
Don Lancaster's

MACHINE

LANGUAGE

- PROGRAMMING -

COOKBOOK

Part Two

Machine
Language

Programming
Cookbook II

by Don Lancaster

An eBook reprint of chapters 8 and 9
of Micro Cookbook Volume II

SYNERGETICS SP PRESS
3860 West First Street, Thatcher, AZ 85552 USA

(928) 428-4073 http://www.tinaja.com

http://www.tinaja.com

Copyright © 2010 by Synergetics Press
Thatcher, Arizona 95552

THIRD EDITION
FIRST PRINTING—2010

All rights reserved. Reproduction or use, without
express permission of editorial or pictorial content,
in any manner, is prohibited. No patent liability is
assumed with respect to the use of the information
contained herein. While every precaution has been
taken in the preperation of this book, the publisher
assumes no responsibility for errors or omissions.
Neither is any liability assumed for damages resulting
from the use of the information contained herein.

International Standard Book Number: 1-882193-15-8

Created in the United States of America.

ABOUT THE AUTHOR

Don Lancaster heads Synergetics, a new-age software,
prototyping, and consulting firm involved in micro appli
cations and electronic design. Don is the well-known
author of the classic CMOS and TTL Cookbooks. He is
one of the microcomputer pioneers, having introduced
the first hobbyist integrated circuit projects, the first
sanely priced digital electronics modules, the first low
cost TVT -1 video display terminal, the first hobbyist key
boards, and lots more. Don's numerous books and arti
cles on personal computing and electronics applications
have set new standards for understandable, useful, and
exciting technical writing. Don's other interests include
ecological studies, firefighting, cave exploration, tinaja
questing, and bicycling.

Other Howard W. Sams books by Don Lancaster include
Active Filter Cookbook, CMOS Cookbook, TTL Cook
book, RTL Cookbook (out of print), TVT Cookbook,
Cheap Video Cookbook, Son of Cheap Video, The Hex
adecimal Chronicles, The Incredible Secret Money
Machine, Don Lancaster's Micro Cookbook, Volume 1,

and the continuing Enhancing Your Apple II series.

Preface

Machine Language Programming is the second of three volumes
on the fundamentals of microprocessors and microcomputers. In
this volume, we (that's you, me, and that gorilla) look into the
details of the micro's own language.

Volume 1 covered the fundamentals of microprocessors needed
for us to start understanding machine language programming. Vol
ume 3 is a reference volume containing detailed descriptions of
hundreds of popular and micro-related integrated circuits.

Why machine language? Because, as it turns out, virtually a// win
ning and top performing microcomputer programs run only in
machine language. The marketplace has spoken. It has not only
spoken but is shouting: BASIC and PASCAL need not apply.

Volume 2 will show you the fundamentals of machine language
programming through a series of discovery modules that you can
apply to the microprocessor family and the microcomputer of your
choice. Once you get past these modules and gain a deep under
standing of what machine language is all about, then you can step
up to the wonders of assembly language, which is really nothing
but automated machine language programming that is made much
faster, lots more convenient, and bunches more fun.

Volume 2 picks up at Chapter 6 in this continuing series. Here we
look at address space and addressing concepts, as well as working
registers and how they are used. Next is a study of system architec
ture, seeing what goes where in a typical microcomputer, with
heavy emphasis on understanding system buses and how they
work. From there we go into memory maps and on to addressing
modes, those all-important methods a microcomputer's CPU has of
accessing memory and its own working registers. We look at seven
fundamental addressing modes that apply to most micros one way
or another, either by themselves or in combination.

Address modes are then summarized in a group of quick-refer
ence charts. Next come some stock forms useful for hex dumps,
machine language programming, and assembly language program
ming. This chapter ends up with a toolkit that you can put together
for machine language work.

Chapter 7 is the real heavy of this volume. Here we actually do
lots of machine language programming. We use the "those #$! #$
cards" method, in which you work one-on-one with each individ
ual op code as the need arises, again on the microprocessor of your
choice. There is a series of nine discovery modules here. These are
elementary programming problems that start with the simplest of

op codes and programming concepts and work their way up into
some fairly fancy results, using practically all the available micropro
cessor op codes on the way. As we go through the modules, we
also pick up details on flowcharting and using programming forms;
measuring time and frequency; calculating branch values; using a
stack; testing individual bits; creating text messages; using files,
subroutines, interrupts, breakpoints, arithmetic, and much more.

We do not dwell on micro arithmetic because math uses of
micros are not all that important when it comes to real programs
doing real things for real people. Math on micros simply does not
deserve the overblown treatment some texts give it.

While many examples are given that involve the 6502, you can
easily do the discovery modules on any micro of your choice-4-bit,
8-bit, 16-bit, or whatever. All program problems and examples have
purposely been done on a mythical and nonexistent trainer, so that
you are forced to think things out on your own, solving your OWI\1
problems in your own way on your own machine.

In Chapter 8, we take a detailed look at 1/0, or input/output. We
find there are four levels of 1/0 and then explore the two lowest
levels in detail. At the device level, we check into parallel and serial
ports, look at the different port types, and examine specific chips.
Then we find out how to interface such things as keyboards and
displays, using a minimum number of port lines.

Next, at the circuit level, we examine the simple circuitry needed
to "amplify," "isolate," or "convert" micro port lines into signals
powerful enough to go out into the real world with a vengeance.
Here we include such things as transistor drivers, triacs,
optocouplers, input conditioners, analog-to-digital converters, digi
tal-to-analog converters, and things like that.

Chapter 9 both wraps up this volume and completes the "how"
part of the trilogy. First and foremost, we check into the micro
applications attack, a real-world problem-solving method that I
use. It has been thoroughly tested and, above all, it works. Emphasis
is placed on everything that has to be done away from the micro,
using the "stickiest box" method to zero in on the real problem
hidden inside what you are trying to do.

The micro applications attack is followed by some real-world
problems that you can solve using this method. Project "F" is partic
ularly challenging. Then we consider where you have to go from
here. Finally, for those of you still wondering "What good is all this
stuff?," we end the book with a list of sixty-three microcomputer
ideas that you can immediately put to challenging, unique, and
profitable uses.

DON LANCASTER

Contents

CHAPTER 6

Addresses and Address Spaces. 9

Address Spaces-Working Registers-Architecture-Address
Space Decoding-The Memory Map-The Programmer's
Model-The Package to Albuquerque-Which Address
Mode?-The Resource Sheet-The Micro Toolkit

CHAPTER 7

The Discovery Modules 113
What Is a Program?-Von Neumann Architecture-Machine
Language Programs-Those #$!$# Cards-M YTH-1 Discov-
ery Trainer-Fiowcharting-NOP and JMP-Discovery Mod
ules-Loading and Storing-Time, Frequency, and Clock
Cycles-Flags-The IF Instructions-Calculating Relative
Branches-Block Counting Method-Loop Use Rules-The
Stack-Subroutine Uses-Absolute Short Addressing-.Y
Time Delay-User-Friendly Code-Passing Variables to a
Subroutine-Bit Twiddling-Files-Interrupts-Breaks and
Breakpoints-What? No Math?-Add and Subtract

CHAPTER 8

Interface and 110 311
Micro Level lnterface-"Less Than a Port" Outputs-Real
Microcomputer Ports-Simple Parallel Ports-The 8212-The
6522-The Simplified 1/0 Diagram-Minimizing Port Lines
Serial 1/0 Ports-"More Than a Port" I/O-Open Collector
Outputs-Circuit Level Interface-Output Circuit Interface
Output Conversion-Input Circuit Level Interface

CHAPTER 9

The Micro Applications Attack . 407

Write a Brief Description of the Problem-Write a Detailed
Description of the Problem-Partition Hardware and Soft-

ware-Assign Port Codes-Draw Timing Diagrams and
Decision Trees-Make a Block Diagram and Flow Chart
Attack the Stickiest Box-Build Software and Hardware
Modules-Prepare an Improved Flow Chart and Schematic
Write, Test, and Debug Your Code-Have a Knowing Out
sider Test It-Annotate and Document Everything-Sit on
It-Evaluate and Improve-Using the Applications Attack
Now What?-Sixty-Three Ideas

Appendix: Simplified 110 diagram .

Index

443

445

This book is dedicated to microcomputer pioneers everywhere.
You can tell them by all the arrows in their backs.

- eight -

Interface and 1/0

The word "interface" means many different things to many dif
ferent people and it can be used in many different ways with
microcomputers. Here's a totally general and totally worthless defi
nition for you ...

Interface is obviously important, since any computer is totally
useless if there is no way to put things into it or to get stuff back
out of it. Many of the problems to be solved and the dollars to
be made in the micro world have to do with interface hassles.

To some, interface involves providing port lines on a
microcomputer board. To others, interface centers on the use
rules for those ports. To still others, interface is the external
hardware needed to sense or power real-world sources and
loads, such as motors, lamps, humidity sensors, and so on. Some
people see interface as the high-level software design needed to
handle a total problem. Then there's the really big interface pic
ture of actually interacting with people and getting a project put
to actual use.

As I see it, there are four different levels of interface. Each of
these levels takes different skills and uses different ideas and
concepts ...

311

The micro level is the lowest of the four interface levels. Here we
worry about how to get any signal into or out of the microcomputer
system we are working on. Any input and output signals should be
low-level ones that are fully compatible with the signal levels the
micro needs and expects.

Parallel ports and serial ports are two examples of micro level
interface. Unless you are building your own microcomputer from
scratch, you are probably more interested in learning the use rules
for existing hardware than in creating your own new circuits. The
skills you will need here involve both low-level software and board
level hardware design.

The big hassles with signals going into a micro's ports are that the
signals must be small, safe, isolated, digital, and microcomputer
compatible. The problems with signals coming out of a micro's
ports are that the signals are fairly weak and may need safety isola
tion or conversion to something else. That something else could be
an analog signal or a mechanical motion.

This leads us to the second or circuit level of interface. The circuit
level involves us with "shirtsleeve electronics," or the nuts-and-

312

bolts skills of bolting "amplifiers," "isolators," or "converters" onto
our port lines so we can do some useful stuff with them. For
instance, if we want to distinguish night from day, we somehow
have to start with a I ight sensor, and then change this slowly varying
signal to a crisp, noise-free digital signal just right to go into a port.
If we want to light a 100-watt light bulb, we have to take the weak
signal output from a port line, safety isolate it with an optocoupler,
and then "amplify" it with a triac so it is powerful enough to con
trol the lamp.

The circuit level of interface usually takes more hardware than
software and involves a lot of non-computer, traditional electronic
concepts such as power control, signal conditioning, analog-to-dig
ital and digital-to-analog conversion, use of sensors, and so on. The
person doing the circuit level interface will treat the microcomputer
as just another device. There's this sensor, that motor, and this com
puter, all to be interfaced.

The system level of interface is third up from the bottom. Here
we worry about what is involved in doing a complete job. For
instance, if we want to add a disk drive to a microcomputer, first we
need to get some ports on the computer at level one. Then we need
to add some level two circuits to those ports to interconnect with
the drive. Finally, at level three, we have to decide how the drive is
going to be used, what software is involved, what the maintenance
procedures will be, who will be using the drive for what purposes,
and so on.

System level skills are involved in high-level software design, pro
tocols, human engineering, handshaking, ergonomics, training, user
manuals, repair methods, and so on. Persons working on level three
must be good communicators and must concentrate first on the for
est and then on the trees.

The Micro Applications Attack of the next chapter will show you
how to handle level three system interface problems.

Finally, there's level four. The people level of interface. Argh.
Just because a simple, cheap, and elegant technical fix for a prob

lem exists, don't expect for an instant that it will be widely accepted
and immediately used. Let's look at three wildly different examples.
First, we see there is simply no solution for public transportation
problems, because there are lots of people and institutions around
whose very existence depends on there continuing to be no cheap,
reliable, and widely used public transportation system. As a second
ferinstance, the greatest disaster ever to befall the March of Dimes
people was the piscovery of a cure for polio. Finally, and obviously,
the QWERTY keyboard typing arrangement is so incredibly stupid
that it isn't even funny.

313

You see, once anything hangs around for a while, it becomes an
institution. Combine this with the way that many people and all
institutions hate any kind of change, and you have the roots of the
problem. Millions of dollars are lost per day worldwide by not
immediately switching to the Dvorak typing keyboard with its 2:1

speed, 5:1 energy, and 3:1 error advantages over QWERTY, yet this
isn't about to happen, at least not overnight.

The typing keyboard is one example where the benefits of a
switch are obvious, conversion costs are minimal, the results are
clearly defined, and not too many people in 1)0t too many places
of power are threatened. Many social level·i)roblems are formu
lated in such a way that there is no solution simply because
those doing the formulating do not even want there to be a
solution, let alone for you to find it. A strong case can be made
that federal solar energy funding was blown on totally ridiculous
research to "prove" that things don't get warm when they sit out
in the sun.

Anyway, level four takes politics, an understanding of human
nature, posture threats, power balances, couched verbiage, PR puff
ery, ego suppression, group manipulation, and so on. If you are
great at interface level one, you will surely make a fool of yourself,
or worse, at level four, and vice versa.

Recognize that the four interface levels need fundamentally dif
ferent types of skills and totally different personalities to handle
them successfully.

I'll assume you are more comfortable with level one or level two
interface, because otherwise you wouldn't have gotten this far in
this book. If are a level four person, you are not reading this. So,
let's split this chapter roughly in half, and start with micro level
interface and finish up with circuit level interface. Then, in the
next chapter, we will look at level three interface where you'll find
a good method to solve clearly defined system level problems.

MICRO LEVEL INTERFACE

We now know that micro level interface consists of getting small
low-level digital signals onto or off of a microcomputer's circuit
board. We obviously need ways to put stuff into micros and get
things back out. Micro level interface will always be involved in
this.

In micro level interface, we always assume that the signals going
into and those coming out from the micro are of just the right size
and the precise shape to make the micro happy. Most often, these

314

will be low-level LSTTL or CMOS digital integrated circuit signal
levels.

What are these levels?
LSTTL likes something near zero volts for a zero and something

above + 2.4 volts for a one. CMOS likes something near zero volts
for a zero and something near + 5.0 volts for a one.

Here are the signal levels involved . . .

INTEGRATED CIRCUIT SIGNAL LEVELS

-LSTTL-
LSTTL circuits normally work on a + 5-volt power sup
ply and like zero volts for a zero and 2.5 or more volts
for a one.

LSTTL inputs need current sinking to be held low, and
normally pull themselves high.

LSTTL outputs normally can sink 20 milliamperes or so
to ground, but are fairly weak at pulling output loads
positive. LSTTL CANNOT pull an output above + 2.5
volts without outside help.

-CMOS-
CMOS circuits may work on a + 5-volt power supply
and like 0 volts for a zero and 5 volts for a one.

CMOS inputs are very easy to hold low or high but
always must be connected to something else to pre
vent noise and power problems.

CMOS outputs are fairly weak but can usually source
or sink 4 or more milliamperes of current.

LSTTL circuits can drive other LSTTL circuits without any
problems. CMOS circuits can drive other CMOS circuits with no
problems. If you want to mix and match LSTTL and CMOS, though,
you have to watch what you are doing.

A CMOS circuit working on a + 5-volt DC supply can normally
drive one or two LSTTL circuits, but its drive is so limited that you
aren't,allowed simply to hang bunches of LSTTL on a CMOS output.
If you have to drive lots of LSTTL with a CMOS output, you could
use a CMOS buffer or else a single LSTTL gate, or whatever, to
"amplify" the CMOS output.

315

LSTTL signals do not usually get high enough to guarantee a
CMOS one level. To get around this, you can try adding a single
pull up resistor to a LSTTL gate's output to insure a + 5-volt one.

Here's how you interface LSTTL to CMOS and vice versa ...

ANY NUMBER

TTL TO::__LCMOS +sv

:: OF CMOS GATES

LSTTL ..
GATE ,

CMOS TO TTL

===D-----� LSTTL GATE

5V "'"
CMOS ,
GATE

--� TWO OR THREE
-- Tsln G'iii'ES

USE A BUFFER OR
5 V "'" 1 K DRIVER

.
FOR HEAVIER

CMOS , LOADS
GATE

The pulldown resistor in the CMOS to LSTTL interface is only
needed if you are driving two or three LSTTL inputs from one
CMOS output. This same circuit can be used to drive one old-fash
ioned regular TTL input.

The newest "74HC" series of CMOS is more-or-less LSTTL-com
patible and is intended as a power-saving LSTTL replacement. But
you still have to watch input levels (pullups may be needed), and
you still have limited output drive. Read the fine print on the data
sheet whenever you connect an LSTTL output to a 74HC input.

NMOS circuits usually behave just like CMOS ones if they work
on a single + 5-volt supply. Some older NMOS integrated circu�
also need a negative supply voltage. Thankfully, these are becoming
rare.

The peripheral ports and other chips we may add to a microcom
puter to do micro level interface normally are LSTTL, CMOS, or
NMOS and use the same single + 5-volt supply that the micro does.

316

Some safety rules . . .

INTEGRATED CIRCUIT SAFETY RULES

The input to a typical LSTTL, CMOS, or NMOS inte
grated circuit must NEVER be allowed to go either
below ground or above the positive supply!

NEVER assume that an unconnected input is in a cer
tain state'

Unused inputs on typical LSTTL, CMOS, or NMOS
cicuits should USUALLY be tied to the positive supply
or ground!

CMOS circuits should NEVER have their power
removed if you are still supplying very strong or low
impedance input signals!

Unused integrated circuits must ALWAYS be stored in
anti-static protective foam!

Very simply, if you try to put too much into or take too much out
of your typical IC, the chip may destroy itself. At the very least, the
results won't be logically useful.

Tying unused inputs somewhere like ground or +5 volts is essen
tial. This way, you always know what is going into leads that are not
in active use. An unused LSTTL input normally tries to pull itself
high or to a logical one. An unused CMOS input is so sensitive it
will try to remember the last signal state it was in, and may do so for
minutes or even hours. You can even get the local radio station to
appear on unused CMOS inputs.

So, you always should tie unused inputs somewhere. If the input
affects the logic of what you are trying to do, you would normally
tie it to the supply or ground as needed to meet the logic required.
For instance, many integrated circuits have chip-enable pins that are
enabled by grounding them. It is also possible to tie one input to a
logically similar second one. If you have a two-input NAND gate,
you can tie both inputs together to convert this logic block into a
one input inverter.

Good practice says that you always tie all unused CMOS inputs
either to ground or to the positive supply, depending on the logic
needed. This is very important for low power CMOS circuits, since a

317

"floating" input that gets half the supply voltage on it can dramati
cally increase the power used by the circuit and be logically
destructive as well.

Although most people simply tie unused LSTTL inputs directly to
the + 5-volt line, you really should do this through a pull up resistor
to keep funny things from happening when you first apply power.
Similarly, if you remove power from a CMOS circuit but are still
driving it from very stiff or low impedance signals, you can damage
the integrated circuit through internal latching.

It obviously pays to watch these details.
Occasionally, circuits might have their logic ones at ground and

their logic zeros at + 2.5 or + 5 volts. If so, simply go along with the
rules. More details on the use rules of LSTTL and CMOS appear in
the Howard W. Sams TTL Cookbook (21035) and the CMOS Cook
book (21398).

At any rate, fT!OSt micro level interface is concerned with LSTTL,
CMOS, and NMOS devices and their intended signal levels. Be sure
you know what these levels are and what is legal in the way of
input and output signals.

Naturally ...

DON'T EVER TRY TO INPUT A HIGH SUPPLY
VOLT AGE, A NEGATIVE VOLT AGE, OR THE AC

LINE DIRECTLY INTO A MICRO'S INTERFACE
PORTS!

If you must interface such signals, be sure to put some level two
interface external circuitry between the source and the port to chop
things down to size and to provide safety isolation.

One exception: carefully controlled negative voltages are permit
ted into specially designed RS-232-C ports.

"LESS THAN A PORT" OUTPUTS

There are,several good ways to get micro level signals into and
out of microtomputers. Many of these input and output methods
involve ports. But there are some simple and sneaky ways of out
putting a single bit from a micro that do not need a full-blown port
interface. Three of these methods are the address flasher, the
address toggler, and the soft switch .

318

An important advantage of these "less than a port" output
schemes is that they do not have to get involved with the data bus
or any of the working registers of a micro. Thus, you can get a
single-bit output through any of these without changing anything
important in your microcomputer. This output can go to the outside
world or be used to change the operating mode of your micro.

Disadvantages of the "less than a port" output schemes are that
they are limited to a single bit line and normally can output only.
They are also not mainstream, are very hardware intensive, and are
very system specific.

The address flasher is the simplest of the three "less than a port"
1/0 schemes. Here's an example .

ADDRESS BUS

15 • • • • 3 2 1 0 ADDRESS FLASHER

JL OUTPUT BRIEFLY

GOES HIGH WHEN

) ' '! • THE CORRECT

ADDRESS APPEARS

ON THE ADDRESS

BUS

What you do is decode the address bus to a unique state or group
of states. Anytime you hit one of the magic addresses, the output of

319

the decoder briefly goes high and can be used to control some
thing. That something can be a line to the outside world or any
thing inside the system that needs a brief pulse to attract its atten
tion, such as a handshaking reset or a strobe.

Although we have shown an "active high" output, you could
instead use "active low" decoding if you prefer. In fact, active low
decoding is much more common inside microcomputers, since
many chip-select pins on many integrated circuits are active low.

We have shown the address decoder as a bunch of inverters and
a single AND gate. As we saw in Volume 1, you can decode any
address in a 16-bit or 65536-word address space with a single 16-
input AND gate and sixteen or fewer inverters. Normally, of course,
you use some more elegant way of decoding addresses, such as
splitting the high address lines from the low ones and separately
decoding each half. Often you may find that partially decoded
addresses are already available from other parts of the system and
can be partly reused here.

You don't absolutely have to decode to a unique 16-bit address. For
instance, if you decode only the top four address lines, the address
flasher will activate on any of 4096 consecutive addresses. If you
decode all but the bottom four address lines, the flasher will activate
on any of sixteen consecutive addresses. This may simplify decoding,
but does so at the cost of wasted address space locations.

