

ATTENTION: Public Relations Department

Ill 111 NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

Enhancing Your Apple® II
Volume I
Second Edition
This is the first volume in an exciting Don Lancaster series._. This edition now includes the
latest Apple lie and Franklin Ace® updates.

• Is innovative and sneaky-digs into the inne_rmost core ()f your Apple

• Contains a fast and easy method for taking apart and understanding machine language
programs

• Gives you hardware and software modifications that allow you to bend your Apple to
your will

• Features programs and other hints for creating hundreds of colors and many, many
patterns on your screen

• Contains ideas to improve your text-on-high-resolution displays. Helps you scroll your
monitor screen

• An absolute must for the novice, the hacker, the programmer, the technician, or the
casual user who still spends long hours, late nights, and many nail-biting sessions
looking for IT

ENHANCEMENTS INSIDE

• Two Glompers • 121 LORES Colors
• Software Color Killer • The Glitch Stemper
• Tearing Into Machine Language • Gentle Scroll
• Field Sync • Fast Backgrounder
• Fun With Mixed Fields • Special Update Section

Howard W. Sams & Co., Inc.
4300 West 62nd Street, Indianapolis, Indiana 46268 U.S.A.

$15.95/21822 (Replaces 21846) ISBN: 0-672-21822-4