It is always a good idea to include some control lines in your
address decoding. There will be times when the address bus has
glitches or invalid addresses. You get around this by gating an
"everything is legal" signal into your address decoder. The signal to
use depends on the system and the micro school in use. It might be
a VMA or Valid Memory Address signal, a Rlw, or Read! NOT Write
signal, a RD or Read signal, a clock phase such as !j>1, or whatever.

The Apple II computer uses many address flashers. One resets its
keyboard strobe so a character gets entered only once. A second
resets the game paddles at the start of a paddle measurement. Yet
another address flasher is a strobe that activates 1/0 add-ons via the
game connector. As a example, the keyboard strobe tells you when
a key has been pressed but not used. After a keycode is accepted,
the key strobe is reset for the next keystroke. Only a partial decod
ing is used on older Apples, so any of the sixteen addresses of
$C010 through $C01 F may be used. In this case, fifteen of these
locations are not needed and are normally not used, but the decod
ing hardware ends up simpler. The Apple lie upgrade has reserved
these "extra" addresses for other uses.

You can activate an address flasher with any op code that
addresses this location. You can write to the magic location, read
from it, perform logic on it, or test it. For instance, a BIT $C010 on
the Apple II will reset the keyboard strobe. You must, of course,

320

make sure that the instruction you use will not destroy any valuable
registers or flag values.

The obvious route of using the address flasher magic location as a
"write only" memory will work on most micro systems without
hurting any register or flag values. But, owing to a multiplexing
quirk on the Apple II, you can sometimes get two address pulses
out if you store to an Apple address flasher. This can cause trouble.
Load commands and BIT tests do not have this problem.

One interesting variation on the address flasher puts a binary divid
ing flip-flop on the flasher's output. This gives you a circuit called an
address toggler that changes state every time you address it .

ADDRESS BUS ADDRESS TOGGLER
15 • • • 3 2 1 0

OUTPUT CHANGES

STATE WHEN THE

CORRECT ADDRESS

APPEARS ON THE

ADDRESS BUS.

CONTINUOUS

ADDRESSING

OUTPUTS A

SQUARE WAVE.

When you address the magic location, the output changes state.
Address the location again, and the output changes once more,
going from zero to one or vice versa. To output a square wave, you
continuously address the magic location at twice the output fre
quency you want .

Why twice?

The address toggler is rather limited in what it can do because
there is no way to tell what state the output is in at any given time.
Nonetheless, there are a few interesting applications.

In the Apple II, there are two address togglers. One drives the cas
sette output from location $C020, and the second drives a speaker
from location $C030. Thus, you can either save programs to cassette
tape or generate tones or voice for your speaker without tying up any

321

ports and without worrying too much about what the data bus, the
accumulator, the flags, and most registers are up to. You can also
"liberate" these locations for your own special output uses.

A BIT test is the quickest and easiest way to snap an address tog
gler into the other state. On most micro systems a simple store to
the magic location will do the trick. But . . .

Because of a quirk in the Apple II multiplexing,
you cannot ST A or do any other store to either
address toggler location.

What happens is that the address gets flashed
TWICE if you try this, putting the output back to
where it was a fraction of a microsecond before.

Use the BIT command instead.

Our final "less than a port" output scheme uses two address
decoders to drive a soft switch .. .

ADDRESS BUS ADDRESS SOFT SWITCH
15 • • • • 3 2 1 0

Here we have two decoders set to two different addresses.
Address X sets a set-reset flip-flop and drives the output high.
Address Y clears the set-reset flip-flop and drives the output low.

322

The output stays low till address X is hit and then stays high till
address Y is flashed.

There are eight soft switches on the older Apple II. Four soft
switches are intended for internal use. These pick text versus graph
ics, display page one versus display page two, HIRES versus LORES,
and full versus mixed graphics. Four soft switches intended for
external use activate any of four annunciator outputs. These outputs
are reached by way of the game paddle connector.

Two fine points. Note the extra inverter on the bit line one of the
Address Y decoder in the last figure. Most often the addressed soft
switch locations will be one away from each other in the address
space. Obviously, a different address is needed to set than to clear
the flip-flop. As a use example, the Apple II command BIT $C058
clears annunciator zero, and BIT $C059 sets annunciator zero. The
output from this soft switch is routed to the game paddle connector.

Second, while you cannot really tell what state the output of a
soft switch is in at any instant, you can always put the output where
you want it by whapping the correct address. It's a good idea to
route a system reset signal into your flip-flop so that it starts off in a
known state and stays that way till you change it.

These "less than a port" schemes are all simple ways of getting an
output signal line or two that is useful to the outside world or of
changing internal operating modes. But to be able to input as well
as output, and to be able to select what data we are going to out
put, we really have to use . . .

REAL MICROCOMPUTER PORTS

The usual ways we get signals into or out of a microcomputer
involve ports of one type or another. Ports are by no means limited
to micros, though. For instance, how many of what types of ports
can you find on a car?

SMOG

PORT

JABBER
PORT ,..........,.

�
PEOPLE

PORT

TRACTION

PORT

323

There are many different ports available on a car. All of these
serve different uses and act in different ways.

Some ports are intended for input only. The gas cap and the oil
filler cap are for inputting fluids into the car. Very ungood things
will happen if either of these ports tries to output anything.
Similiarly, the exhaust pipe is normally an output only port. Nasty
things happen if you input water or mud or anything else by way of
the exhaust pipe.

Most of the other ports on our car work in either direction. We
call these bidirectional ports. For example, we can use the doors to
either input or output people. We can open the VW's front hood to
input or output cargo.

How about the radio antenna? This depends on the radio. If you
have a plain old AM/FM radio, the antenna only receives, acting as
an input-only port. But, if you have a CB radio, a mobile telephone,
or a ham rig in your car, then the antenna will be bidirectional, act
ing as an input port when you receive and an output port when you
transmit.

What do the wheels input or output?

DOING IT:

Show how the tires of a car are bidirec
tional ports that input or output in at least
six totally different ways.

How do the front tires differ from the rear
ones?

·

Microcomputers also have ports. These ports are the main ways a
micro has to input and output signals to the outside world. Let's
review some port stuff from back in Volume 1.

A port consists of the circuit hardware needed to get signals into
or out of a microcomputer. Ports are normally accessed with soft
ware, reading from port to micro and writing from micro to port.
Additional software may be needed ahead of time to "teach" the
port what it is to do.

Parallel ports use parallel words and have everything there all at
once on many side-by-side I ines. Serial ports use serial words that
go over a single line or channel, with the individual bits taking turns
in time sequence.

324

There are many different ports available on a car. All of these
serve different uses and act in different ways.

Some ports are intended for input only. The gas cap and the oil
filler cap are for inputting fluids into the car. Very ungood things
will happen if either of these ports tries to output anything.
Similiarly, the exhaust pipe is normally an output only port. Nasty
things happen if you input water or mud or anything else by way of
the exhaust pipe.

Most of the other ports on our car work in either direction. We
call these bidirectional ports. For example, we can use the doors to
either input or output people. We can open the VW's front hood to
input or output cargo.

How about the radio antenna? This depends on the radio. If you
have a plain old AM/FM radio, the antenna only receives, acting as
an input-only port. But, if you have a CB radio, a mobile telephone,
or a ham rig in your car, then the antenna will be bidirectional, act
ing as an input port when you receive and an output port when you
transmit.

What do the wheels input or output?

DOING IT:

Show how the tires of a car are bidirec
tional ports that input or output in at least
six totally different ways.

How do the front tires differ from the rear
ones?

·

Microcomputers also have ports. These ports are the main ways a
micro has to input and output signals to the outside world. Let's
review some port stuff from back in Volume 1.

A port consists of the circuit hardware needed to get signals into
or out of a microcomputer. Ports are normally accessed with soft
ware, reading from port to micro and writing from micro to port.
Additional software may be needed ahead of time to "teach" the
port what it is to do.

Parallel ports use parallel words and have everything there all at
once on many side-by-side I ines. Serial ports use serial words that
go over a single line or channel, with the individual bits taking turns
in time sequence.

324

Input ports are intended only to get stuff from the outside world
to the micro, and output ports are to get output commands or data
from the micro to the outside world. Bidirectional ports can pass
data in either direction, going from micro to whatever is out there,
or vice versa.

To recap ...

Parallel ports are usually very fast, need lots of wire, and have
many side-by-side channels. Serial ports are usually much slower,
need little wire, and offer one or only a very few channels over
which digital signals must proceed on a bit-by-bit basis in time
sequence. Parallel ports are more common inside a local microcom
puter system, and serial ports are more commonly used between
microcomputer systems and the real world. Thus, you are likely to
use a parallel port to interface a floppy disk and a serial port to
access a modem connected to the phone line for distant communi
cation.

Surprisingly, ports are not normally available as ready-to-go pins
on the microprocessor chips of most micros from most micro fami
lies ...

325

Most microprocessors from most micro families
do NOT have port lines available and ready to
go.

You usually have to add your own ports using
extra hardware and software.

There are several good reasons why the average microprocessor
CPU does not have ready-to-use ports. First, port lines waste pack
age pins and gobble up space inside the chip that could be used for
more important things. Second, adding your own ports gives you
much more flexibility, because you can add what you want, where
and how you want it. Third, it is no big deal to add another chip or
two for 1/0 to a system that already has bunches of chips in use for
CPU, RAM, ROM, and support.

The fourth and final reason is probably the most important. The
address bus and the data bus of a microcomputer both are involved
with critical timing and very crucial access rules. You don't want
just anybody grabbing a bus and running all over the place with it
whenever they feel like it. Instead, you want to be able to control
very carefully who gets bus access when, all the while following
some very strict use rules.

There is one major exception to micros needing external ports as
added hardware. The single-chip micros intended for dedicated and
high volume applications usually have many 1/0 lines available and
ready for use. This gives you the convenience of immediate outside
access, but at the fairly heavy cost of having limited RAM and ROM

available, often a smaller address space, and difficult expansion ...

Single-chip micros do have port lines available
and ready to go.

The tradeoff is that these chips have limited
RAM and ROM, may have a smaller address
space, and can be hard to expand.

So, it pays to find out how you add ports in a microcomputer
system, because this is just what you have to do in most multi-chip
applications. Even if you use a single-chip dedicated micro, the use

326

rules and the behavior of the ports will be pretty much the same as
the add-on ports of the larger systems.

There are two ways to go when you add micro ports. You can use
a simple port or a fancy port ...

Simple ports have just the bare minimum of hardware they need
to shove something out to the cruel world or get stuff back. They
are always ready to use without any software hassles. Probably the
simplest ports ever used on any microcomputer system appear on
the PAIA 8700, where the ports are built from bits and pieces of
CMOS, resistors, and transistors, none of which cost over a quarter.

Simple ports are great for learning the fundamentals of how to
get outside access of the data bus on a microcomputer system, but
they have severe limitations. For one thing, you are stuck with just
what you have. There is no obvious way to change port direction, to
find the last thing you sent out, or to help the communication pro
cess through "handshaking." More on this shortly.

You cannot self-increment or self-decrement a simple port. It is
also a waste of dollars and space to use simple ports, since you can
build a thousand times as much performance into a four-dollar inte
grated circuit as you can into a forty-cent one. So, simple ports are
limited to trainers and the barest of cost-conscious controllers.

Most personal computers and most trainers use fancy ports
instead. These are usually 24- or 40-pin integrated circuits that give
you simple ports, plus all the stuff you need to teach these ports
how they are to behave and how they are to interact with the
micro. These ports are usually software controlled, so you can teach
them many different tasks.

The teaching process is called initialization ...

327

Virtually all fancy ports have to be taught how to behave ahead of
time, or they just plain won't work. Usually there is both software
and timing involved in initialization. Most often, the same system
reset pulse that gets the microprocessor started on the right foot
also goes to a fancy port to get that port started in the right direc
tion. Often this system reset pulse will clear all command modes in
the fancy port and force all of the 1/0 lines into inputs.

At the very beginning of any program that uses fancy ports, you
have to add initialization software to teach your ports what they are
to do. This usually consists of a group of load immediate and store
absolute commands that tell the port how it is to behave ...

If you check into the data books and catalogs, you'll find a bewil
dering array of fancy ports available. These come with a mind-bog
gling number of control pins and very confusing use rules.

Where and how do you start?
We'll look at some specifics shortly, but the first rule is that the

fancy ports are usually built by one manufacturer for use on their
particular chip family ...

Fancy port chips are intended for use in one par-
ticular micro school.

·

Although you can use any fancy port on any
micro system, the further afield from the "par
ent" school you go, the more ridiculous the
interconnection hassles get.

This says that you should use 8080 ports on 8080 systems, 6502
ports on 6502 systems, and VCIW ports on VCIW systems. Some
times a port IC is good and useful enough that you can move it over
to another system without too many hassles, but this is usually an
exception. The forthcoming /nte/8212 is simple and flexible enough
to be used with many micro systems, although it is intended for
8080 school use.

328

So, the best rule on mixing and matching fancy ports is not to do
it. Sometimes there is an advantage to using one school's fancy
ports on the "wrong" type of system. The hassles get almost
unbearable if you try to interface a port with separate address and
data I ines to a micro school that needs multiplexed data and
address lines, or vice versa. Good luck.

It turns out that many of the features and a few of the pins on
very fancy ports are rarely if ever used. But, if any of these pins end
up at the wrong logic level, the port may shut itself down entirely or
go into a very strange use mode. Somehow you have to sort out the
essential stuff from the geegaws. The best way is to steal the
plans ...

The best way to understand a fancy port is to
find a trainer or a micro system that is using the
port and play with it.

Hopefully the trainer or micro system will have the port con
nected in a more-or-less useful way. This lets you separate the ini
tialization and use software from the connection problems. It also
shows you what pins go where.

Naturally, it also pays to study the software use examples that are
related to the port. Once you find out how others connect and use
their fancy ports, then you can go and do your own thing with your
ports anyway you like.

Let's continue our study of ports by starting with simple parallel
ports and then going to fancy parallel ports. After that we'll find out
how to minimize the number of port lines in use when we interface
things like keyboards and displays. From there, we'll go on to serial
ports and then take a brief look at the "more than a port" chips that
can do lots of specialized stuff for us. That should get us through
level one interface.

I'll assume you want to add your own ports to a new micro sys
tem. If you are simply using ports on an already built and tested
system, all you need are the use rules rather than the gory details
that follow.

SIMPLE PARALLEL PORTS

Let's look at a simple input port first. All we need is some way to
connect an outside world 8-bit digital signal to a data bus at just the
right time, and we are home free.

329

Like so . . .

SIMPLE INPUT PORT

PARALLEL

INPUT PORT

76 5 4 3 2 1 0
TRI

STATE

DRIVER

l

1.-C

DATA BUS

7 6 5 4 3 2 1 0

II IIIII
I I I I I I
IIIII

I -

ADDRESS

DECODER

• f
ADDRESS R/W

BUS

l-C

TRI-STATE DRIVERS ARE

1 � ' � ACTIVATED ONLY WHEN

PORT IS ADDRESSED AND

ONLY DURING A READ.

There are two areas to our simple input port circuit. At the top we
have eight tri-state drivers that will connect our eight input port

330

lines to the 8-bit data bus when they are activated. Naturally, we
have to use tri-state access since the data bus will be used by other
things at other times, and our outside world lines must stay invisible
until used.

At the bottom we have an address decoder. The simple port will
have an address set aside for it somewhere in the address space.
When that address is activated as part of a load or move op code,
the address decoder will activate the tri-state drivers, connecting
the input port to the data bus.

It is very important to connect the input port to the data bus for
only the brief instant when the CPU is ready to accept the outside
world info onto the data bus ...

You CANNOT decode just any old address to
gain data bus access.

You MUST combine the address decoding with
timing and control signals to grab the data bus
ONLY and EXACTLY when allowed.

Note the R/Wiine going into the address decoder. Other systems
may use other control lines and one or more clock phase timing
signals, but the key point is that you must turn the tri-state drivers
on only at the instant that the micro's CPU is willing to accept
data. Activation at any other time will end up with bus contention
and severe system problems.

While you could use any old tri-state buffer or gate in a very small
microcomputer, it pays to use heavy tri-state drivers in anything big
ger. This way, you are sure that you can drive anything else hung on
the data bus and that you will get the best possible noise immunity.
The 74LS541 is one good choice.

So, a simple input port consists of eight input lines going to eight
tri-state drivers. These drivers are turned on only when the input
port is addressed and then only at exactly the right time needed to
safely connect the input port to the data bus.

As a reminder, this is a memory mapped input port. The
microcomputer can't tell the difference between a RAM, a ROM,
and an 1/0 location in the address space, and all are reached with
similar op codes as part of a working program. Although special
port access commands are available on some micros, this special
use is not mainstream.

Here is a simple but rarely used output port ...

331

SIMPLE PULSED OUTPUT PORT (RARE)

DATA BUS

PARALLEL
OUTPUT PORT

DATA
VALID

Jl

Jl \---------------
ADDRESS R/W

BUS

OUTPUTS ARE ZERO
EXCEPT DURING BRIEF
"DATA VALID" TIME WHEN
DATA IS CAUGHT OFF
THE DATA BUS.

All we have done here is "insided out" the simple input port,
putting the data bus on the left and the parallel output lines on the
right. If these lines are the only thing going to the outside world, we
may not have to worry about tri-state access, so we have shown
plain old AND gates.

What the circuit does is grab what is on the data bus and throw it
out the port whenever the magic address appears and whenever
system timing says the data is valid. Each AND gate gives an output
only when the address line is high.

The output will be a brief flash of data that is there only when the
address decoder says the data is valid. Most of the time you get all
zeros at the output port. Only when it is addressed do you get a
brief flash of valid data.

332

Catch it quick. Whoops, there it went. Gone.
This old circuit, called a pulsed 110 port by the dino minicom

puter people, is more-or-less worthless. All it is good for is to con
vince us that we have to be very careful to filter out all but the
intended values we want off the data bus before we output it.

For most uses, we want to catch and hold the old output data.
We keep this data till we want new data and then keep the new
data till it in turn gets updated. Obviously, we need some storage.
This storage can be in the form of eight type D flip-flops or else
eight hold-follow latches.

Here is your everyday, simple latched output port .

SIMPLE LATCHED OUTPUT PORT

DATA BUS

7 6 5 4 3 2 1 0

IIIII II

111111
IIIII
rm
m

Jl

ADDRESS RiW
BUS

PARALLEL
OUTPUT PORT

7 6) 4 3 2 1 0

+ OUTPUTS ARE CAUGHT "- AND HELD ON EACH
ADDRESSING

333

The address decoder works the same way as it did before. At the
instant the address is valid, the data on the data bus is "caught" by
the D-flops or latches and is then held. The output lines continu
ously output the data bus info saved during the last time the port
was updated.

Some specifics. Suppose we want to output a %00101110 pattern
to our output port that has an address of $E035. That pattern trans
lates to hex $3E, so somehow you find a $3E somewhere in your
computer, move it into a working register, and then store the $3E to
location $E035. On the 6502, an immediate load followed by an
absolute store is the simplest way to do this, using LOA #$3E fol
lowed by ST A $E035.

On any system, you first decide what data you want to output
and then move or store that data to the magic address that will acti
vate the storage latches and update the output.

The storage latches, in turn, will hold the output data from the
time the CPU stores the data until the time the data is actually used
by the outside world. Depending on the application, this holding
time can range from microseconds to months.

There is one critical little detail that you must pay close attention
to if you are designing a port like this on your own. You have to
understand exactly how the latch behaves and exactly when it will
catch valid data. The time of catching the valid data must, of course,
be the same time that the valid data you want appears on the data
bus.

Remember that there are two common types of storage, the
clocked type D flip-flop, and the hold-follow latch. With the
type D flip-flop, valid data is clocked into the device the instant
that the clock changes a specified edge. Most often, this is the
ground-to-positive transition, or the positive edge of the clock.
You want this clocking positive edge to be somewhere just
beyond the middle of the time the data is valid on the data bus.
If it's too close to the beginning or the end of the data valid
time, you get into all sorts of temperature problems and unit-to
unit ungoodness.

On the hold-follow latch, one clock level follows and the
other clock level holds. You must switch from follow to hold at
the instant that you are sure you are already holding valid data.

As an even nastier sub-detail, almost all clocked logic devices
have what they call a setup time. This is the time before or after
clocking during which data is guaranteed to be what you think it
is. Most modern devices have a zero setup time, so that what
you grab is what you get. But always check the data sheet. If the
setup time is positive, it means you have to wait awhile until

334

after things are good before you grab them. If the setup time is
negative, you have to be sure you grab valid data sometime
before it goes away. To sum this up . . .

On any latched output port, make sure you grab
the data ONLY when what you think you have is
what you thought you really wanted.

The output port data will be continuous. It pays to make your
output data all zeros, or some other benign value, early in your
program so that funny things don't happen before you start
actually using the port. You could add tri-state drivers to your
output port if the port is to share its information with other
sources, but this is usually not necessary. If you do add these
drivers, they will be controlled by the outside world and acti
vated as needed.

Note that you cannot self-increment or self-decrement a simple
output port, since there is no way to read what is already stored in
the port back into the micro. You can fake port incrementing and
decrementing by keeping a copy of the port values in another regis
ter or RAM memory slot.

THE 8212

The /nte/8212 was one of the first fancy port chips available. This
device can be used either as an input port or as an output port, and
it provides some optional handshaking features. Unlike many
newer fancy port chips, the 8212 is hardware rather than software
programmable. This means that the 8212 is always ready to go when
you plug it into your circuit board but you cannot change what the
chip does as part of your program.

The 8212 is general enough that it can be used with almost any
micro family or as a general "port manager" for peripherals or add
on cards.

Inside the 8212, you will find eight hold-follow latches, each of
which outputs to a tri-state driver. To make a long story short, the
chip is controlled by a mode pin that decides whether the 8212 is
going to be an input or an output port. Mode goes into pin two.
Wire this pin positive to build an output port, or ground it to form
an input port.

Here's an input port using the 8212 . . .

335

PARALLEL
INPUT PORT

��""
-

-

-

--

INTERNAL
CONTINUO
INPUT VAL
STATE DRI'
ACTIVATED
AOORESSE

-

'--

'S
lLLOW
Rl-
RE
WHEN

8212 CONNECTED AS INPUT PORT:

;-

:----

- -

T +r ill.<

NC r-
..... 24Jl..23Jl._22JI..21A2ll�ISAII,._17�1&�15�14�13JIIII >.1+ � l t � t + t f t lj :g

� � ! 1 ! f ! ! 1 ! E i

ITT
•• ••

'--

••••

.... �[r

ADDRESS AD
BUS

.n

DATA BUS

7 6 5 4 3 1 1 0

--

I

The eight parallel port lines are wired to the inputs of the eight
storage latches, and the eight tri-state driver outputs go to the data
bus. Note that the mode input on pin two is grounded.

In the input mode, there is a strobe pin, or STB, that decides
when new data is to be accepted by the latches. If you make STB
high, this makes the latches continuously follow the input. Nor
mally, in an input port without handshaking, you do not want any
latching. Instead, you follow the input continuously. So, holding
STB high defeats the latches and lets the ir:put data transparently
"fall through" as far as the tri-state drivers.

An external address decoder decides when to activate the tri
state drivers inside the 8212. This decoder provides a positive pulse
during a valid read time when the magic address is present. We've
shown the 8080 school RD control signal rather than 6502's Rtw
here, but you can use any signal that makes sure it is legal to grab
the data bus for an input.

Operation is the same as our earlier simple input port. Address
the chip, provide a valid read signal, and the parallel input lines get

336

temporarily connected to the data bus. The CPU in turn grabs the
information on the data bus and does something with it under pro
gram control.

There are several more pins on the 8212. The + 5-volt supply goes
into pin 24, and ground goes to GND on pin 12. The remaining
three pins are unused in this circuit, but you must keep 051 and
CLR at ground, and you should not connect INT. More on these
later.

Here is how you wire the 8212 as an output port . . .

8212 CONNECTED AS OUTPUT PORT:

DATA BUS

7 6 5 4 32 1 0

- -----

--

--

PARALLEL
OUTPUT PORT

7 6 5 4 32 1 0

�--=� r-- ----

I T B212

N C. _r-=-
... 24)11:�22;JI:nJI:MJI:19JI:IIJI:Il)III.•JI:I5JI:14JI:IlJI � +

� l t l t + t + t lj �
•• liil � ! .! ! ! ! ! t ! g; $
,,., .. � ,,._,,._,,._, .. ,,._, ..

l! !.l
. +5V +5V.

'--- ---

L..... -

Jl INTERNAL LATCHES
HOLD OLD VALUE AND

-.....___ CONTINUOUSLY DUTPl

ADDRESS WA
BUS

T.

This time, the mode pin is positive. The mode pin changes the
inside logic on the 8212. In the output mode, the address decoder
decides when to update data into the internal hold-follow latches,
and the tri-state drivers are continuously enabled by the high STB
line.

All this magically changes our 8212 into a device that latches data
off the data bus when addressed and then continuously outputs the
old data to the parallel output port.

337

So, with one set of connections, the 8212 behaves as a simple
input port and, with a different set of connections, the 8212
behaves as a simple output port. As with simple ports, though, you
still cannot self-increment or self-decrement what is stored in the
8212.

Before you get all excited about how easy it is to change only the
mode pin, note that the eight data bus lines go to the 8212's input
pins in the output mode, and vice versa. Thus, to get from an 8212
as input port to an 8212 as output port, you have to interchange at
least sixteen pins, besides flipping the mode command.

What you really have in the 8212 is a device that can be plugged
into one of two sockets on a circuit board. Put it in socket "A" to
output and into socket "B" to input ...

The 8212 changes from an input port to an out
put port only by making extensive wiring
changes.

Fancier chips are needed if you want to input or
output to the same port under program control
or want to self-increment or self-decrement
latched data.

The 8212 is very versatile whenever you want to output only to a
port or, elsewhere in your circuit, when you want to input only
from a port. Since no software initialization is needed, the 8212 is
always ready to use. Its also cheaper than many of the fancier
ports.

You have several fancier use options for the 8212, provided you
use it only to output or only to input.

There are really two address input pins available. One of these
is DS2 on pin 13 that must be high to activate. The other is 051 on
pin 1 that must be low to activate. Inside the chip is a "DS2 AND
NOT DS1" logic gate. These two pins both have to be happy to
activate the 8212. You can input a positive going address com
mand into DS2 and keep 051 grounded as we have shown. Or, you
can input an active low address command into 051 and keep DS2
positive. Or, you can route part of your address decoding into an
active low 051 and the remainder into an active high DS2. Still
another possibility is to route your "everything is okay to use" sig
nal into one of these pins and a straight address decoding to the
other. There is a CLR for clearing available as pin 14. If you con-

338

nect this to your system reset line, the hold-follow latches will be
emptied during power-up. This keeps you from outputting gar
bage to your port before you actually use the port. It is always
good to prevent garbage from appearing anywhere, anytime you
can help it.

handshaking

Here is one big problem with any simple input or output port:
there is no way the micro can be sure that inputs are accepted
only once and that outputs are used only once. For instance, sup
pose you have an ASCII keyboard going to a simple input port,
and you press key "J." How do you know that you used the J once
and only once? How do you know that you didn't miss something
in between? What if the J key is hit twice in a row? How can you
tell?

To be absolutely sure that everything is used once and only once,
you have to add handshaking to any micro ports . . .

Normally, handshaking involves one or two signals over and
above the eight port lines. Fancier systems speak of the protocol of
using these lines . . .

Handshaking can get very fancy. On serial RS-232 lines, it is
mostly handshaking that ups what should be three lines into a 25-
pin connector. And if any of those pins is in the wrong state or
ignored, communications shut down completely till the problem is
corrected. The theory is that no data at all is better than bad data.

339

Handshaking usually involves two storage areas. One is a register
inside the port that will hold data till it can be accepted or used.
The second storage area is a single flip-flop that can be set to signal
when something is in the port and ready to be used.

To the thing filling the port, the flip-flop signal means "busy." To
the thing emptying the port, the flip-flop signal means "available."

Let's look at a specific example or two. Here is how you hand
shake an 8212 hooked up as an input port . . .

WORLD

]

]

]

]

8212 INPUT HANDSHAKING

8212 • Jl
JL ·II� MD ��"(lt -

ACCEPT CPU
1 1 STB INT 23 + "--'
1 1 f AVAILABLE ENTER

BUSY

CD THE OUTSIDE SOURCE CHECKS THE BUSY LINE
IF BUSY IS LOW, OLD DATA HAS NOT YET BEEN
ACCEPTED. WORLD MUST WAIT AND TRY AGAIN LATER

r.:J\ IF BUSY IS HIGH, IT IS SAFE TO LATCH DATA INTO
\!:.) THE PORT. AVAILABLE AND BUSY NOW GO LOW

SINCE THE PORT IS FULL. ENTER IS PULSED HIGH.

(.;\ THE LOW AVAILABLE LINE IS SENSED AS A PORT \V SIGNAL OR AS AN INTERRUPT THIS TELLS THE
CPU THAT THE PORT IS FULL

{;\ THE MICRO ACCEPTS THE PORT DATA BY PULSING
\..:!..) ACCEPT BRIEFLY HIGH. AVAILABLE AND BUSY NOW

GO HIGH SINCE THE PORT IS EMPTY

THIS COMPLETES THE HANDSHAKING CYCLE
DATA GETS USED ONCE AND ONLY ONCE

[I

[I

[I

[

The "port is full" flip-flop outputs on the INT line of pin 23. This
pin is active low, meaning that a high signal here equals an empty
port. For input, the INT pin goes to the CPU as an AVAILABLE signal
and goes to the outside world as a BUSY signal.

If the port is not busy, the outside world can fill the port with an
ENTER command that strobes the data into the port. This saves the

340

data into the port and at the same time drives IRQ low. The low IRQ
tells the CPU that data is AVAILABLE and awaiting it, and tells the
outside world that the port is BUSY and to hold up on anything
new.

The CPU can use the INT line several ways. One way is to read
this AVAILABLE signal at another port. Another is to let the INT line
actually interrupt the CPU. Which method you chose depends on
how important the data is and how often you have to access this
input port.

Once again, handshaking involves a port that stores a data word
and a flip-flop that holds a busy signal. Both sides interact with the
port as needed to get the value once and only once.

The roles change around on output handshaking . . .

WORLD

]

]

]

]

8212 OUTPUT HANDSHAKING

8212 Jl
Jl+5V

•
r-

s
_
EN
_

o CPU
ACCEPT

AVAILABLE

THE CPU CHECKS THE BUSY LINE, EITHER 11\ AS A PORT LINE OR AS AN INTERRUPT. IF \.:/ BUSY IS LOW, OLD DATA HAS NOT YET BEEN
ACCEPTED. CPU MUST WAIT AND TRY AGAIN

fo\ IF BUSY IS HIGH, IT IS SAFE TO LATCH DATA

\!:.) �:�L':B
E
L���TD ���� �O���E�O�G�NCE

THE PORT IS FULL

G) THE LOW AVAILABLE LINE TELLS THE
- WORLD THAT NEW DATA IS WAlliNG IN

THE PORT

BUSY

WORLD ACCEPTS THE PORT DATA BY PUTTING {;\ THAT DATA SOMEWHERE. WORLD THEN PULSES � ACCEPT BRIEFLY HIGH. AVAILABLE AND BUSY
NOW GO HIGH SINCE THE PORT IS EMPTY.

THIS COMPLETES THE HANDSHAKING CYCLE
DATA GETS USED ONCE, AND ONLY ONCE

[

[

[

[

341

This time, the CPU checks to see if the port is still busy. If not, the
CPU sends data by addressing the 8212. This latches data into the
8212 and drives BUSY and AVAILABLE low.

The low BUSY tells the CPU to hold up on anything new. The
low AVAILABLE tells the outside world that data is awaiting it. World
can then access the port data by reading it. The ACCEPT signal is
sent out after the data is received. This clears the port for another
cycle.

We've gone through a long, detailed analysis of handshaking in
the figures to show you what has to be done. Proper handshaking
will make sure that nothing is missed or used twice when inputting
to or outputting from a microco�puter port.

Handshaking is not always needed. If you are sure that there is no
way to miss or twice-use data, then you most likely don't need
handshaking. If you output things much slower than they are used,
then you probably don't need handshaking.

Once again, the 8212 INT line does not necessarily have to go into
the micro's interrupt signal. This INT line is simply a busy signal that
can be routed to a micro port or an interrupt line for input or to the
outside world for output.

As an example of not using interrupts, you can input an ASCII
code from a keyboard into seven port lines and use the eighth bit as
a keypressed line. You then need one more port line from micro to
keyboard to reset the key strobe. This makes sure each key is used
once and only once, regardless of the time between keyclosures
and repeated hits of the same key.

On the Apple II, an input port at location $COOO consists of the
keyboard's seven ASCII bit lines and a keypressed line. An address
flasher that whaps location $C010 is used to reset the keypressed
line.

Enough said on handshaking. The details can get very hairy, and
there are lots of different use possibilities. It's best to pick up hand
shaking details only as the need arises.

Let's go on to a fancier port chip called .

THE 6522

The 6522 is a 6502 school peripheral chip that gives you a pair of
bidirectional 8-bit ports ...

342

6522 PROGRAMMABLE BIDIRECTIONAL PORT
FROM ADDRESS BUS TO/FROM DATA BUS

�

OPTIONAL
PORT A

HANDSHAKING
(Can Leave Floating)

CONTROL BUS
SIGNALS

,....,__

�----------.-------�2

·1----------.------�
.-------RiW

"'o---iRQ

"
OPTIONAL
INTERRUPT

JUMPER

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 �

OPTIONAL
PORT B

HANDSHAKING
(Can leave Floating)

PORT A PORT B

PARALLEL 1/0 PARALLEL 1/0

The port lines are arranged by eights into an A port and a B port.
The supply power and system bus pins are connected the usual
way. Four optional input or output lines intended for handshaking
are called CA1, CA2, CB1, and CB2. These may be left unconnected
for simple 1/0 uses.

The chip enable might be driven from an address decoder that
activates on four addresses, ranging from BASE+O to BASE+3. The
lowest two address lines are routed to pins 37 and 38 so these four
addresses can be recognized.

Here is what these four addresses do . . .

BASE+O- Teaches the A port its data directions
BASE+ 1 - Sends data into or out of the A port
BASE+2- Teaches the B port its data directions
BASE+ 3 � Sends data into or out of the B port.

343

You can think of the data direction addresses as teaching loca
tions ...

So, you use a data direction, or "teach" location to set up which
port lines are inputs and which are outputs. Normally you do this
only once at the start of your program, as part of an initialization
procedure.

On the 6522, a one in a bit location in the teaching port makes
that bit in that port location an output. A zero in a bit location in
the teaching port makes that same bit in the port location an input.
You can mix and match the input and output bits however you like,
although it is often best to use the 6502 high numbered port lines
for inputs and the /ow numbered port lines for outputs.

For instance, to make the lower three bits of port A all outputs
and the upper five bits of port A all inputs, we would store an $07 to
the teaching address BASE+ 0. We do this to put the bit pattern
%0000 0111 into the data direction register, which teaches the port
that the zeros are inputs and the ones are outputs. When it comes
time to use the port, we would load or store from the actual A port
location of BASE+1.

Note that it is best to do all your port work in straight binary so
you can see and understand exactly what each bit line is up to.

The port location is the address where the data is actually shoved
into or out of the machine. The teaching location is the address that
remembers what each bit line on the shoving port is supposed to be
doing.

One more time: The data direction register teaches the port lines
which way to go and is taught once during program initialization.
The port address is then used to get data into or out of the machine.

There are some fancier uses of B side port lines PB6 and PB7 that
involve interrupts and handshaking. Do not use these B side lines
for 1/0 until you understand how they work. There is also a counter
and timer circuit built into this chip, along with a shift register that
can be used to input or output serial data.

To activate all this fancy and sneaky stuff inside the 6522, you
route address lines A2 and A3 into pins 36 and 35, respectively. This
activates a total of sixteen internal registers that let you do all sorts
of mind boggling tricks. Use details, of course, are on the data sheet

344

and ap notes. But don't get fancy till after you know how to use the
6522 as a pair of simple bidirectional parallel ports.

You can self-increment or self-decrement any 6522 port or inter
nal location since the micro can both read and write to these loca
tions. This can be most useful, and it greatly simplifies any software
involved in 1/0 control.

There are lots of other fancy parallel ports available. Beware of
the 6821 from the 6800 school, as this turkey does its port teaching
in an astoundingly bizarre manner. The address location can be
either a teaching command or a port read or write. A second
address location acts as a switch that flips the first location between
the two. Hairy. Also dumb.

Fancy parallel ports from other micro families include the 8255

from the 8080 school, and the Z80 PIO from the Z80 school.
Newer fancy parallel port chips usually combine ports with other

features such as timers, RAM, ROM, or elaborate handshaking.
Examples from the 6502 school include the 6530 and 6531.

Details on many of these chips appear in Volume 3 of this series.

THE SIMPLIFIED 1/0 DIAGRAM

When you first try to use parallel ports on a trainer or a personal
computer, you will find a bewildering mishmash of information on
where the ports are located and how to use them. Chances are, the
information you need will be in six different places, tough to find,
and tougher still to understand. The way around this is to make
yourself a simplified 110 diagram . . .

This simplified 1/0 diagram belongs in your Micro Toolkit of
Chapter 7, along with its companions, the Resource Sheet and the
Simplified Memory Map. There's a blank form that you can rip off
for your own use at the end of this volume.

The 1/0 diagram should show you how many of what types of
port lines are available, how to access them, where they come from;
and how to control them with software.

Let's look at three quick examples. Here's the simplified 1/0 dia
gram for the HP 5036, a trainer from the 8080 school that uses sim
ple, separate input and output ports ...

345

SIMPLIFIED 1/0 DIAGRAM IHP 50361
., ' �'
10

11

12

INPUT

I (U13} 13
ADDRESS B2LS95 - � P2

$2000

"�
,-.... CONNECTOR

15
14

16
16

17
i8

-
-
00

01

02

OUTPUT

I (U15} 03
ADDRESS 74LS273

� f P2

$3000 12 ,.--... CONNECTOR

07
19

16 J + (Out only}

� THESE PORTS DO NOT NEED TO BE INITIALIZED

TO INPUT. LOAD DATA FROM $2000. TO OUTPUT. STORE DATA TO $3000

On this trainer, we have 8 input lines on top and 8 output lines at
the bottom, both accessed via connector P2. Looking more closely,
we see that input 10 ("EYE-ZERO") enters the trainer via pin K of P2,
and so on down the list.

Integrated circuit U13, an offbeat 82LS95 octal bus driver, handles
all eight input lines, and connector P2 pin K goes to pin 2 of this
integrated circuit and serves as input 10.

At the left, we see port addresses of $2000 for input and $3000 for
output. Since the ports do not need to be initialized, all you have to
do is load from $2000 or store to $3000 to input or output.

Your simplified 1/0 diagram for any micro should show no more
than you really need for what you are trying to do. Keep things sim-

346

pie and understandable. Show only how many lines there are,
where to reach them, where they come from, how to address them,
and how to initialize the port hardware-nothing more.

Our second example is the SYM-1, a 6502 school trainer with
bidirectional ports . . .

347

This time, we have only fourteen 1/0 lines immediately available,
and they come from a single IC, a 6530 called U25. The 6530 is a
fancy ·upgrade of the 6522. All of the lines appear at the "Applica
tion" connector on the pins that are numbered as shown.

The "missing" two lines on the B side of the port are reserved for
people who know what they are doing, since these can involve
interrupts and handshaking.

Turning to the software, we see that these ports need to be
taught ahead of time which lines are inputs and which are outputs.
The A side is taught by writing to location $A003 with a pattern that
has a one for each output and a zero for each input. The B side is
taught by writing to location $A002 with the pattern you want on
these lines. Just like the 6522.

As we have seen, this teaching process is called initialization, and
is normally done only once at the beginning of a program.

After the ports are taught what they are to do, you can read or
write to the A port through address $A001 and read or write to the B

port through address $AOOO.
Once again, on either a 6522 or 6530, you teach to the teaching

addresses and enter or remove 1/0 data from the port addresses.
Other fancy ports from other families will behave differently, so be
sure you understand exactly how you initialize and exactly how you
can input or output data. Then spell these details out at the bottom
of your simplified 1/0 diagram.

Often you'll find lots of other goodies inside a fancy port chip,
such as handshaking, interrupt management, timers, shift registers,
and similar stuff. Leave these advanced fancy items off your simpli
fied diagram until a specific need arises for their use.

Keep it simple. That's what it's for.
As an aside, many trainers will use double-sided 44-pin connec

tors for 1/0 and expansion. This includes the 5036, the SYM-1, and
many others.

The numbering and lettering on a two-sided 44-pin connector
can cause confusion. The top is numbered from 1 to 22 and the
bottom is lettered from A through Z, omitting the letters G,I,O, and
Q. The A is under the 1 and the Z is under the 22.

Like so . . .

44-PIN CONNECTOR CALLOUTS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

•::::::::::::::::::::::::•

348

A B C O E F H J K L M N P R S T U V W X Y Z

THEREARE +
NO G, I • .,
0, OR Q

PINS

CONNECTOR IS SHOWN
TERMINAL SIDE

In other words, when you are working on the letter side, be sure
not to count pins G, I, 0, or Q, since these pins do not exist. Obvi
ously, twenty-six letters minus these four leaves you with twenty
two pins.

One more obvious point that can prevent lots of grief. Chances
are, the signal on pin 3 of this type of connector is totally different
from the signal on pin C which is the "backside" pin immediately
below pin 3. If you grab pin 3 with an alligator clip, you may short 3

to C and do anything from bombing the program to blowing up the
trainer.

So ...

DON'T ever short the top to the bottom on a
connector that uses both sides of a printed cir
cuit board as contacts!

Alligator clips that grab both sides at once are a
no-no.

I almost hate to mention obvious things like shorting connectors.
Once you've been around a student lab for a while, however, you
learn that you can lead a horse to water, but it's only when you get
it to float on its back that you have accomplished anything.

The "obvious" will nail you every time.

Honesty time.
You may have noticed how every figure in these volumes magi

cally appears just when and where it is needed, without any for
ward or backward figure references. If you think this gets tricky, you
are right. If you think this drives typesetters up the wall, you are
even righter. And, hooboy, does it ever cost. Which is why you
won't see it done this way very often.

If ever.
But, surprisingly, thanks to typesetter Dave Sechrist, this is the

only place in these volumes where a whole passage of padding had
to be thrown in to keep half a page from turning up blank.

just thought you'd like to know.
Where were we? Oh, yeah . . .

As a final example of showing only the essential on a simplified
1/0 circuit, here is one way you can coax three parallel input lines
and seven parallel output lines out of a stock Apple II with an
Epson printer card in slot 1 . . .

349

SIMPLIFIED 1/0 DIAGRAM !APPLE Ill

OUTPUT

I ADDRESS
=$C090

INPUT ADDRESSES:
SWO=MSB OF $C061
SW1 =MSB OF $C062
SW2=MSB OF $C063

(1A)
74LS175

(1B)
74LS175

DO

D1

D2 1-!.2 � l CN2
CONNECTOR

OF EPSON {g) APL BOARD
IN SLOT #1

SWOB2 l
SW1

2 Gi�E

(H14)
3 PADDLE

74LS251 CONNECTOR

SW2
1

4

+11nonly)

� THESE PORTS 00 NOT NEED TO BE INITIALIZED
EPSON CARD APL MUST BE IN SLOT #1 WITH P

-
RINTER CABLE

DISCONNECTED. GAME PADDLES AND ANY "SHIFT KEY MOO"
MUST BE REMOVED

TD INPUT. LDAD OR BIT TEST MSB OF $CD61 FOR SWO.
$C062 FOR SW1. OR $C062 FOR SW2

TO OUTPUT STORE OATA TO $C090.

Now, the Apple's 1/0 system is mind-boggling and incredibly
flexible. More so, in fact, than any other personal computer at any
price. Look closely enough and you'll find there are at least sixteen
1/0 connectors, not just eight. And there are more than 4096

address locations set aside for exclusive 1/0 use.
But the Apple does not immediately give you a simple parallel

input port and a simple parallel output port ready to go for the dis
covery modules of the previous chapter. Sure, you can add cards of

350

your own to pick up as many parallel ports as you want, but this
may not be what you have in mind for a quick and simple experi
ment involving a few 1/0 lines.

Instead, you can use the Epson card and grab seven output lines
as shown, provided, of course, that you disconnect the printer and
make sure this card is in slot 1. And you can get three input lines
read off the game-paddle connector as shown. Four output bit lines
are also routed through the game-paddle connector, but these are
soft switches controlled by address ports rather than true single
address output locations.

While you can definitely use these annunciator output pins as
output bit lines, remember that it takes a pair of adresses to activate
them, since these are really soft switches. You will need one
address for the one and another address for the zero to be output.
Most useful, but not quite mainstream.

By the way, if you really want thirty-two bidirectional 1/0 lines
out of your Apple for a serious interface application, check into the
john Be//79-295 plug-in card. This card gives you a pair of 6522s and
four output connectors at a most reasonable cost. Naturally, the
simplified 1/0 diagram using this card will be totally different from
the one we just looked at.

DOING IT:

Show how you can get an eighth output
line off an Epson card and a fourth input
port line on the Apple main board that
fakes a "fourth pushbutton" input.

Make sure that you do not change any
signals to the printer when you try this.

And, while we are doing things ...

DOING IT:

Make up simplified 1/0 diagrams for sev
eral trainers and personal computers of
your choice.

Add these to your micro toolkit.

351

Remember to keep the "simple" in simplified. Show only the
essentials, but show a// the essentials needed to use parallel port
lines.

MINIMIZING PORT LINES

When you first attack a micro problem involving parallel ports,
you may end up assuming that you need bunches and bunches of
port lines. But there are lots of creative games you can play to cut
down dramatically the number of port lines you need.

A rule . . .

If you have "N" port lines in use, you can input
or output any of 2tN states at any one instant.

If you do not use all these states, you are being
inefficient and may be wasting port lines.

For instance, if we wanted to use a 16-button keypad on a micro,
we might do the obvious and use one line for each button, for a
total of sixteen input lines. Each bit on each line would be is sensed
as a pressed key.

But our rule tells us that sixteen port lines should have 2t16 possi
ble states. Thus, it should be possible to sense 65536 different keys
rather than only sixteen. This is so inefficient that it is ludicrous. If
you are careful enough about it, you should need only four lines to
sense sixteen keys pressed one key at a time.

There are lots of ways to minimize port lines. Some of these are
very good ideas, and others are overkill that can cost you in the way
of flexibility or outside hardware.

Anyway, here are some of the ways of . . .

352

MINIMIZING PORT LINES

() Use bidirectional ports
() Use an "XY" matrix array
() Use external encoding
() Use time multiplexing
() Time share
() Use oddball codings
() Go serial

Let's look at a quick example of each method.
Bidirectional ports can save you hardware since you can mix and

match input and output lines in any combination rather than "by
eights." If you need only two input lines and six output lines, it
takes only a single bidirectional port but otherwise demands two
simple ports.

Whenever you have a bunch of anything, try to arrange that
bunch into so many rows and so many columns. The total number
of rows and columns is much less than the full count of the bunch
you started with.

To throw some math at you, if you have "R" rows and "C" col
umns, you will need only R+C lines to access R * C things. Because
products are usually much bigger than sums, you save on the lines
you need. The bigger the bunch of things, the more you save.

For instance, here is how to arrange a 16-button keyboard into a
4 X 4 array. This combines a bidirectional port with XY techniques
into what is called a scanning keyboard . . .

SCANNING A 16-KEY ARRAY

�
FOUR INPUT

LINES OETECT
KEY CLOSURES.

We use four output port lines and four input port lines. Only a
single output line is allowed to go high at any instant. The output
lines take turns going round and round as shown.

Each output line drives a row of four keys. Each input line senses
a column of four keys. If a key is pressed, one row connects to one
column. When the row is pulsed high, the column is activated and

353

sensed if a key is pressed. This scanning method is the standard way
of adding a keypad onto a trainer.

To find a pressed key, you use software to pulse the top row posi
tive and check for ones appearing on any column input. Then you
pulse the second row down positive and again check for ones on
the columns. Next, you hit the third row down and check for ones,
and finally you hit the bottom row and check again.

If you get a one input, you have a pressed key. If you don't, keep
scanning or go do something else for a while. When you do get a
one, you can tell which key was pressed by checking in which col
umn and at which point in the scanning software program the one
appeared.

If your scanning software is properly designed, you will also get
key debouncing provided at the same time.

Software debouncing is usually preferred over hardware debounc
ing these days.

DOING IT:

Show how to scan sixty-four keys on an
ASCII keyboard.

What is the minimum number of port lines
needed?

What is the most sensible number of port
lines to use?

How can you handle the shift and control
keys?

How can you switch from QWERTY to
DVORAK?

Needless to say, it's downright stupid to use sixty-four port lines
to sense sixty-four keys. Your first solution probably would be to
use sixteen port lines, with eight output lines that pulse rows and
eight input column lines that sense key closures.

Simple and workable, but nowhere near minimum.
Sometimes we can add a small amount of external hardware to

cut down the number of lines needed.
Note that we will always scan only one row of keys at a time.

What if we take four output lines, add an external LSTTL or CMOS
4-line-to-16-line decoder, and use a 16 X 4 array instead?

Something like this .

354

SCANNING A 64-KEY ARRAY

Il.------1

ONE ROW

�ST �C�1NM
N
E
ED 0 t

4-LINE TO
16-LINE
DECODER

FOUR OUTPUT
LINES SCAN

KEY ARRAY

�

8 PORT LINES =

64 KEYS

PARALLEL MICRO PORT
J

FOUR INPUT
LINES DETECT

KEY CLOSURES.

355

We see that we can get by with only eight lines from a single
bidirectional 1/0 port to handle all sixty-four keys.

We see that our eight port lines are split up as four input and four
output lines. The four output lines are one-of-sixteen decoded to
pulse one of sixteen rows of four keys high. The four columns sense
a pressed key as individual inputs.

The software involved pulses the top key row high and checks
for inputs. Then it pulses the next key row down to a one and
again checks for inputs. The process continues down through all
the keys, checking a four-key row each time. If no key is found
pressed, the scanning repeats or else the micro goes on to do
something else.

Note that we haven't labeled the keys. This could be an ASCII
keyboard, an electronic music keyboard, or just a bunch of keys
doing different things for you in your system. In fact, the keys do
not all have to be in the same physical place or have the same
intended uses. As examples, a QWERTY layout and a numeric
keypad can be scanned at the same time; or else a trainer's hex
entry $G-$F keys can be scanned along with the monitor command
keys. The micro doesn't care.

How else could we input lots of key closures to a micro?
We could save another line by using a data selector to route one

column at a time to a single input. Or, we could let the entire
outside job be handled by a custom keyboard encoder chip. This
outside chip would also handle hassles like debounce, CTRL and
SHIFT keys, and changing a QWERTY pc layout into ASCII output
codes.

If we really had to minimize port lines, the absolute minimum
route would be to encode each key individually into a 6-bit code
and then route only this code into six lines of a port. Use only sixty
three keys and save some state, such as all zeros, as a "no key
down" mode.

It all depends on what you want to do. In general, fancy add-on
hardware such as keyboard encoders is not the way to go, since
these parts are costly and tie you down to doing things exactly their
way.

Fancy external hardware does have one advantage, though. These
chips can unload the microprocessor so it can spend its CPU time
on more creative things than waiting around for someone to press a
key. The latest and newest of the larger micro systems do this with
out extra hardware by using two micros, a big one with lots of
smarts for the important stuff and a smaller, sometimes dumber one
that is committed to busywork like watching keys, making noise,
controlling diskettes, and doing other 1/0 tasks.

Which way to go?

356

On very small systems, try to have the micro do as much as possi
ble with a minimum of limiting add-ons. On bigger stuff, think seri
ously about using a second micro that you can dedicate to the
dogwork. If some simple, cheap outside hardware helps without
limiting you, use it.

To keep things simple and general, I didn't show any input resis
tor terminations on our scanning key circuits or give you any part
numbers. Usually, with CMOS ports and decoders, you will add a
22K resistor to ground on each input to guarantee a zero when no
key is pressed. With LSTTL ports and decoders, you will usually hold
each input column high with a 2.2K resistor to + 5 vdc and pulse
each key row low instead of high. A low output will now be a
pressed key. While this seems backwards, it fits in better with the
performance of LSTTL circuits.

Oh yes, one very important gotcha that applies to all uses of X-Y

matrix circuits . . .

Elements in an X-Y matrix MUST prevent sneak
path currents from occurring.

A series diode at each element is one way to
stop sneak paths.

A sneak path is some roundabout way that current has _of going
where you don't expect it in a matrix. For instance, if you press
three keys that are arranged as corners of a rectangle in a matrix,
you will get a fourth phantom key pressing at the other corner.
Check it out.

If you ever expect more than two keys to be down, you should
add a diode at every key location to eliminate these sneak paths.
There are also complicated software routines that can search for
possible input sneak paths and handle them as special cases, but
this can get even messier than using diodes.

Providing for more than two key hits at the same time is called N
key rollover and can be done with either hardware or software. N
key rollover is absolutely essential in polyphonic music keyboards
and is very desirable when you have super-fast professional typists.
But N-key rollover is not normally needed for most routine micro
entry and typing uses. Much simpler logic involving two-keys
down, called 2-key rollover, may be substituted instead.

Still another way of minimizing port lines involves time mul
tiplexing. In time multiplexing, you let outputs share the port in
time sequence.

357

One place this works well is in light-emitting diode (LED) dis
plays. If you want to light eight numeric displays, you light only one
display device at a time, but you do so to eight times normal bright
ness. Then you light each of the digits in a time sequence that is so
fast that the eye fills in and gives you the illusion of all the digits
being lit all the time.

If you simply connected eight LED seven-segment displays to
port lines, it would take fifty-six output port lines to do so. Go to
time multiplexing and you are down to 8 + 7 = 15 display lines.

But go to time multiplexing and add some outside hardware, and
you can drop to only seven port lines.

Like so ...

TIME MULTIPLEXED LED DISPLAY

n
'-t

7 PORT LINES =
56 LED SEGMENTS'

PARALLEL MICRO PORT

ONLY ONE
DISPLAY IS
POWERED AT
A TIME.
SCANNED IN
SEQUENCE ...

�

LEO
DISPLAY

IT HAPPENS SO
FAST THAT YOUR EYE
SEES THE IllUSION
OF All DIGITS LIT
TOGETHER.

Here is what happens. The bottom four lines are routed to an
external 4-line-to-7-segment decoder/driver. The four input lines
are changed to a pattern that grounds certain segments on a// of the
common-cathode displays shown. Note that all eight displays are
driven together in the same pattern.

Thus, the bottom bar of every display is connected to a line at the
decoder circuit that controls all the bottom bars simultaneously.
There are seven wires out of the decoder integrated circuit. Each
wire stops once at each display, connected to the same relative seg
ment.

358

The next three port lines are routed to a one-of-eight decoder
that powers the positive end of only one display at a time.

Only one digit lights at a time, because only a single digit has
both the correct segment pattern and a positive drive voltage.

The eighth port output line can be used for any decimal points
or flashing colons on a clock display. Blanking can be added by
using illegal decoder states or by using only seven digits and stop
ping on digit eight. In fact, it is a good idea to blank characters
briefly during switching times. This can eliminate "ghosting" and
other unpleasantries.

Here's a problem for you ...

DOING IT:

Show how you can use the same port
lines to scan a keypad and an LED dis
play simultaneously.

This simultaneous scanning is the usual way that such "light
weight" micro applications as trainers, phototimers, microwave
oven controls, and so on handle key input and display output with a
minimum number of port lines.

Once again, though, don't forget those sneak paths.
On incandescent output displays, sneak paths would light sup

posedly "off"bulbs to low or medium brightness. Fortunately, on
LED displays each light source is also a diode, so we automatically
eliminate any sneak paths. As an added bonus, many LEOs are actu
ally more efficient when pulsed to high currents. Thus LEOs are
ideal for time-multiplexed display use.

Liquid crystal display (LED) elements become a real hassle if you
try to multiplex them in an X-Y matrix. Liquid crystal arrays need AC
drive circuits and demand extremely complicated circuit techniques
to eliminate sneak paths. Special, ready-to-go liquid crystal driver
integrated circuits are available and can be used. The complexity of
these circuits is appalling.

Always ask yourself whether there will be sneak paths if you •on
nect anything electronic into rows and columns.

Time multiplexing is really time-sharing on a short-term basis.
You whap each element in the display so fast that your eye thinks
everything is there at once. But you could also save port lines by
time-sharing on a long-term basis.

359

For instance, you could simply unplug one peripheral and replace
it with another, as in switching from a plotter to a printer on the
same output line. Or, you could have lots of different output or
input devices hung on a few common port lines. Somehow you
would have to activate one and only one of these at a time. Take
turns. Use "Hey you!" and "Who me?" handshaking.

Another way to save on port lines involves using oddball, or non
obvious codings. Say you are building a simple dice game that is
micro-controlled. There are seven spots on each die, so it could
take up to fourteen output lines if you weren't careful.

Here is how to do it in five . . .

DICE DISPLAY USING NON-OBVIOUS CODE

5 PORT LINES =

14 LEOs

PARALLEL MICRO PORT

RED

DRIVER

CMOS 4049
HEX POWER INVERTER

What you do is pick a non-obvious decoding. Note that the
center spot is lit only on odd numbers. So, use one line as an

360

"ODD" output. Looking closer, you see that a diagonal pair of dots
will light on a "NOT 1" condition. Note further that the other diag
onal pair will only light on a "4,5, or 6" condition. We'll call this one
the "456" output line. Finally, the horizontal pair will light only on a
"SIX" condition.

So, you need only four lines encoded ODD, NOT 1, 456, and SIX
to provide die logic for one die.

Let's use time multiplexing and light both dice to double bright
ness for half the time. This takes a fifth line for a "RED" output.
When RED goes high, you light the red die. When RED goes low,
the "GREEN" ir:verting driver goes high and lights the green die.
You alternate dice much faster than the eye can follow, giving the
illusion of both dice lit all the time.

We see that a special coding needs only five lines to handle a
two-dice display.

But don't go overboard on oddball codings. If the code gets so
strange that it causes trouble later or becomes hard to understand
and service, then don't even think about using it.

Our final good way to minimize port lines is to go serial. Output
a serial code that is long enough, and you can control anything with
a single output or input line to your micro. More on this in the next
section.

We have seen that there are lots of good ways to cut down the
number of port lines from an insanely large number to something
reasonable. But don't go too far. Don't minimize port lines at the
expense of getting into bizarre codings or super specialized add-on
hardware. Try to find the magic number of lines that will minimize
the overall complexity of your entire micro system.

Then, once you have reduced your port lines to the most reasona
ble minimum . . .

ALWAYS take any port lines that happen to be
left over and try to make them do something
new and useful.

It should somehow bother you if there is an unused port line or
two "left over" on any micro application. Always see whether there
isn't some new feature or some new operating mode that you can
add to use these lines to make the micro do more than you first
expected of it.

361

SERIAL 1/0 PORTS

With a serial code, you use a single line to output many bits in
time sequence. As we have seen, serial codes are often used
between microcomputer systems where we can use a single wire
and low bandwidth to send anything we want to in time sequence.

There is really no such thing as a simple serial port, because ...

Any old bit line on a parallel port can be used as
a serial input or output just by sending the bits
through in time sequence.

You can also use some soft switches as simple serial ports if their
output goes outside the machine. So, simple serial ports are no big
deal. just take any old port or less-than-a-port 1/0 line and shove
some bits into or out of it.

Instead, we almost always use fancy ports for serial 1/0. The
most important thing a fancy port does for us is unload all the
long sending time off the CPU. The microprocessor gives a brief
send command to the fancy 1/0 port. The port then takes its good
old time outputting the long serial code. The microprocessor itself
is then free to do other, more sensible things while the code is
being sent.

Fancy serial 1/0 ports will also pick up things like handshaking
and interrupt management and may include interval timers or baud
rate generators. Random and fairly slow inputs such as keypressings
are sometimes best handled as interrupts, especially if the CPU has
lots of other things on its mind.

Each microprocessor family has available several fancy serial 1/0

peripheral chips. As we have seen before, you can get into real
hassles if you try to cross school boundaries and mate a serial 1/0

device from one family with a CPU from another.
So, you will have to dig into the serial 110 peripheral chips of

your choice. One good way is to find a trainer or microcomputer
that uses the target chip and play with it to see how it works in a
real circuit.

Fortunately, all of these fancy serial 1/0 chips are based one way
or another on a plain old hardware UART. Let's look at a classic
hardware UART circuit to see how it works.

Here's how you can transmit serial bits with a hardware
UART .

362

NON-MICRO UART TRANSMITTER

SOME OLDER

UARTs NEED - 12 V

ON THIS PIN

MSB

INPUT PARALLEL

DATA TO BE SENT

LSB

TOP VIEW

First you supply this 40-pin chip by putting + 5 on pin 1 and
grounding pin 3. This lntersil 6402 is a modern, single supply chip.
Older devices may also want a -12-volt supply on pin 2.

The transmitter is located on the "top half" of the chip, pins 21
through 40. You input a 16X clock to pin 40 to form a baud rate
reference.

By the way, here are the popular baud rates and their 16X clock
frequencies ...

BAUD RATE

110 baud

150 "

300 "

600 "

1200 baud

2400 "

4800 "

9600 ''

16X CLOCK

1760 hertz

2400 "

4800 ''

9600 ''

19.2 KHz

38.4 "

76.8 "

153.6 "

As a reminder, 110 baud is the old teletype standard and trans
lates to 10 characters per second (CPS) or 100 words per minute
(WPM). 300 baud is popular for modems, and 9600 baud is usually
the fastest you can go over the phone line with special equipment.

Speaking of words per minute, watch out for those PR yahoos
with their grossly misleading ad copy. The number of newly redis-

363

covered "words per minute" is ten times the industry standard
number of "characters per second." Thus, a "new" daisywheel rated
at 120 is much slower than an "old" daisywheel rated at 40.

Anyhow, we now have powered our UART and sent it a 16X baud
rate. A few newer chips have the baud rate generator built in, but
most of the serial 1/0 perhipheral chips do not. You have to get this
baud rate from somewhere, and it absolutely must agree with the
UART on the receiving end.

You then hardware program a traditional UART with jumpers on
control pins 35-37. Options here include the number of bits per
character (5-8), the presence of a parity bit (yes-no), the type of
parity (even or odd), and the number of stop bits (one or two). You
also make pin 35 high to accept the input data.

Parallel input data goes to pins 26 through 32, and your serial out
put appears on pin 25. To transmit with this chip, input your parallel
data, then bring the STROBE line low, and back high again. This
transmits your serial code, one bit at a time, in the standard teletype
format we talked about back in Volume 1.

Note that the serial output is at LSTTL levels. You have to add
outside hardware drivers for RS-232-C or other interface standards,
if you use or need them.

There is a reset pin that should be brought high on power-up and
then held low. There is also an optional pair of handshaking pins
that tell you when it is okay to load and when the last serial data
string has been sent.

To receive, you use the bottom half of the UART .

364

NON-MICRO UART RECEIVER

RECEIVED PARALLEL
DATA TO BE OUTPUT

TOP VIEW

Jl
NEXT WORD
WORD RECEIVED
ENABLE

SERIAL
INPUT
DATA

.... M.li.[[BE PULSED LOW '- BEFORE EACH WORD

The same modes that were hard-wire selected for transmission
are also used to receive serial data. A typical baseline setting might
be eight bits, no parity, and two stop bits. A 16X receiver baud rate
clock is routed into pin 17. For most uses, the receiver baud clock
and the transmitter baud clock are supposed to be the same, so we
jumper pin 17 to pin 40. Our asynchronous serial data goes in pin
20. The data must come from a CMOS or LSTTL compatible source,
such as RS-232-C receiver hardware. When a start bit is detected,
the internal UART circuitry starts assembling code one serial bit at a
time and putting the result on parallel output pins 6 through 12. A
"character received" strobe at pin 19 goes high when the character
is assembled'and ready for use.

There are several handshaking pins that tell you if you get parity,
overrun, or framing errors. These outputs, along with the strobe
output, are reset by bringing pin 181ow. One crude way to do this is
to invert and delay the DR, or "Data Ready" output and shove it
back into the ORR or "Data Ready Reset" input. Full handshaking
may need some fancier way to make sure each received byte gets
used once and only once.

One good use for UART transmitters is in remote or "lap" key
boards. By converting the keycode into a serial data stream, you end
up with far fewer connections between keyboard and system. If you
are careful, you can even use ultrasonics or infrared to create a
totally wireless remote keyboard, or possibly even one that is solar
powered.

There is another UART variant called the 6403 that includes its
own built-in baud rate generator. For instance, you can hang a
color television crystal (3.58 MHz) on pins 17 and 40 and ground
pin 2 to output 110 baud. A 2.46 MHz crystal and a positive pin 2
gets you 9600 baud. See the lntersil data sheets for additional use
info.

More details on traditional hardware UART uses appears in The
TV Typewriter Cookbook (Howard W. Sams 21313).

Hardware UARTs are lots of fun to play with, and you really
should use one somewhere before you try to understand the fancier
serial 1/0 chips. But hardware UARTs aren't directly microprocessor
compatible, since they have to have their operating modes hard
wired, and since the input parallel data and the output parallel data
appear on separate sets of lines.

Each micro family has one or more fancy serial 1/0 chips avail
able. These are usually harder to understand than the hardware
UARTs, and you need to do plenty of digging into the data sheets
and ap notes, along with lots of hands-on practice.

Important fancy serial 1/0 chips include the 8251 from the 8080
school and the 6551 from the 6502 school, among with many others.

365

I like the 6551, first, because it is simpler to use and easier to
understand than many of the others and second, because you get
an absolutely free baud rate generator built in.

Here is how you might use the 6551 ...

MICRO UART USING 6551

iRil

.,

OPTIONAL
INTERRUPT
JUMPER -._

RIW-----'

' RESET I

�

CONTROL
BUS

SIGNALS
(6502)

TO/FROM DATA BUS

FROM ADDRESS BUS

� � SERIAL INPUT

L-------1�1
L-----(REQUEST TO SEND)

OPTIONAL HANDSHAKING
LINES UNUSED INPUTS
MUST BE HELD LOW

You power this chip from a single + 5-volt source, and hook up the
usual 6502 clock, reset, and R/w signals as shown. A 1.8432-megahertz
crystal gets hung on pins 6 and 7 if you are using the internal baud rate
feature. If you are using interrupts with your serial 1/0, an IRQ output
is connected to the IRQ line in the micro system.

Serial data is output on pin 10, called TXD, and serial data is input
on pin 12, otherwise known as RXD. An address decoder is routed
to the chip-select input, pin 3.

To you as programmer, the 6551 looks like four sequential
addresses. The chip-select should activate the chip on these.

Here is what these addresses do ...

366

BASE+$00- Writes data to be transmitted or reads data
already received.

BASE+ $01 - Writes a reset into the transmitter or reads
the receiver condition.

BASE+ $02 - Writes or reads a control register that sets
the baud rate, word length, and stop bits.

BASE+ $03 - Writes or reads a command register that
handles handshaking and parity.

You use these four locations as needed. First, reset the transmitter
and then initialize your control and command registers to the mode
and baud rate you need. You can then write to the UART transmit
ter or read from the UART receiver as needed. Check the Synertek
data sheets for more specifics.

There also are five handshaking pins that include two outputs
called RTS (Ready to Send) and DTR (Data Terminal Ready), and
three inputs called DSR (Data Set Ready), DCD (Data Carrier Detect),
and CTS (Clear To Send). You use these as needed to make sure that
information is input or output once and only once. Use details will
vary with the. fanciness of your handshaking.

All unused handshaking inputs must be held /ow for the 6551 to
work.

Any fancy serial peripheral chip can be understood by finding out
first how you power the chip and then how you connect it to the
system control lines. Then you find the data bus connections, the
address connections, and the address decoding scheme. Then you
find the input and output serial lines and, finally, check into the
handshaking.

One good way to test and debug any type of serial interface is to
check it first at the lowest possible baud rate with the crudest possi
ble "Here it is; take it or leave it" handshaking. This lets you sepa
rate the really fundamental problems, such as uncrossed transmit
pins or mismatched baud rates, from more subtle handshaking
hassles.

There's lots of confusion over RS-232 connector pins. If you are
going to a printer or another micro, usually pin 2 and pin 3 must be
crossed once somewhere along the way so that one micro's output
is the other micro's or printer's input and vice versa. Modems, on
the other hand, do not need this crossed signal path and will not
work this way.

A good baseline setting on the RS-232-C lashups that do not
involve modems would cross pins 2 and 3 only once and separately
tie pins 6,8, and 20 together. Again, as a baseline trial, start with
eight bits, no parity, and two stop bits at both ends. Naturally, the
receiving and transmitting baud rates must agree exactly. Start with
110 baud if you can.

After you get your serial interface talking more or less correctly at
a low baud rate, then you can speed things up and go on to solve
subtleties involving buffer overflows and other complications that
show up at faster speeds.

Once again, the output and input lines of your fancy serial chip
will usually be low level LSTTL or CMOS compatible signals. Exter
nal drivers and isolation may have to be added for such things as
driving RS-232-C or other serial standards.

367

"MORE THAN A PORT" 1/0

A lot of very fancy peripheral chips available for most micro fami
lies do much more than just inputting or outputting serial or parallel
data. We can call these "more than a port" 1/0.

Here are a few random samples ...

"MORE THAN A PORT" CHIPS

Timers
Real-Time Clocks
CRT Controllers
Disk Controllers

Keyboard Encoders
LAN Access ICs
Arithmetic Units
Universal Controllers

Most of these chips connect to the address, data, and system
buses of your micro and then provide some "higher level" interface
function for you. Often, these chips are very micro system specific.
As usual, you understand them by starting with data sheets and
application notes and then going to hands-on practice in simpler
use modes.

A timer is a "more than a port" integrated circuit that has one or
more timing devices inside. These can be used as counters or clocks
and are useful to unload the CPU from short-to-medium timing
jobs. For instance, a 10-millisecond time delay is an ideal use for
one of these. Sometimes timers are built into chips that do other
things. The Synertek 6530 from the 6502 family combines a pair of
parallel ports, a shift register for serial data, a timer, some RAM, and
some ROM all on one chip.

A real-time clock is a fancier timer that keeps track of "people
time," including seconds, hours, days, weeks, months, years, and so
on. Often, these circuits are kept alive by a small backup battery
when micro power is removed. Real-time clocks are useful to show
the time of day and to log execution times into programs. OK/
Semiconductor is one good source of real-time clocks, their MSM
5832 being more or less typical.

CRT controllers handle some to most of the support circuitry
needed to drive a video display. Certain types are intended more for
text-only terminal uses, and others are for uses involving fancy color
graphics. Standard Microsystems has an extensive line of these, and

368

so do Intel and Tl. At present, NEC seems to be leading the field in
sophisticated color graphics controllers.

The trend is away from specialized devices that can display only
text, since practically all new micro applications demand fully
mixed graphics and text capabilities. Even text-only displays must
have a wide choice of fonts immediately on line in most new appli
cations.

Disk controllers are used to interface disk systems to a micro.
Two popular types are floppy disk controllers, obviously for floppy
disks, and Winchester controllers for hard disks. Western Digital is
one leading distributor of specialized disk controller chips.

Keyboard encoders are used to encode standard ASCII key
boards, with General Instruments and Standard Microsystems
being important sources. As we have seen, the trend is away from
custom keyboard encoding, since direct micro keyboard access is
far cheaper and far more flexible.

There's much interest, these days, in connecting microcomputers
into networks, and quite a fight seems to be brewing over network
ing standards that include Ethernet and many others. At this writ
ing, lots of new integrated circuits called LAN Controllers are being
introduced. LAN stands for Local Area Network and means a bunch
of communicating computers and peripherals situated reasonably
near each other. Seeq Technology and Standard Microsystems offer
LAN controller chips commercially.

If you just want to tie a couple of personal computers, a printer,
and a hard disk together, there are easier ways to do it than going to
network controllers. You can use current loops, RS-232-C serial at
9600 baud, or even interface directly through game-paddle connec
tors. For lots of real-world uses, the LAN standards are gross
overkill.

Other controllers similar to the LANs are available for GPIB int
strument interface uses.

By arithmetic units, I mean any peripheral chip that does math
faster and easier than you could do directly. This includes such
things as fast multipliers, floating point circuits, and calculator chip
interfaces. These are most useful when you have to do fancy trig
calculations or lots of multiplication in a hurry. TRW is a very
expensive leader in this field.

Finally, a universal peripheral controller is really a "slave" micro
processor that has many on-board ports and is easily programmed
to bandle fancy 1/0 tasks such as keyboards, displays, and just
about anything else you can dream up. The peripheral controller
handles all the dogwork, so that the main micro is free to go on
with high level tasks. Intel is very heavy into programmable periph
eral controllers.

369

There are lots more of these "more than a port" peripheral chips,
and many more are being announced. Some of the most exciting
new microcomputer developments center on these. But, unless you
can find a reasonably priced "more than a port" 1/0 chip that does
exactly what you want-and that really and truly is available, second
sourced, and cheap-you will often do better just throwing in a sec
ond stock microprocessor as a slave to the master micro in your
system.

Some interesting video uses of slave microprocessors are shown
in The Cheap Video Cookbook and Son of Cheap Video (Howard
W. Sams 21524 and 21723).

The trend in single-chip microcomputers today is to put every
thing into a single package. That includes RAM, ROM, CPU, parallel
ports, serial ports, and system timing. Some of the newest beasties
even include A/D and 0/ A conversion and on-board phase lock
loop circuits. These are a good choice for simpler micro applica
tions but may be hard to expand.

I'm still looking for a single-chip micro that is genuinely useful
for low volume, low power applications. What I would like to see is
a one-chip something that speaks "6502" or something equally
powerful and easy to use; has twenty bidirectional and parallel port
lines ready to go; includes a pair of serial ports with built-in baud
rate generation; has at least 256 bytes of RAM and 4K of nonvolatile,
built-in EEPROM; and sells for, say, $5 in singles. Naturally, the
thing must be micropower and must work over a wide and sloppy
power-supply range, with full power-down and "data hold" fea
tures. It must also cross-assemble easily on the Apple II as well as
download and require at most $30 worth of extra software for a
complete development system.

Three immediate uses I have for this are wilderness data acquisi
tion, weather logging, and "intelligent tapping" for cable TV distri
bution systems. I could easily come up with hundreds more uses.

Any takers?

OPEN COLLECTOR OUTPUTS

Just a quick note here. Three types of output circuit lines are pop
ular for use on peripheral chips. Direct outputs are usually CMOS or
LSTTL compatible and are there all the time. These vary in drive
ability and allowable output loading, so it always pays to check the
data sheets.

Tri-state outputs are there only when they are properly enabled;
they float otherwise. This lets something else grab the output line
without any interference.

370

Finally, there are open collector outputs. Open collector outputs
are useful to "wire OR" things like a daisy-chained interrupt line
and to minimize internal supply power in real-time clocks and
some other low-power CMOS peripherals.

By now, you should know better than to connect two direct
CMOS or LSTTL outputs together, because they will fight each
other. And, you should know that any number of tri-state outputs
can be connected, as long as you enable one, and only one, at a
time. Naturally, to view or use a tri-state output, only that output
and no others should be enabled.

But sometimes it is easy to forget the pullup resistor on an open
collector output. If you don't provide an external resistor on an
open collector output, you will get output lows or else nothing. On
a scope, you will see either nothing at all or just a few millivolts of
"fumes" where the output should be.

Typical LSTTL pullup resistors are 2.2K or 4.7K, whereas CMOS
pullup resistors normally range from 10K to 100K.

Hence, this obvious rule ...

On open collector output lines, ALWAYS make
sure you provide a pullup resistor somewhere
EXTERNAL to the chip.

'

Otherwise, there is no way to get or see an "out
put high" state.

Note that the pullup resistor is needed even if there is nothing
else sharing the open collector output. This detail is easy to miss,
particularly on CMOS clock chips, so watch for it.

That just about gets us through micro-level interface. To interface
micros at the chip level you can use "less than a port" stunts such as
soft switches, "real ports" such as parallel and serial interfaces, and
"more than a port" specialized chips that handle fancy tasks at
increased cost and complexity.

Time now to step to the next interface level .

CIRCUIT LEVEL INTERFACE

In practically all real-world applications, the signals you try to
input to the microcomputer are too big, too small, too noisy, too
sloppy, or too dangerous. At the other end, the commands you try
to get from the microcomputer are usually too weak, too noise-sen
sitive, too in need of safety isolation, or not in the right form for

371

final use. So, you almost always have to add some outside interface
electronics between the microcomputer and everything else.

This outside level two circuit interface electronics is usually made
from noncomputer stuff like plain old transistors, optocouplers,
special IC driver chips, relays, triacs, AID and D/ A converters, and
similar components.

Add-on interface circuits of some sort will be needed just about
everywhere that you try to connect a microcomputer to the rest of
reality. About the only time you will not need much in the way of
circuit level interface is when the signals come from or go to com
pletely micro-compatible, low-level, and local sources and sinks.

Thus ...

External CIRCUIT LEVEL INTERFACE parts are
almost always needed between the microcom
puter and the real world for most 1/0 uses.

We have both input and output interface .. .

Let's look at output interface first.

OUTPUT CIRCUIT INTERFACE

Output circuit interface goes between the microcomputer and
any loads you want the microcomputer to control. These interface
electronics will be needed for just about everything except driving
local and low-level LSTTL or CMOS peripheral output circuits.

Our output interface circuits can usually handle three different
tasks .

372

OUTPUT INTERFACE can:

() amplify
() isolate
() convert

By amplifying, I mean making the output signals "louder" so they
are strong enough to directly power or control a heavy output load,
such as a motor, a solenoid, a large lamp, or anything else that
needs a stronger signal than you can get directly from a micro's out
put port lines.

By isolation I mean finding a way to let a microcomputer control
a load without being physically or electrically connected to that
load. Relays and optocouplers are often involved here. Isolation can
provide safety for loads that are connected to the AC power line.
This can eliminate a potentially deadly shock hazard from the micro
and its users. Isolation also provides noise immunity that can keep
any spikes or other high-level garbage at the load end from getting
back into the micro's sensitive circuits and raising havoc.

Finally, by conversion I mean converting the digital ones and
zeros from our output into something else. That something else is
often a slowly changing or analog signal that can have many possi
ble values, instead of the on-off snap-actions of the digital world.

You can also think of a motor as a voltage-to-rotary motion con
verter and a solenoid as a voltage-to-linear motion converter. So,
your conversions will sometimes be done by special circuit level
converter electronics and other times by the devices you hang on
the final output. Let's check into these one at a time .

circuit level amplifiers

A typical output port will have LSTTL or CMOS compatible lines
that can source or sink a few milliamperes of current. Should you
need anything more than this as an output, some sort of "amplifier"
will be needed to make the signal strong enough to handle the load
you are trying to drive.

The most common and most used amplifier is called an NPN
transistor. This is available as a separate component, or it can be
built. into husky integrated circuits specially intended for circuit
level interface uses.

An NPN transistor has three leads, called the emitter, the base,
and the collector. Almost always, you connect the emitter to a com
mon path that is usually also zero volts or ground. You normally
connect the collector through a load to a positive power supply.

373

The current needed by the load. must be within the range that the
NPN transistor can handle. The positive supply voltage must be
below the breakdown value of the transistor, but it also has to be of
the proper voltage that the load will demand when the load is pow
ered or "on."

Usually you input a small conventional current into the base of
the NPN transistor. Conventional current travels in the direction of
the arrows on most solid state device symbols. A small current into
the base controls a large current into the collector. The transistor is
a current amplifier that lets a small base current control a large col
lector current.

Like this . . .

HOW AN NPN TRANSISTOR

AMPLIFIES

BASE

COLLECTOR!
EMITTER

... CONTROLS A
LARGE OUTPUT

COLLECTOR CURRENT.

In some non-digital transistor uses, the output current will follow
the input current linearly. Double the base current and the collec
tor current will also double. But, in the digital world, we usually
saturate our transistor when we turn it on. To saturate means to
turn a transistor as far "on" as you possibly can. This means that you
input a weak one for base current and a weak zero for no base cur
rent. You get out a "full on" for the weak one input and a "full off"
for the weak zero input.

Input a weak zero, and the NPN transistor stays off. This outputs a
"loud" zero. Input a weak one, and the NPN transistor turns on,
powering the load and outputting a "loud" one. In the off state, the
full supply voltage appears across the transistor and there is zero
load current. In the on state, almost the full supply voltage appears
across the load, and the load draws its normal current.

Here is how you light a small incandescent light bulb using an
NPN transistor .

374

NPN TRANSISTOR DRIVING
A SMALL LAMP

BASE CURRENT
LIMITING RESISTOR

+5 VDC

l,
0�

MICRO
OUTPUT

PORT
LINE

470 0

5-VOLT, 50-mA C
LIGfiT BULB

I B �) 2N5129 2N5129 � BOTTOM VIEW 'I IS JUST LIKE
THE SYMBOL

E

In this case, the lamp is the load for our NPN transistor. If the
micro port provides a weak high output, this output in turn gives us
transistor base current, turns the transistor on and saturates it, and
puts nearly the full supply voltage across the lamp. This, of course,
lights the bulb.

A saturated transistor normally has a few tenths of a volt drop
across it, so almost all of the supply voltage will appear across the
lamp terminals.

If the micro port provides a weak and low output, this output
gives us zero base current, which turns the transistor off. There will
be no current through the lamp, and nearly all the supply voltage
will appear across the "off" transistor. The lamp will be out, since
no current is going through it.

You might like to light an LED or light emitting diode instead of
an incandescent lamp. Here is how to do it . . .

NPN TRANSISTOR DRIVING AN LED
+5 VDC

LIGHT EMITTING DIODE
MUST GO IN CIRCUIT

/. IN DIRECTION SHOWN .

.,

2N5129

.,_� � CATHODE (BAR)
LEAD IS
BESIDE FLAT,
SHORTER, OR
HAS BARB .

...,
375

As before, a port high provides base current which saturates the
transistor and lights the LED. A port low stops base current which
turns off the transistor and puts out the LED.

But note two gotchas. First, most LEOs are polarity sensitive. This
means they will only light if you put them in the circuit pointing in
the right direction. The correct way is with the cathode (or "bar")
of the LED going to the least positive or grounded side. Often the
cathode lead of an LED will be shorter, have a small metal flag on it,
or will be beside a flat on the plastic. Check the data sheet or try
both ways if you have any doubts.

Second, note the resistor that is in series with the LED lamp. A light
emitting diode is a current driven device. Connect it to a voltage sup
ply, such as 5 volts, and the LED will self-destruct because it will try to
light itself so bright that it melts. Current through an LED must be
limited to a safe value. This safe value is typically 10 milliamperes or
so, and can be prov.ided by a 330-ohm resistor and a 5-volt supply.
When lit, a light-emitting diode will have slightly under 2 volts of drop
across it, with the current being set by the outside resistor.

Let's repeat that ...

To light an LED safely:

You MUST put the LED into the circuit in the
right direction.

You MUST provide an external current-limiting
resistor to set the brightness to a safe value .

. By the way, NPN transistors themselves are also current-operated
devices, and their input base current also must be limited to keep
the transistor from melting. That is what the base resistor does in
the last circuits. The base resistor also prevents "current hogging"
when you connect more than one transistor amplifier to the same
port or try to use the port's logic ones and zeros elsewhere.

Besides NPN transistors, there are complementary or "upside
down" devices called PNP transistors. These are intended for use on a
negative supply. You can also get field effect transistors that use an
input voltage to control an output current. These are available in com
plementary pairs, with the N-channel devices being used with positive
power supplies and P-channel devices with negative power supplies.

Power field effect transistors (FETs) are becoming popular for cir
cuit level interface. These are easier to drive and more rugged than
NPN transistors, but they still cost more. Power FETs easily handle
the high voltages once associated with vacuum tubes. They are

376

available rated to tens of amperes and hundreds of volts. Because
power FETs are new and still expensive, NPN transistor amplifiers
still dominate most low-level uses.

The gain of an NPN transistor decides how much output collector
current you get out for a given input base current. The typical data
sheet gain for an NPN transistor will be in the 50 to 500 range.

But, when you use an NPN transistor as a digital amplifier or as a
saturated switch, you must be sure the transistor stays completely
on when you drive it. You make sure by providing overdrive, or
much more input current than you know you will need. When you
allow for overdrive, you can get a gain of 10 to 100 out of your usual
single NPN transistor. Thus, with 2 milliamperes out of a port and a
saturated gain of 50, you can output 100 milliamperes through a
small incandescent bulb load.

What if you want more gain? And how do you control much
heavier loads?

One older way to pick up more gain is to add another amplifier to
your amplifier. Cascade two transistors this way, and you come up
with a circuit called a Darlington that can have saturated gains up
in the thousands.

Here is a Darlington pair of transistors controlling a power
relay . . .

DARLINGTON TRANSISTORS

DRIVING A RELAY

DE-SPIKING DIODE
MUST BE PROVIDED
WITH "BACKWARD"
POLARITY SHOWN

'+

+5 VDC

�

q:;j.

RELAY
CONTACTS

�-�o.2..L u (Nc)

5 -VOLT (COM)
RELAY

'--------+ 90 0 COIL

1N4005

2N5129 (2)

377

A little current into the base of the first transistor puts a fairly
hefty current into the base of the second transistor, which gets you
a very large combined collector current. As before, a low port line
gives you no collector current. A relay with no current does noth
ing, leavrng any contacts in their unpowered condition. A high port
line turns on both transistors and applies nearly the full supply volt
age across the relay coil. The relay current then magnetically "pulls
in" any and all of the relay's mechanical contacts, putting the con
tacts into their powered condition.

The simplest relay type is called a "make only" or single pole,
normally open relay. Current flowing into the coil closes the con
tact. No current leaves the contact open. You can have lots more
contacts on your relay doing other things if you want to. I've shown
an SPOT or single, pole, double throw relay that has a common
contact (COM), a normally closed (NC) contact, and a normally
open (NO) contact. "Normally" here means unpowered. Since the
contacts are completely isolated from the coil, you can use them to
control power loads however you like, within the rating of the con
tacts.

One type of very small relay is called the reed relay. This one is
easily interfaced to a microcomputer port and needs little in the
way of coil current. But reed relays are very limited in their ability to
handle load current. Most reed relay contacts are restricted to 110-
volt AC loads of 10 watts or less and will rapidly burn out or weld
on any DC load that is highly inductive or capacitive. Reed relays
may look nice but they just aren't all that useful.

Since relays are mechanical, in time they will fail. Relays are also
current hogs and are often bulky and expensive. For these reasons,
all-electronic switching or amplifying is usually preferred for newer
micro applications.

One VERY important gotcha.
See that diode across the relay coil that seems to be in the circuit

"backward"? That diode is called a spike protector or a freewheel
ing diode, and it MUST be added to any coil that you are trying to
control with a transistor.

What happens is this. If you try to turn a coil off suddenly, the
energy in the magnetic field collapses very fast, which creates a
high negative voltage. That's how the coil in a car generates tens of
thousands of ignition volts from a 12-volt battery.

Most transistors do not like tens of thousands of volts applied to
them backward. They tend to get very uppity if you try this. In fact
they simply die. But when you provide spike protection, the diode
conducts immediately when the transistor shuts off, which keeps a
current briefly running through the relay. The current runs long

378

enough to "empty" the magnetic field slowly and safely, thus
preventing a circuit-destroying spike.

So ...

When you are controlling ANY coil with a tran
sistor, ALWAYS add a protecting diode or other
spike protection.

Note that the diode points "backward." The diode should con
duct only on the reverse relay current and not on the supply cur
rent. Put the diode in frontward instead and you will destroy the
transistor rather than protect it.

A protecting diode tends to lengthen the relay's "hold" or drop
out time. This can be critical in some uses. Other spike protection,
such as a zener diode or a transient absorber, can sometimes be
used both to provide protection and to minimize dropout times. For
most uses, the few milliseconds of extra hold time is no big deal.
Ignore it till it catches up with you.

Darlington transistors are less efficient and much slower switches
than power field effect transistors. Today the rule seems to be to
use Darlingtons for low to medium loads and to use relays, triacs, or
power FETs for heavier loads.

If you want to use lots of Darlington drivers at once, it will take
bunches of transistors and resistors to do the job. As an alternative,
fairly rugged peripheral driver integrated circuits are available that
give you control of up to eight power loads in one package.

These peripheral drivers are usually used on power supplies of 40

volts or less where the load current is half an ampere or less. Thus,
these peripheral chips are often a good solution for "medium
power" things like driving print hammers, small stepper motors,
LED display arrays, miniature solenoids, pneumatic air valves, larger
indicator lamps, and other things in this power range.

The load power supply for these peripheral driver chips must
share a common ground return with the microcomputer port. This
can create noise or current loop problems if you aren't super care
ful.

Let's look at two examples of medium power peripheral
chips .. .

Here's one of my favorites, the Sprague 2813 . . .

379

8 PORT LINES =

8 LOADS

OCTAL PERIPHERAL DRIVER

l!l.I!:Zlli

(Top View)

POWER SUPPLY &
MICRO MUST
SHARE A COMMON
GROUND.

+

POWER
SUPPLY
UP TO
+ 40
VOLTS OC

PARALLEL MICRO PORT MICRO GROUND

This octal peripheral driver comes in an 18-pin package and han
dles eight separate loads of up to half an ampere each, powered
from an outside supply of 40 volts or less. The inside circuitry con
sists of eight separate Darlington transistor drivers, along with eight
separate spike"protecting diodes. Once again, this supply must

share a common ground with the microcomputer and the periph
eral chip.

There is a total package dissipation limit on the 2813, though, so
if you are using all of the outputs at once, you have to limit your
load current to 200 mils per output or less. See the data sheet for
the derating curves.

Heat sinking is recommended for heavier loading. Wakefield is
one source of "clip-on" fins suitable for plastic DIP packages. Wide
printed-circuit runs also help to remove heat from packages.

Each driver is independent. The pins are arranged straight across
the package, with all low numbered pins being inputs and all high
numbered pins being outputs. Make any input high, and the output
for that input goes low, as the internal Darlington transistor pair
conducts heavily. Thus, a high input turns the driver on and powers
the load.

The eight spike-protecting diodes are connected internally to a
common pin. You connect this pin to the positive supply for the
load. This should protect the internal circuitry against inductive
surges.

380

This beast is a good general-purpose driver for most low to
medium-level microcomputer output interface. I've used it to drive
air valves for pneumatic robotics, among other things.

Which, by the way, is a field that's crying to be exploited. Low
pressure air does things so much better than solenoids and mechan
ical mechanisms that there is no contest. And yet, Detroit surplus
three-way air valves go begging at giveaway prices.

Like a quarter each.
It may seem like gross overkill to use a half amp driver on a single

LED, but this very tough chip is in fact a good LED driver for student
lab projects and is priced under two dollars. .

Here's a peripheral driver from way out in left field, the Signetics
490 . . .

ADDRESSABLE AND LATCHING OCTAL DRIVER

UP TO 250
MILLIAMPERES
EACH MAXIMUM.

WHENCE IS
BRIEFL V BROUGHT
LOW. THE LOAD
ADDRESSED BY
AD·A3 GETS
THE DATA ON
THE D LINE
LATCHED INTO
IT '-

MICRO
STROBE
SIGNAL

1I

4 PORT LINES =

8 LOADS

t:!lliQ
(Top View)

OAT A ADDRESS
D-1 D-7

+

POWER
SUPPLY
UP TO
+7

VOLTS DC
--.---

,.
POWER SU PPL V
AND MICRO
MUST SHARE
A COMMON
GROUND

MICRO
GROUND

381

This one isn't quite as tough as the 2803. It allows only 200 mil
liampere loads at a maximum supply voltage of 7 volts.

The 490 does have several sneaky advantages. First, there are indi
vidual storage latches for each output, so the chip will remember
the last desired state of each output so long as power is applied.
Second, you can clear all of these internal latches to zeros, to get a
safe "all off" condition whenever you power up.

Third, and most sneaky, this chip is addressable.You do not input
eight commands simultaneously. Instead, you address select one of
the eight output latches and then write a one or a zero to it. This
saves on package pins and means you need only four or five port
pins to control eight output lines. It does take extra software,
though, to update each of the eight outputs one at a time.

One catch. This behaves backward, compared to the 2813. An
input zero gives you a low output, which translates to an on load.

Oh, well.
Ferinstance, to activate load number five, you input a binary %101

pattern to the address lines and input a zero to the the data line.
When you pulse the chip-enable low on pin 14, the zero is latched
into latch 5, and that load is powered by means of an NPN Darling
ton output driver.

Here's an obvious application ...

DOING IT:

Show how to interface the 590 and eight
reed relays to the game connector on an
Apple II so you can gain eight medium
power outputs with minimum hassle.

Remember that the Apple II does not normally have a plain old 8-
bit parallel power port available and that those printer cards, etc.,
do not have lots of drive ability. With the 590 you can take the four
annunciator outputs off the game-paddle connector, use three of
them to select an address, and use the remaining one to output
data. The strobe output is then used to update the internal latches.
Reed relays are easily driven by the 590.

Use peripheral drivers like these for medium-power loads. For
heavier loads, you can step up to power FET devices.

If you are controlling AC power loads, though, the only way to go
is with a beast called a triac. Triacs nearly always introduce a severe
shock hazard into the circuit in which they are used. So, before we

382

find out what a triac is and what it is good for, we first had better
learn about . . .

output isolation

Whenever you worry about a shock hazard getting into the
microcomputer, or don't want any electrical noise getting back into
the works, or simply want to separate the microcomputer system
completely from the devices it is controlling, you have to use some
sort of isolation . . .

A relay is an obvious output isolator, since there is nothing
between the relay coil and the output-switching contacts except a
magnetic field acting through a distance. Signals that go through
the relay's contacts are electrically and physically separate from the
coil circuit.

But the most common, most standard way of isolating things in
micro circuits is with a small beastie called an optocoupler . . .

Optocouplers are sometimes called opto-isolators or optically
coupled isolators.

On the input side of an optocoupler, you power or do not power
a light source, such as an infrared LED. On the output side, there is
some sort of device that responds to the presence or absence of
infrared light. All that goes from input to output is a light beam or
no beam.

There are many different types of optocouplers. Most of them are
packaged in 6- or 8-pin DIP packages.

Here are four popular styles of optocoupler . . .

383

+

IN

"V

"V

+

TYPES OF OPTOCOUPLERS

+

+

+

THE I PHOTOTRANSISTOR I OPTOC01JPLER

IS FAIRLY FAST (1 0 p.s) BUT HAS
LOW GAIN (.1 TO .5).

THE I PHOTODARLINGTON I OPTOCGUPLER

HAS HIGH GAIN (1 TO 5) BUT IS
VERY SLOW (200 p.s).

AN I AC INPUT I OPTOCOUPLER

CAN HANDLE INPUT SIGNALS OF
EITHER POLARITY. THIS ONE IS SHOWN
WITH A PHOTOTRANSISTOR OUTPUT STAGE.

"V
THE I PHOTOTRIAC I OPTOCOUPLER

IS USED TO SWITCH A LARGER, EXTERNAL
TRIAC ON AND OFF FOR DIRECT
CONTROL OF HIGH POWER AC LOADS. '\J THIS ONE SWITCHES RATHER THAN AMPLIFIES.

Most optocoupler use an LED as a light source. These are easily
driven by most micro ports. Infrared light is used since its spectrum
is more compatible with many light sensors and since you won't be
watching it anyway. Almost all optocouplers are opaque packaged
so that room lighting has no effect. As with any LED, you must be
careful of thl;l circuit polarity and must limit input current to a safe
value, typically 10 milliamperes.

Our first optocoupler uses an infrared LED and a phototransistor.
This combination is fairly fast but does not have much gain. The

384

second circuit uses a photodarlington instead. This gives you more
gain but is much slower than a single phototransistor. Typical gain
values are 0.1 for a phototransistor and 1.0 for a Photodarlington.
Gain is measured by the ratio of the output current to the input
current. Gain tends to decrease as an optocoupler ages.

Optocouplers are rather slow devices compared to most other
electronic components. A phototransistor optocoupler might take
20 microseconds to respond, and a photodarlington optocoupler
might take the better part of a millisecond. Faster devices are avail
able at premium prices, and you can get more speed with a cascade
stunt where you do not let the voltage across the output change
during switching. But even with magic tricks or lots of cash, don't
expect miracles.

So . . .

Optocouplers are rather slow and rather low in
gain compared to most other electronic devices.

Always check the data sheet if you need speed
or gain in handling a circuit isolation problem.

In our third circuit, there are a pair of input LEOs connected back
to-back inside the optocoupler. This lets an AC signal drive the
optocoupler, and you will get an output for either polarity input
signal. One important use is to enter a power line reference fre
quency into your microcomputer. More on this when we get to
input interface. AC input optocouplers can have several different
styles of output devices, some of which include extra snap-action
circuitry. I have shown a phototransistor output stage for this one.

Sometimes, the light of the optocoupler source is allowed out of
the package. One example is the reflective object sensor that is
useful in detecting "ribbon out" conditions on printers and also
useful in heart-pulse rate monitors. A second example is the
photointerruptor which has a slot in it. We will learn how to use
this latter device to sense speed or position shortly.

Our final optocoupler circuit combines an input LED with a
phototriac. A triac is an AC switch that is useful to control high
power AC loads directly . . .

TRIAC-An electronic switch used to directly control high
power AC loads.

385

Triacs are pretty much the standard way of controlling any AC
power load such as a 100-watt light bulb, an induction motor, or a
large heater.

The triac in an optocoupler, though, isn't nearly powerful enough
to directly control a big AC load. Instead, you use an optocoupler
triac to control a "real" triac.

Like this ...

MICRO CONTROL OF HIGH POWER LOAD

MICRO
GROUND

MOC 3010
TRIAC OPTOCOUPLER

I
I
I

100
WATT
LIGHT
BULB

2N6154 110VAC

TRIAC LINE

I WARNING I
EXTREME SHOCK

HAZARD ON
RIGHT HALF OF
THIS CIRCUIT'

This circuit shows you how to let a microcomputer directly con
trol a 100-watt light bulb connected to the AC line. In fact, the same
circuit can be used to control up to 1000 watts of AC power if you
use a fairly large heatsink on the big triac. The microcomputer port
output lights the LED, which trips the little triac, which in turn trips
the big triac. The big triac turns on and stays on till the main current
through it drops to zero, as happens each AC half cycle.

Sometimes your output port may be able to sink current better
than source it. If this is the case, connect the input to the
optocoupler between the port output and the + 5-volt DC supply
instead of to ground as shown here. Be sure, of course, that the
current goes through the LED in the right direction. Sometimes an
extra bias resistor can also help out.

Unlike a variable resistance in series with a power load, triacs are
off-on switches and are thus far more efficient.

There's lots of different ways to use triac optocouplers. The cir
cuit I have shown you is used for on-off control. If, instead, you
carefully time your lighting and unlighting of the LED with respect
to the AC power line cycle phase, you can control the brightness of

386

a lamp hung on your triac. For instance, if you turn the LED on late
in each AC half cycle, the lamp will light only dimly. But if you turn
on early in each AC half cycle, the lamp will light brightly. Obvious
uses include dimmers, theater lighting, programmed disco effects,
and burglar deterrents.

Other variations will let you switch only whole cycles of the AC
I ine for minimum radio noise or to provide feedback for constant
torque control of DC motors. But note that you cannot control the
speed of an AC induction motor simply by duty-cycling as you
would a dimmer on a lamp. You can set up variable speed AC motor
controls, but they take more sophisticated circuits that change both
voltage and supply frequency.

At any rate, if you want to control any large AC load from a
microcomputer, the optocoupler triac route is usually the best way
to go. The triac efficiently switches the power control for you, while
the optocoupler provides safety and noise isolation.

Note that you must use an LED-triac optocoupler for AC power
control applications. The phototransistor or photodarlington
optocouplers will instantly self-destruct if you connect their out
puts to the AC power line. Note also that you must use a current
limiting resistor on the phototriac coupler output, as shown, in
addition to the usual input LED current-limiting resistor.

OUTPUT CONVERSION

It is rare that we want a strictly electrical output from a real-world
microcomputer use. Instead, we will want light, heat, motion,
sout:Jd, or some form of energy other than pure electricity. So practi
cally anything you hang on the output of a microcomputer will con
vert from digital ones and zeros to some other energy form.

One very important converter circuit is called the digital to ana
log converter . . .

Important uses of D/ A converters include telephone communica
tions, speech generation, and electronic music.

Two key parameters of a D/ A converter are the resolution and
the settling time .. .

387

For instance, an 8-bit D/ A converter would have 256 possible
analog output levels and thus would be accurate to something like
one-half percent. A 12-bit 0/ A converter would have 4096 possible
analog output levels and thus would be accurate to one part in 4096
or around .025 percent.

In general, 0/ A converters are no big deal. They are far simpler
and much cheaper than the AID converters we will look at shortly.
The price does go up with increasing resolution and decreasing set
tling time, though.

Here are a pair of 5-bit "do it yourself" D/ A converters for
you . .

TWO "HOMEMADE" 5-BIT D/A CONVERTERS

CMOS

PORT

OR

LATCH

1-2-4-8 CIRCUIT

16

10K

8
20K

4

40K

2

SOK

32-LEVEL

ANALOG

OUTPUT

/1

Tl

Gl

w
Sl

AI

E BIG RESISTOR

ES ON THE

EAKEST OUTPUT

NCE YOU

E SUMMING

1 ----'VVv-
C l �ENTS.

160K

16

8

CMOS

PORT

OR

LATCH 4

2

1

R-2R CIRCUIT

20K

10K

20K

10K

20K

10K

20K

10K

20K 20K

32-LE

ANAL

OUTF

EL

OG

UT

In the first circuit, we start with a CMOS port or latch and then
add summing resistors that are weighted in a 1-2-4-8-16 ratio. These
currents are summed to give an output stairstep voltage that has
thirty-two levels. Note that the smallest resistor value gives the larg
est current, and vice versa.

In the second circuit, we rearrange things to use resistors that are
all one of two values. This is done by providing a 2:1 stepdown each
time we move one more pair towards the output. This is called the

388

"R-2R" method and is far and away the preferred circuit, although
not quite as easy to understand as the "1-2-4-8" circuit.

This simple summing of currents of various weights is all that is
involved in nearly any A/ D converter. The faster you go and the
more accurate you want to be, the more precise and more complex
the circuit-and the more it will cost you.

Homemade D/ A converters are hard to build to accuracies better
than five bits because of resistor tolerance buildup problems.

Commercial D/ A converters offer much better resolution. To do
this, they put all the D/ A circuitry into a single well-matched pack
age and add an operational amplifier to the output. This operational
amplifier makes the summing process independent of your outside
load. It can also speed things up because the currents all sum into
the virtual ground of an op-amp's input. A precision voltage refer
ence is also usually included for maximum accuracy independent of
power supply variations.

Here is a typical circuit .

8-BIT D/A CONVERTER

AD558
(TDP VIEW)

0-2.56 v
ANALOG
OUTPUT

+5 v

FROM MICRO PORT
OR DATA BUS

Lr

R/W
CONTROL

1f

ADDRESS
DECODER

AO-A15

The way I have shown this circuit, you simply hang the Analog
Devices AD558 on an 8-bit output port, and you get an output volt
age of 0 to 2.56 volts that follows the straight binary coded inputs.
All this from the same 5-volt supply the micro uses.

You can get much fancier with this chip. By using a split supply
voltage, you can get higher outputs, and you can get faster response

389

by adding an output pulldown resistor that sinks to a negative volt
age. You can also work directly from a data bus, rather than a port,
by correctly controlling the chip-select and chip-enable inputs. If
both these inputs are grounded, the Dl A continuously updates. If
both are positive, the Dl A continuously holds the old value. Usu
ally, you will route an address into the cs input and an "OK to
write" command into the CE input. Details depend on the micro
you are using.

Some fancy .variations of AID converters are available. Multiply
ing AID converters give you an analog input that gets multiplied by
the digital value. These converters range from one quadrant multi
pliers that use positive-only currents and straight binary, through
four quadrant circuits that handle AC signals and signed binary or
special codes. Important uses are audio attenuators, active filters,
and electronic music.

Some Dl A converters are purposely made nonlinear. The tele
phone people use companding Dl A converters to give an approxi
mation to a log response that increases dynamic range. Speech syn
thesis uses special conversion techniques intended to optimize
intelligibility. You can also use oddball resistor weightings to build
digital sinewave converters for electronic music or other uses.
Details on this appear in Chapter 6 of The CMOS Cookbook (How
ard W. Sams 21398).

Summing up, output circuit level interface is needed whenever
you want the microcomputer to control real-world things such as
lamps, motors, solenoids, air controls, steppers, or whatever. Most
of the interface electronics will be involved with the non-micro bits
and pieces of traditional components.

A level two output circuit interface may do three important
things: amplify, isolate, or convert.

·

Amplification makes things bigger and louder. It usually involves
NPN transistors, Darlington transistors, IC peripheral driver arrays,
power FETs, or triacs. Triacs are best suited for AC power control of
heavy loads.

Isolation separates the load from the microcomputer, both as a

safety measure to eliminate shock hazards and as a way to separate
load-related noise sources or ground current loops from the
microcomputer circuitry. Although relays are one obvious isolation
means, optocouplers are more commonly used. Optocouplers use
the presence or absence of a light beam to control an output and
can use phototransistor, photodarlington, or optotriac output
devices.

The Dl A or digital-to-analog converter is most often used to con
vert from digital commands to continuously varying output signals

390

such as speech, electronic music, or digital audio. Important param
eters of a 0/ A converter are its resolution in bits and its settling
time.

Enough said on output circuit interface. Let's now turn our atten
tion to ...

INPUT CIRCUIT LEVEL INTERFACE

Input circuit interface goes between the sources of outside-world
signals and the microcomputer. Once again, this interface is needed
for just about every real-world use except those that come directly
from nearby, "clean" LSTTL and CMOS compatible sources.

The input interface usually does four things ...

INPUT INTERFACE can:

() protect
() condition
() isolate
() convert

By protection, I mean making absolutely sure that all signals actu
ally entering the microcomputer are just the right size to be recog
nized as legal ones and zeros. The signals should not be so loud
that they destroy the micro, nor should they be so small that you
cannot reliably tell ones from zeros.

Conditioning is needed whenever you interface a mechanical
contact to the micro, because mechanical contacts bounce repeat
edly and thus give false counts. Conditioning is also needed to
make sure you have a snap-action one or zero as compared to
something slowly varying that could cause foul-ups.

Isolation is pretty much the same as it was for output loads. You
isolate to eliminate shock hazards and to disconnect the micro
physically and electrically from any noise that might be related to
the signal source or its power supplies.

Finally, conversion takes real-world signals that are not ones and
zeros and converts them into suitable digital commands. A temper
ature sensor or a pressure transducer are two obvious input devices
that need conversions. Analog signals are converted with special
AID converter circuits.

391

Let's give the input conditioning the same treatment we gave
output conditioning .

the protection racket

The only things you are allowed to put into a microcomputer's
ports are ones and zeros that are LSTTL or CMOS compatible. Any
thing else will either fry the chip or, at the very least, cause confu
sion.

Thus, an important rule . . .

The only things you are allowed to input to a
microcomputer port are dean LSTTL or CMOS
compatible digital logic ones and zeros.

Anything else spells trouble.

For instance, inputting the AC power line into a port will immedi
ately destroy at least the port and possibly also the entire
microcomputer. Any signal that is more positive than the positive
power supply or more negative than ground, even by a few tenths
of a volt, will cause serious problems.

Any signal that changes from a one to a zero very slowly or very
noisily is also bound to cause hassles. Although this type of signal
probably won't do any physical damage, it is likley to be read wrong
and misused.

Most protection circuitry is built into the other input tasks of iso
lation, conditioning, and conversion. For protection circuits to
work, the signal feeding the port must be a legal one or a legal zero,
with a rapid snap-action between . . .

An input protection circuit MUST provide ONLY
legal ones or legal zeros, with a snap-action
between.

Most protection circuits will also isolate, condi
tion, or convert.

The point here is to use plain old common sense. If something
looks noisy or too big or too small, put some circuitry between it

392

and the micro. This circuitry should safely handle the signal at the
input and safely pass ones and zeros to the micro at the output.

input isolation

Input isolation works nearly the same way as output isolation.
You use isolation to avoid shock hazards and to keep the noise
associated with input sources from getting to your micro.

Optocouplers are almost always used for input isolation. The
phototransistor style is used when you need maximum speed, and
the photodarlington is used for maximum gain.

Here is an example of how you use an AC optocoupler to provide
a safe power line reference for a microcomputer ...

POWER LINE FREQUENCY REFERENCE

110 VAG
POWER

LINE

CONNECT JUMPER
FOR 60 PPS.
OPEN JUMPER
FOR 120 PPS.

I
I

AC OPTOCOU PLER
HCLP-3700

I ,....--....------ MICRO
+5 VDC

4 :..ruut_
MICRO

PORT OR

·}----------,
INTERRUPT

I WARNING I
EXTREME SHOCK
HAZARD ON LEFT
HALF OF THIS
CIRCUIT!

MICRO
GROUND

This special Hewlett Packard AC optocoupler directly and safely
accepts a full strengh 110-volt AC line signal at its inputs by way of
a large current-limiting resistor. This lights one or the other of the
input LEOs, except during line zero crossings. The output of the
optocoupler will go positive on each zero crossing of the AC line,
giving you 120 pulses per second into your port. Extra goodies
inside the chip improve the snap-action and stability.

You can add an extra circuit on the output to narrow and invert
the pulses if you need this sort of thing for an interrupt line. By
adding the diode shown on the input, you can get 60 rather than
120 pulses. Sixty is better for clocks, while 120 is better suited for
dimmers and other phase controls.

Note that this AC optocoupler is a very special device. Send the
AC line into just about any other integrated circuit or peripheral
chip, and you will instantly destroy the works.

393

If some lower AC voltage is available, such as a transformer wind
ing in a power supply, use it instead of the raw power line. It's far
safer and more usable.

This conditioned and isolated power line signal can be used as a
source for clocks and counting or as a phase reference for triac dim
mers and zero voltage switches.

What other uses can you think of?

DOING IT:

List a dozen uses for a power line input
reference sent to a microcomputer.

Whenever you get any signal from anywhere remote from your
microcomputer, be sure to provide input isolation. In this case
"remote" means "not plugged into the same AC wall outlet at all
times."

A bad thing can happen when you make physical connections to
a remote "ground": you can get heavy ground currents through
your micro. At the very least, this changes ones to zeros and vice
versa. At worst, it fries the works.

A very important rule . . .

ALL remote inputs and outputs to or from ALL
micros MUST be isolated to prevent ground
loops!

"Remote," means not plugged into the same
grounded AC outlet at all times.

And remember, optocouplers can be infuriatingly slow at times.
Always check the data sheets to be sure you have enough speed
and gain for your application.

Also, many older optocouplers will "run down" after a few
months with a time-deteriorating response. Be sure to have enough
excess gain or extra drive to allow for this long-term effect.

Here's another sort of use for a different optocoupler .

394

TACHOMETER OR POSITION PICKOFF

TO MICRO
PORT

What I have done here is to take an interrupting optocoupler pair
and interpose a disk with clear and opaque sectors on it. Depend
ing on your use, this can be a tachometer or a position sensor, and it
can be used for anything from an anemometer to a trackball to a
robotic position sensor to a miles-per-gallon meter.

Since nothing but a light beam touches the disk, there is no
mechanical loading and plenty of free play. For more accuracy, you
can add extra stripes to the disk. Should the stripes get very close
together, you can add focusing optics to increase the resolution.

If you have stripes all the way around the disk, you can also add a
second interrupting optocoupler that is spaced so that it sees black
when the first one sees white. When combined with some digital
logic, this gives you the sine and cosine channels needed to handle
the dual problems of detecting position and sensing changes in the
direction of rotation.

Still a third interrupting optocoupler can be added to pick off a
single index stripe that can be used for absolute positioning.

A gotcha: Interrupting optocouplers use infrared light, which can
zip right through some very opaque-looking plastics and other

395

materials. Make sure anything that is supposed to break the infrared
beam does in fact do so. Sheet aluminum definitely works.

conditioning inputs

Digital circuits expect clean ones and clean zeros. No "maybe" or
"later on" allowed. So, conditioning circuitry often has to be added
to verify inputs and make sure they are truly ones and zeros ...

Let's look at two examples of input conditoning.
The· first involves mechanical contacts. A mechanical contact,

such as a pushbutton or a relay closure, does not close all at once.
Instead, you get contact bounce that may last for a few millisec
onds as the contact settles down. During that time, you could get
many hundreds of output counts. Input this to a micro that is
counting inputs, and you add many hundreds of counts instead of
just the one you wanted.

Back in Volume 1, we learned how to add a set-reset flip-flop to a
pushbutton to make it bounceless. On the first contact made, the
flip-flop changes and "fills in" during the noisy contact-making
time.

These days, it is often much better to use software to debounce
mechanical contacts. Usually, you wait a few milliseconds after a
contact is read and verify that it is sti!l down and not just a noise
glitch Then you accept the command as valid. Then you delay as
long as needed to be sure you don't get a second hit off a single
event.

Whether you use hardware or software, though ...

396

Some sort of debouncing is needed for any
mechanical contact used to input single events
to a micro.

This debouncing can be done either with hard
ware or software.

Note that you don't usually have to debounce a reset button, for
resetting your system several hundred times in a millisecond or two
will do the job just as well as resetting it once.

But for any contact where you are counting the closures, some
sort of debouncing is an absolute must. The debounce time should
be long enough to eliminate all bounce effects but short enough to
catch repeated legal hits of the contact.

As a second example of conditioning, let's talk about a night/day
photocell. For this we might use a cadmium sulfide photoresistor,
the kind used on street lamps and security controls. The resistance
of a photoresistor changes with the amount of light falling on it.
Typically, you get 200 ohms in bright sunlight and 200,000 ohms or
more in the dark.

Suppose we are dumb enough to try to input the slowly varying
voltage from night to day directly into a micro port. Sure enough, if
it is the middle of the day, we get a solid zero. In the middle of the
night, we get a solid one.

But in between we get a "maybe."
At the time we want to tell night from day, the voltage is halfway

between a one and a zero. The port gets very confused.
Instead, let's add a circuit called a Schmidt trigger to our photo

cell so that it swiftly and sharply changes from night to day ...

NIGHT AND DAY DETECTOR

CADMIUM
SULPHIDE

PHOTORESISTOR

+5V

HIGH = NIGHT

_f
......_ �2

. � MICRO
� INPUT

1/6 4584 PORT
(CMOS)

397

What happens is this: The photocell and calibration resistor on
the input form a voltage divider. This voltage will be very positive
during the day and very near ground at night, since the photocon
ductive cell's resistance varies inversely with incident light. A reg
ular CMOS inverter has been taught at the factory to provide a
"one- zero" decision when its input is precisely halfway between
the + 5-volt supply and ground. Thus, you always get a one or a
zero. A one for day and a zero for night, since this circuit inverts.

But the typical Schmidt trigger circuit does us one better. The cir
cuit also adds internal noise immunity or snap-action for us.
Another name for this snap-action is hysteresis.

The snap-action sets a lower trip level when the input is decreas
ing and an upper trip level when the input is increasing. Thus, if
there are moving clouds at dawn or dusk, they will get ignored, for,
once snapped, it takes a bigger change in the "wrong" direction to
flip it back the other way.

The Schmidt trigger it converts a slowly varying or noisy analog
input signal into a clean digital output circuit that snaps from a one
to a zero.

Two popular CMOS Schmidt triggers include the hex inverting
4584, otherwise known as the 74C14, and the 4093, a quad 2-input
NAND version.

Conditioning should be applied to any slowly varying or noisy
input ...

Snap-action conditioning is needed for EVERY

micro input that is noisy or slowly varying.

A Schmidt trigger is one good way to provide
snap-action or hysteresis for noise immunity.

Many line driver and receiver circuits also have built-in snap
action, as do a few of the faster optocouplers. Be sure to use some
thing like this whenever you have noisy or slowly varying input
sources.

input conversion

)1,1st about any device you hang on the input of a microcomputer
will do some sort of conversion. A temperature sensor converts

398

temperature to an electrical signal, and a pressure transducer or
load cell gives pressure the same treatment. Even a keyboard can be
thought of as a mechanical-to-electrical converter or, for that mat
ter, a thought-to-electrical converter.

Some of the most challenging and most interesting conversions
of microcomputer inputs involve circuits called AID converters.
These can change continuously varying electrical signals into digital
ones and zeros . . .

AID converters are the opposite of Dl A converters. AID convert
ers take one or more varying, continuous-valued, analog inputs and
convert them to a bunch of microprocessor-compatible digital out
put ones and zeros. These output ones and zeros can be in parallel
or serial form, although parallel is more common.

There are lots of important uses for AID converters. In data
acquisition, AID converters are involved wherever analog signals
need to be measured and routed to a micro-for example, tempera
ture, humidity, pressure, flow, power, liquid levels, voltage, gas
spectra, stress, energy, position, hinklefarbs, force, resistance, cur
rent, and just about anything else.

Medical uses for AID converters include pulse monitors, EKG
units, brainwave sensors, biofeedback, thermometers, and many
specialized diagnostic instruments.

Voice and music uses include speech recognizers, electronic
music synthesis, and digital audio, which is delivering us zero sur
face noise, wow, and flutter, along with incredible dynamic range.

There are many video and television uses of AID converters,
including video disks, time base correctors, studio processors, spe
cial effects generators, and change-detecting security monitors.
Once video is digitized, there are all sorts of mind-blowing ways to
enhance or otherwise modify the stored images.

Unfortunately, AID converters are more complicated and more
critical in their use than Dl A converters, so they often cost more.
The price of an AID converter goes up with increasing resolution
and response speed. Often, a small increase in the number of out-

399

put bits or in the maximum conversion rate will skyrocket the cost
of the devices.

Costs of some older A/ D converters that are both fast and accu
rate have gone into the hundreds, even thousands, of dollars. Fortu
nately, newly available integrated circuits are dramatically lowering
these costs.

The Schmidt trigger photoresistor sensor we just looked at is
really an A/D converter. And it is quite cheap (around 20 cents) and
very fast (around 200 nanoseconds) compared to most AID con
verters. As with any converter, it has a slowly varying or continu
ously changing input signal; which in this case is decided by the
changing resistance of the photocell. The A to D circuitry changes
this into a sharp, snap-action one or zero digital output.

This sounds great, except for one tiny detail. This is a one-bit con
verter that can give only one of two possible binary output values, a
one or a zero. Thus, you could use this one-bit AID converter as a
temperature controller or a freezer alarm, but you could not use it
to measure and display temperature because it gives only two pos
sible output values.

For most A/D uses, we need many more output bits and thus
much more conversion accuracy. Eight-bit converters are fairly pop
ular, reasonably priced, and easy to use. These can slice an input
signal one of 256 ways, giving a potential accuracy of a fraction of a
percent. This is good enough for many industrial uses, where things
were traditionally measured by analog means to only a few percent
accuracy.

To capture video, we can often get by with only six to eight bits
of resolution but the converter has to run very fast. Conversion rates
of twenty megahertz are not unusual. Digital a�,Jdio goes to the
opposite extreme. An AID converter for digital audio only has to
run medium-fast, but it may take an ultra-precise sixteen bits of res
olution to pick up the needed dynamic range.

Digital voltmeters and other instruments also need very accurate
AID converters, but these can take their good old time about mak
ing a measurement. So here you need lots of accuracy but very little
in the way of speed. In fact, too many measurements per second
can become annoying and hard to read.

Because of the many possible uses for A/D converters, there is no
one best type that will do everything for everybody. For some uses,
you just plug in a cheap and ready-to-go chip and you are home
free. Others will take card after card of complicated and critical cir
cuitry.

Here, in order of decreasing cost, are the more popular ways of
doing A/D conversion .

400

TYPES OF AID CONVERTERS

Brute force
Feed forward
Successive approximation
D/ A and compare
Multiple slope
Voltage to frequency

The brute-force or flash converter is the most obvious, the fastest,
and takes the most parts. It is the best way to digitize video or to
process sophisticated radar signals. With a brute force converter, you
make one comparison for every possible analog signal level. Thus, for
an 8-bit converter, you use 256 comparison circuits tied into a refer
ence voltage divider with 256 different levels. The 256 outputs from
the comparison circuits are then encoded into an 8-bit, 1-of-256 out
put code. Since the conversion process takes place continuously in a
single step, it is the fastest possible converter you can build.

At this writing, single-chip integrated circuit brute force AID
converters are becoming available from TRW, Motorola, and RCA,
with costs in the $30 to $90 range. This pricing should dramatically
drop in the near future.

The feed-forward converter is a fairly new idea that looks like a
real winner. What you do here is brute force convert the upper bits
by brute force, D/ A convert this result, subtract the result from the
input, amplify the input, convert the remaining lower bits by brute
force, and then combine the upper and lower output bits for the
total conversion.

This feed-forward process takes two or three steps, so it is some
what slower than brute-force conversion, but it takes far fewer
comparison circuits. Many of the newer A/D conversion chips are
switching to this technique, since it gives you both speed and accu
racy with a reasonable number of parts.

Digital audio is an important use area for feed-forward convert
ers.

The classic A/0 conversion method that the feed-forward
method is replacing is called successive approximation. In this, you
see whether the input is over halfway up. If it is, you subtract half of
the signal and see if the remaining input is over a quarter full size. If
it is, you subtract another half of the signal, and again see what is
left. You keep this up, subtracting out halves, quarters, eighths, six
teenths, and so on until you get the desired accuracy.

401

The method of successive approximation requires only one com
parison per bit but needs many trips through the circuit to pick up
all the comparisons in order. The feed-forward method, though, is
turning out to be considerably faster and simpler.

The 01 A and compare method is very old and very poor. What
you do is ramp up a fairly cheap Dl A converter and compare the
analog result against your input. The conversions are slow and
noisy. I include this method here only because it is so obvious.

The multiple slope method is slow but very accurate. Its main
use is in digital voltmeters and other measuring instruments where
only a few conversions are needed per second. The simplest of
these is called dual slope. In dual slope, you charge up a capacitor
for a fixed time with your unknown input current, and then dis
charge the capacitor back to ground with a larger and precision
reference current. You then measure the ratio between the charg
ing time and the discharging time to find the unknown input cur
rent as a ratio of the reference current. Because the capacitor
charges up opposite to the way that it discharges, many circuit
nonlinearities cancel.

Also, if you charge the capacitor only for an exact multiple of the
power line frequency, you can get any hum on your input to cancel
itself out almost completely. Refinements in the dual-slope process
lead to triple- and quad-slope schemes that are more stable, more
accurate, and capable of calibrating and zeroing themselves auto
matically.

Multiple-slope AID converters are most often used in digital
instruments, where you can get a three or four decade decimal
accuracy at the speed of a few conversions per second. lntersil is
one leading supplier of this type of AID converter. Some of these
are micro-compatible, and others are used to drive digital displays
directly. Their cost is in the $4 to $10 range.

Finally, there are the voltage-to-frequency AID converters. These
might instead involve current-to-frequency, voltage-to-time, or cur
rent-to-time, depending on what you want to do. Any of these is
cheap. They are also inaccurate and only medium fast. What you do
is build some sort of oscillator or monostable and then voltage con
trol the beast. Then you count output cycles or measure the time
per cycle and use this as a digital value. You can build these out of
555 timers or from bits and pieces of the voltage-controlled oscilla
tors intended for phaselock circuits. Raytheon has some more pre
cise V IF devices that do a better job than you can manage on the
"do it yourself" route.

Important uses of these low-cost AID converters are in game
paddle inputs and other places where a fairly limited accuracy is
acceptable and cost is super important.

402

As an application example, the game paddles on an Apple II are
routed to four separate current-to-time conyerters. The current
changes as you change the paddle setting. This changes the time
that the output stays active after reset. The output is measured
again and again by software, racking up one count each time until
the output ends. Your final result is a number in a register that is
proportional to the "on" time of the converter, which in turn is pro
portional to the input current determined by the paddle setting.

Summing up, there are several ways to do AID conversion that
vary in resolution, settling time, and cost. The faster or the more
accurate, the higher the cost. Use V /F converters for quick-and
dirty uses like game-paddle controllers. Use multiple-slope convert
ers for digital instruments and other very accurate but very slow
needs. Use successive approximation or its newer and better feed
forward replacement for places where you need both reasonable
speed and reasonable accuracy. Finally, use brute force if speed is
everything and you don't care how much it costs, such as for video
or radar uses.

Here's a very cheap, very interesting 8-channel A/D converter
that is fun to use . . .

8 CHANNEL, 8-BIT A/D CONVERTER
+5V

....+-
100K

ANALOG �$ $ X 3
CHANNEL
SELECTORS

�

.. . 'j ':! ::<:sHOWN SELECTEO �11 'l 'l TO CHANNEL 7)
"'F" -:::;::- -:::-

, __ _

�:
p
�\OG I' CHANNELS 3

.

i-----+--...J

0-5.12 , ________ ..J ���s ,, _________ ___,

MSB

8-BIT DIGITAL OUTPUT
TO MICRO PORT "START

CONVERSION''

n
lLl�oo•woo

L-

1 MHZ
CLOCK

.nrut

�..___

ADC0808
(Top View)

""'t" 500 kHz ,.CLOCK

�
CMOS
4013

.Jl.Jl

403

This has to be one of the cheapest, simplest, and easiest to use
AID converters anywhere. National builds it using CMOS technol
ogy, with several second sources. You simply hang the chip onto
some port lines, apply a single + 5-volt power supply, add a clock,
and away it goes.

·

There are eight different analog inputs, selected with some inter
nal CMOS switches. You can pick a channel by giving binary codes
to the address lines, either from a switch or from three output port
lines. The clock frequency should be 500 kHz or less. Usually you
can find a 1-megahertz clock inside your micro and binary divide it
by two as shown.

To do a conversion, pick your channel and then briefly pulse the
START line high. Wait at least a hundred microseconds and read the
answer on the data lines.

That fast and that easy.
One-channel and 16-channel variants are also available from

National, Analog Devices, and others, and they have many options
for use. As shown, the circuit responds to inputs from 0 to 5.12
volts, giving one count for each 20 millivolts of input. You can
change this to other values, latch the addresses only when you
want, or use an "end of conversion" signal on pin 7 to speed things
up. Check the data sheet for more details of use.

The only thing wrong with this chip is the 8-bit resolution. This is
great for the fraction-of-a-percent accuracy needed for industrial
uses but is far short of the accuracy you would want for audio or
speech uses. Since the digital audio market is now turning the cor
ner, we can expect cheap, fast, and accurate AID and Dl A chips to
arrive shortly, say sixteen bits in 20 microseconds for $15.

There are several restrictions on the use of the faster and more
accurate AID converters ...

High accuracy AID converters:

() Need a front-end sample-and-hold circuit.

() Need an input filter to eliminate aliasing.

() Are very sensitive to ground currents and
circuit layout.

The first use restriction is that you usually have to add a circuit
called a sample-and-hold between your analog signals and the con-

404

verter. A sample-and-hold catches the signal and keeps it at a con
stant value during the measurement interval. This makes sure that
the value you are measuring does not change during the measuring
time. If you do not use a sample-and-hold on an accurate converter
and still want to get only correct answers, you are limited to ludi
crously low frequencies. Thus, a 16-bit, 20-microsecond A/D con
verter should be good to 25 kHz with a sample-and-hold but may
be limited to 4 Hz maximum conversion speed without. That's
hertz, not kilohertz'

Why such a slowdown? Because an input sinewave can change
by more than the resolution you want in a fairly short time, which
completely goofs up your accuracy. It's somewhat akin to trying to
detail paint an automobile while it is speeding down the road. Any
motion at all will make for sloppy results.

So, all serious uses of high accuracy A/D converters must input
by way of a sample-and-hold circuit. This might be provided inter
nally, or you may need external add-on parts.

Another hassle with A/D converters involves their input frequen
cies. There's a rule that says you are never supposed to sample any
thing less than twice per cycle if you intend to reconstruct that sig
nal. If you send in faster signals than this, you can get wildly wrong
low frequency artifacts that go by the name of aliasing.

To prevent aliasing, you must low pass filter your input very
sharply to be sure there is no energy at all beyond one half the
sample frequency of your sample-and-hold. As an example, if you
are sampling once each 20 microseconds, this equals a sampling fre
quency of 50 kHz. Which says that the highest allowable input fre
quency is 25 kHz. Anything above 25 kHz can cause aliasing and
must be eliminated. In this case, a very sharp 20 kHz low pass active
filter should do the trick.

More details on active filter design appear in The Active Filter
Cookbook, (Howard W. Sams 21168). Remember that a very sharp
low pass filter is essential in any sampled data system if you want
useful results.

Finally, you have to watch your circuit layout and ground currents
very carefully on a precision AID converter. Say you are using a 16-
bit A/D converter on a 5-volt maximum input signal. The resolution
here is one part in 65536, or around 76 microvolts. Should any
ground current from anywhere get in series with your input signals,
you will lose all your accuracy and then some. It is very easy to pick
up tenths of volts of microcomputer ground current noise. These
ground currents are thousands of times stronger than what you are
trying to resolve.

The process of properly protecting A/D inputs is sometimes
called guarding.

405

Usually the data sheets spell out how to ground and connect a
precision AID converter properly. If you aren't careful, all precision
can be lost simply because one trace on a printed-circuit board is
arranged wrong or is just too thin.

That just about wraps up A/0 converters and, for that matter, this
chapter on I /0. Next, let's find out how to attack real-world micro
problems and look into some of the things that may need attacking.

�·�·��·�·�·�·-·-·-·-·-·-·-·-·-·

1 r-

·

:�:�:
·

:��-:�=���� -=��:���������:�=�-

-

-

-

, 1
I i IATROGENESIS • I. • • •
I ! That fancy word means "physician-caused disease." �� I
• f To you as a micro user, it means simply that you are your own worst

��· I enemy.

I
• i Almost invariably, if something does not work, it is NOT the fault of i
• f the hardware. It is, instead, your own stupidity coming home to haunt

• •
I I

you. f I
• i You may have connected the hardware wrong or left it unpowered. I •
1 i

Mode switches may be wrong. Something may not be initialized. You i I • ! may have the wrong software on the system. Perhaps you bent the pin • e

1 1 on an integrated circuit when you inserted it in its socket. You may not I 1
• i have what you think you do in the machine. Or your software is so i •
I . lousy that it couldn't possibly work anyway. j 1
e I Or, as a more subtle example, you find a mistake in a program, correct j •
1 f it, and the program still doesn't work. Why? Because you forgot to

• I • 1 repair the damage done when the program bombed the last time. f e

I f Generally, you are never anywhere near where you think you are at any I I • ' point in attacking a microcomputer problem. Instead, there is almost i I
•

I always something much simpler and much more fundamental between i •J
where you are and where you want to be. J •

I . . . I
e i

The key here IS always to blame yourself f1rst, and the hardware last. 1 e

I ·-·-·-·-·

-

·-·-·-·-·-·-·-·-·-·-·-·-·�·-·-·-·-·-
· I

·-·�·-·-·-·-·-·-·-·-·-·�·�-·�·�

406

- ni ne -

The Micro Applications Attack

By now, you should be able to write, test, and debug machine
language modules that are short, simple, and well defined. You
should also have a good handle on the micro and device levels of
1/0 interface.

But real-world problems are never short, simple, and well
defined. Instead, they are almost always long, and complex, and
have lots of loose ends. In fact, punching code into a micro is the
least of your worries when you attack any serious micro application.

How do we move from here to the real world?
One thing that will help bunches is to step up to assembly lan

guage programming. Assembly language programming eliminates
much of the tedium and dogwork of hand coding, and it makes
things very easy to change and save. Besides, assembly language
programming is lots more fun. More on this shortly.

The other big thing you will need before you can attack real
world problems is some orderly way to get from problem to solu
tion, using a method that works.

I call my method the Micro Applications Attack . . .

The micro applications attack is best used when you want to
combine a microcomputer with some outside hardware to do some
"shirtsleeves" task.

407

Remember, the biggest nickels are to be made doing just this
putting micros to use solving everyday problems for non-micro
people. And remember that a creative mix of hardware and soft
ware will always give you a better solution than either software or
hardware by themselves.

The micro applications attack shines for these uses. Naturally, the
method is totally different from the way the dina people used to do
things before they got laughed out of credibility.

Anyway, here are the fourteen steps of the micro applications
attack ...

408

micro applications attack

MICRO

APPLICATIONS

ATTACK

micro applications attack

micro applications attack

�

BRIEF WRITTEN

DESCRIPTION

OF THE

PROBLEM

This obvious first step is often left out, which only causes serious trou
ble later. Tell us-in twenty-five words or less-just what it is you
intend to do, for whom, and why.

If you can't reduce your objective to a few simple words, then you
probably don't know what you want to do, or you may be attacking a
problem that a micro can't solve.

More important, this brief written description gives you something to
fall back on should someone paying for your problem solving say "But
that's not what I wanted!"

This first step forms both the charter and the focus for all that follows.

micro applications attack �

409

410

micro applications attack

:22

DETAILED WRITTEN

DESCRIPTION

OF THE

PROBLEM

Next, tell us in people-type words, but in more detail, just what you
want to do.

Pretend you are writing an essay or an English theme that will explain
to someone from Portugal or Alderon VIII exactly what you plan to do.

Keep this step simple and nontechnical, but do not omit key details. If
numbers or constants are involved, spell them out. Fill in the whole
problem on the framework you laid down in step 1.

There are two reasons for this step. Once again, if you can't tell us, you
probably don't know. This step is another something to fall back on
and say "But here is what you asked for, and here is what you got."

The word "grok" comes from Stranger in a Strange Land and means to
go deeper than and beyond understanding. To grok a problem, you go
past total and absolute comprehension.

Don't go past here till you grok the problem.

micro applications attack �

micro applications attack

@

PARTITION

HARDWARE AND

SOFTWARE

Decide how much of the problem is to be handled by dedicated hard
ware and how much is to be done with software inside a stock micro
computer.

Some of the problem probably has to be tackled with hardware. Obvi
ous examples are high power interface, signal conditioning, and analog
conversion. Other parts of the problem demand software solutions.
Examples here are complex calculations and anything irrational or
involving communication with people.

The best mix of hardware and software generally uses as little dedi
cated hardware as possible. Once you have decided on a partitioning,
always ask yourself if there is anything else that can be handled by the
software.

Chances are that later on you will change your hardware/software mix.
But setting down a tentative list of who-does-what now is essential
before you can continue.

micro applications attack �'

411

412

micro applications attack

~

ASSIGN PORT

CODES

This may sound way too early in the game, but now is the time to
identify and name each and every wire between microcomputer and
hardware interface, and between the hardware interface and the real
world.

Show which micro ports are to be used and which are to be inputs and
outputs. Name each lead with a suitable mnemonic. Often five letters
are a good choice-for example, use RDEST to name a line that controls
a red traffic light in the east-west direction.

The reason for naming the leads now is so that you can talk about
them. You may want to change the names and their meanings later on.
The idea for now is to set up a talking model that you can work with.

If you have too many 1/0 or interconnect lines, now is the time to
rethink what you want to do. Can an X-Y matrix help you? How about
multiplexing? How about hardware decoding or encoding? Or, go the
other way. To what uses can you put the "free" input and output lines
that are left over? How can you make your system more general so that
it can solve a whole class of problems instead of one specific one?

The output of this step should be a block diagram of three boxes-the
microcomputer, the input hardware interface, and the output hardware
interface. All major interconnections should be shown and labeled.
The diagram should also show whether the hardware will have its own
power supply or will tap the main microcomputer supply.

micro applications attack

micro applications attack

f!J

DRAW TIMING

DIAGRAMS AND

DECISION TREES

Some micro problems are time-intensive and demand outputs that are
correctly spaced and sequenced in time. Other problems are result ori
ented and require certain things to happen if and only if other things
have already taken place.

Draw whatever you need to show what will happen why and when.
For some problems, this will take the form of a detailed timing diagram
plotting all outputs against time for all given input conditions or all
chosen courses of action.

Other problems will call for a decision tree that shows the result of
every input or command.

Your output for this step should be very graphic. Use charts and plots
to show in detail what the system is trying to do. Use pictures, not
words.

micro applications attack

413

414

micro applications attack

(9)

DO A BLOCK

DIAGRAM

AND FLOWCHART

The trick in this step is to describe the system completely and accu
rately without getting bogged down in excessive detail.

At this stage of the game, your blocks on the hardware side should
describe each thing the hardware is to do but should not pin down
specific devices or part numbers. For instance, a solenoid driver should
be labeled "OUTPUT DRIVER" but not be a detailed schematic of one
eighth of a ULN2803.

Your software flowchart should be concerned only with the big lumps,
not with actual code. For instance, a 0.1-second delay loop should be
shown as a block labeled "STALL 0.1 SECONDS" rather than in individ
ual coded steps.

All interconnection lines, all inputs and outputs, and all port lines and
codes should be clearly labeled with the mnemonics and names you
have already chosen.

After completing this step, look things over and think them through. Is
this what you want? If not, go back to the earlier steps and redo every
thing till you reach the point where you are happy with your planned
problem solution.

micro applications attack

micro applications attack

71

ATTACK THE

STICKIEST BOX

You decide what the stickiest box is. It's the thing in the block diagram
that you are the most worried about and feel the least comfortable
with. If you are a software person, the sticky box will probably be some
hardware interface circuit. If hardware is your bag, it might be a time
critical software loop or fast access to a file of data.

Once you identify the stickiest box, make a simple model of it. Then
simplify the simple model. Then make up a really stupid and dumb way
to test the simplified version of the simple model, something any idiot
could manage. Then do it.

You'll be surprised at the results every time. The dumb test on the sim
plified version of the simple model will almost always show you a
brand new and much better way to attack your original problem. Other
times, it may show you that the rea/ job to be done is much tougher
than you thought.

The important thing here is to zero in on the thing most likely to foul
up the works, and then nail it down.

If there are several sticky spots in the problem, attack them in order,
starting with the one you feel worst about. Do not waste any time yet
on things you know how to do or feel confident about.

Remember that inside every large problem there's a small problem des
perately trying to get out.

415

416

micro applications attack

@

BUILD SOFTWARE

AND HARDWARE

MODULES

At this stage of the game-and remember it is a/1 a game-you should
have a fairly good picture of what should be done and how to go about
doing it. The "What if?" and "Will it?" questions should have been
answered in previous steps.

Now comes the fun part. Build up simple hardware modules and test
each module individually. In fact, test each step of the construction of
each module individually. Put together only enough of the circuit to
make it do something. Then test that something in the simplest and
most general way possible.

Do each block on the hardware side, building and testing everything
individually. That's by itself. Alone. Singly. One at a time.

On the software side, it is nearly the same game. Work up your utility
subroutines, the simple ones that will be called on over and over again
both by your main program and by fancier subroutines. Think modular.
Test each subroutine separately, doing the simplest possible test in the
most simpleminded way you can think of. Keep track of reserved loca
tions, mnemonics, restrictions on working registers, pass-thru condi
tions, and so on.

The results of this step should be two piles of blocks. Hardware on the
right, software on the left. Each block should effectively attack some
small part of the whole problem.

micro applications attack �

micro applications attack

®

DO AN IMPROVED

FLOWCHART

AND SCHEMATIC

Take all the hardware and software modules that you have tested and
use these to put together your complete system schematic and a
detailed flowchart.

Your hardware circuitry should require very little other than the mod
ules you have already tested. Your main program should consist almost
entirely of subroutine calls to modules that are already debugged and
tested.

If there is anything at all fuzzy remaining, go back through the steps, as
far back as you have to. Soldering the hardware and coding the soft
ware is all that should remain after you complete this step.

micro applications attack �

417

418

micro applications attack HE _ -.#I

�@

WRITE, TEST,

AND DEBUG

YOUR CODE
If your hardware is going to do ·fancy things with your port lines, you
may want to stop here and dream up some simple tests that will let the
software and hardware interact.

When you are finally confident that everything is hunky dory, then and
only then should you write the main code for the main program. As
with any code, you write it on a program form, working from a detailed
flowchart. You then list the code. Then single step the program, or
trace it, or use breakpoints.

Always test the smallest portion of the code that you can at any time,
and NEVER just assume that any code is correct or working. Almost
always, the problems that crop up will be far simpler and stupider than
you'd expect.

As in mountain climbing, lots of small and short steps are what get you
over the top.

Once you have working code, test out your hardware and software. Be
sure to make your code "bulletproof." Your tests should allow for hit
ting the wrong keys at the wrong time, malicious or disallowed inputs,
restarting from the middle, and any other fiendish thing you can think
up.

If you don't think them up, someone else will.

Remember, Murphy was an optimist. If there is any conceivable way a
thing can get fouled up, it will. Even if there isn't, it still will.

micro applications attack �·

� micro applications attack

��

HAVE A

KNOWING

OUTSIDER

TEST IT

Here's the frustrating part. You get everything working perfectly, and
now the real user wants it to speak Flemish. Or couldn't care less about
the one feature you went to the most trouble to provide. Part of your
solution is gross overkill, and part of it simply doesn't do the job.

Or maybe this is the joy of the whole game. A single "What if?" or
"Can you?" question from the user opens up a whole new world for
you, a way to use your micro to do things so much faster or better than
the old way that it was unthinkable before. What was a handy feature
now becomes an overwhelming benefit.

Listen to the user. Listen to several of them if you can. Try not to be
defensive. Put yourself in their position.

If something is very wrong with your design, go back and fix it, working
back through the steps. But if it's only a nice add-on, or some minor
improvement, hold up for now. If the job is more-or-less complete and
more-or-less working, that's all we need at this stage.

micro applications attack

419

420

micro applications attack

�72

ANNOTATE

AND DOCUMENT

EVERYTHING

All along, you should have been keeping an engineering notebook, a
diary, or whatever on what you were up to. Now is the time to make
clean, final copies of everything done so far.

Documentation is well over half of what micro use is all about. Spend
lots of time on this. Make clean, neat, and detailed user manuals that
show "how it works." Clarify and add to the listings. Show key
waveforms and test points. Create software test programs to isolate
problems. Design a troubleshooting flowchart.

Make things as complete as you can, so that you or anybody else can
return a year later and easily pick up without losing any time wonder
ing what memory location $FC23 is intended for, why there is an illegal
op code in location $023F, what the function of C17 is, or how IC6 gets
its supply power.

\

micro applications attack

micro applications attock

�@

SIT ON IT

If you can, set the whole thing aside for a month. This is especially
needed if your solution will be written up in a book or something else
that's to be widely read or used, or if it will be a high volume item with
high "front end" expenses.

During that month, think about how you really would have done
things, knowing what you know now. Have others test and evaluate
some more. Deliberately look for ways of destroying both the program
and the interface.

Explore ways to make what you do more general and more convenient.
Find ways of using extra inputs and outputs to provide new and handy
features that weren't cost effective before but now are "free."

Seek out ways to improve your coding and make things more compact.
Find ways to use mainstream or cheaper hardware, or ways to use very
expensive but simplifying parts that are destined to become cheap and
mainstream over the life of the product.

micro applications attock --=--=--='

421

;::::::a. ·:::... ...-.... micro applications attack

422

��

EVALUATE

AND

IMPROVE

After all the dust settles, try to separate what you'd like to do from
what really needs doing. Working code is a joy to behold and should
NEVER be messed with. Don't ever write over existing work. Always
save old versions of things you know are good.

Now is the time to rework your entire problem solution, doing only
those things that clearly improve it and make it cheaper or more flexi
ble. Don't try to save a few words of code unless there is a very good
reason to do so. All programmers tend to whip dead horses, spending
far too much time and effort at the end of a project for only little added
benefit.

Improve only what genuinely needs improving. Leave the rest alone.

lffen it ain't broke, don't fix it.

micro applications attack

As you can see, the key to the micro applications attack is getting at
the "stickiest box " as quickly and as easily as possible. For it is the
sticky box that will show you the real problem that you want to solve.

The dino people believe in a quaint and oddball way of doing
things called top-down programming. Now, top-down program
ming is very useful if you are a project engineer in a large corpora
tion and want to snow your boss and improve your upward mobility
by papering the wall with impressive garbage.

But otherwise, top-down programming is worthless.
Why?
Because of the stickiest box.
Top-down programming breaks things down into big lumps, little

lumps, and crumbs. It inherently assumes that the big lumps
deserve more attention and effort than the little lumps and that the
crumbs are trivial details.

In reality, it is one or two of the crumbs that are the crux of the
problem. In these crumbs lies the secret to doing something even
better and greater than you had first planned.

With top-down programming, you don't get to the crumbs until it
is too late. At that point, you either ignore the key crumb or scrap
all the effort made so far. Either way is a bad scene.

There are other programmers who believe in bottom-up pro
gramming. The problem here is that you tend to do all the trivial
and easy stuff first and, once again, save the sticky box for last. As
with top-down programming, it ends up with either wasted effort
or a solution that really isn't optimum.

So ...

The key to the micro applications attack is find
ing the "stickiest box" as fast as you can.

It is always this stickiest box that holds the secret
to what you really should be doing and the best
way to go about doing it.

Note two very important points about the micro applications
attack. First, the process is highly re-entrant. Any time you finish a
box, you don't just say "Well, that's done and we got this far." You
have to go back up to the top and find out how completing the
most recent step changed the earlier boxes.

Always go back after each step and revise all the earlier steps as
needed. The micro applications attack is a discovery process that
will automatically lead you to an optimum problem solution-if you
give it a chance.

423

The second important point is that very few of the steps in the
micro applications attack have anything at all to do with a computer
or involve any actual computing. How many of the steps really need
a microcomputer? Parts of steps 7, 8, and 14 do, but even here the
micro is being used for something besides actual work on the main
program.

Only step 10 needs the microcomputer. Hence this very impor
tant point ...

If you are new to the micro world and want to
solve a real-world problem:

STAY AWAY FROM AND KEEP YOUR GRUBBY
PAWS OFF THE MICRO TILL THE LAST POSSI
BLE INSTANT!

An all-out attack on a real problem takes lots of careful thinking
and lots of pictures, drawings, block diagrams, and charts. Very
heavy and thorough annotation is also a must. All this is best done
in a quiet place, free of all distractions. And away from the micro.

I've seen it happen time and time again. Beginners always want
to go right ahead and start punching in code without giving any
thought to anything else.

Well, kiddies, it just won't work.
You may fancy yourself a whiz kid, but someplace, somewhere,

there is a program that you can't keep in your head all at once. There is
also some memory span beyond which you can't remember all the
details you think you know for any given program. Let either of these
happen and you are back to square one with-absolutely nothing!

Remember the sooner you start punching in code, the longer the
job will take.

If a problem is worth solving, it is worth doing in a way that you
or anyone else can return to later, understand, and be able to con
tinue without having to reinvent the wheel. That's why the micro
applications attack exists in the first place, and that's why the bulk
of your time should be spent away from the micro.

As with any problem solving method ...

424

The first 90 percent of a problem uses up the
first 90 percent of the available time.

The last 10 percent of a problem uses up the last
90 percent of the available time.

So budget your time accordingly. The unknowns and surpises
along the way will gobble up practically all of the available project
time, and then some.

USING THE APPLICATIONS ATTACK

I'm not going to show you a detailed example of how to use the
micro applications attack. In the first place, we are far into a very
thick book. But second, and more important, remember the win
ning rule of hands-on being everything.

You must use the applications attack on your own terms, not on
mine. So, here are a few suggestions for suitable projects to try on
your own ...

DOING IT:
Project A

Use the micro applications attack to sim
ulate a one-intersection traffic light.

Provide "night" and "day" modes that
use a photocell to switch to blinking red
and yellow at dusk.

Add a switch-tripped fire override that
gives a fire truck the green light when
activated.

But that's doing things the old way, not the new micro way.
Instead, try ...

DOING IT:
Project B

Show a "generalist" way to output up to
128 patterns and up to 128 time-delay val
ues for up to eight LED lamps. Use data
files.

By changing only file values, show the
previous traffic light, a new traffic light
with an "all red" intersection-clearing
safety feature, a model of a 1-second
analog pendulum, a disco chaser, and a
theater stage lighting system.

425

Here's one that will give you some device level 1/0 practice . . .

DOING IT:
Project C

Use a microcomputer and a power line
interrupt to control a 1 00-watt light bulb.

Show that you can turn the bulb on for 1 0
seconds of each minute. Then run the
bulb from bright to dim over a 2-minute
interval.

Finally, add a photocell sensor that keeps
a constant room lighting level. As the out
door light increases, the bulb brightness
should decrease, and vice versa.

And here's some AID converter practice .. .

DOING IT:
Project D

Interface an 8-bit, eight-channel A/D
converter to a microcomputer.

Display 0-5 volts over one channel set up
as a digital voltmeter. Show the indoor
temperature over a second channel and
the outdoor temperature over a third
channel.

Measure resistance with the fourth chan
net. Measure pressure or weight over the
fifth channel, using a piece of IC protec
tive foam as a sensor.

Sense the liquid level in a tank with the
sixth channel. Find some mind-blowing
uses for the last two channels.

Combine all this into a graphic display
that is attractive and easy to use.

And here's some practice interfacing two wildly different elec
tronic systems .

426

DOING IT:
Project E

Interface a microcomputer to a BSR
power controller by using an ultrasonic
microphone to let the micro simulate the
BSR hand-held remote keyboard unit. Or
else use infrared pulsed light.

Show some use of your interface that
jnvolves a drip-irrigation plant watering
system.

And, if those projects are too easy for you ...

DOING IT:
Project F

Write a machine language program of
one hundred bytes or less that will simu
late the known universe over all time.

Show all simplifying assumptions you
have made. Indicate the initial and final
program states.

Be able to run the program both faster
and slower than real time, both forward
and backward, while using a game pad
dle as a speed controller.

Remember, everything run on a microcomputer is a game. With
out exception.

NOW WHAT?

It's sure been a long two volumes. But if you got this far and did
everything along the way, you now should be able to write, test,
and debug small machine language programs on your own and
integrate those programs into solutions of real-world problems.

By now you should be nearing the limits of the trainer you picked
for your discovery modules and should want to automate much of
what you did, picking up disk storage of programs, printed records,
and heavier use of bigger microcomputers.

So where do you go from here? What do you do next?
First and foremost, practice using the micro applications attack on

fairly small projects until you have the method down cold.

427

Second, pick us up in Volume 3 for more details on using the
hundreds of mainstream integrated circuits that are popular for
microcomputers today.

Third, tear apart the winning machine language programs of
others to see what makes them tick. This is one sure way to pick up
the mainstream programming ideas and see how the known win
ners are doing things. In fact, you should never buy or use any
microcomputer program without first tearing it down to see what is
inside it and how it works.

Full details on an astonishingly fast and easy way to tear apart
machine language programs appears in Enhancement 3 of Enhanc
ing Your Apple II, Volume 1 (Howard W. Sams 21846).

Fourth and finally, step up to assembly language. Assembly lan
guage eliminates most of the nastiness and tedium of hand-coded
machine language programming and gives you ways to easily save,
store, and change your programs. Among the other benefits of
assembly language programming is that all relative branches are fig
ured out automatically, making it a simple matter to lengthen or
shorten a program without hassles. Moving a program to run else
where in memory is equally easy.

There is no good way to talk about assembly language program
ming in general. You are better off picking a microprocessor family
and learning a specific assembler system for that family.

But do NOT try to do any assembly work till after you have gone
through the discovery modules and after you have solved several
real problems using the micro applications attack. Assembly lan
guage programming is simply too powerful a tool to use until after
you have hand coded and hand debugged not less than several
hundred lines of machine language code.

If you did get through the discovery modules and a project or
two, then you are ready to step up to the wonders of assembly lan
guage. It's a whole new world. One that's lots of fun, very creative,
and most profitable. So, where do you go from here? ...

428

Where you go from here is all up to you. Remember that hands
on is everything. Follow your own vibes, do what you want, and go
in the direction you really want to go.

SIXTY-THREE IDEAS

Let's end this volume with a collection of sixty-three microcom
puter ideas that you can profitably use or adapt. Few of these ideas
have yet been fully explored at this writing, but all of them seem to
point to viable and creative future uses of microcomputers.

Ready? Here we go ...

-[1]-
One of the big things in computer graphics today ·is called anti
aliasing. This lets you get the "jaggies" out of slanted lines without
an increase in display resolution. So far, the idea has been used only
on very expensive systems. Can you use anti-aliasing on a micro to
upgrade graphics displays cheaply and quickly?

-[2]-
You can now get small keyboards and lap keyboards, but there still
is no truly portable keyboard that sits on your lap with no apparent
connection to the host micro. With CMOS encoders and UARTs,
you could build a two-wire interface, possibly using a telephone
connector. But what we really want is something that talks to the
micro with ultrasonics or infrared and is truly and totally portable.
To guarantee long battery life, the system should draw negligible
power until a key is pressed. Could this be solar powered?

-[3]-
What can be done by adding foot pedals to a microcomputer? On
some word processor programs, a left pedal for CTRL and a right
one for ESC might really speed things up. Electronic music foot ped
als like those made by PAIA should be ideal. Or even a bunch of
them, pipe organ style. Any game uses you can think of? Perhaps a
bulldozer simulator with real controls?

-[4]-
How about a digital compass the size of a Brunton, accurate to a
tenth of a degree and not costing an arm and a leg?

-[5]-
There are all sorts of exciting uses for microcomputers in a volun
teer fire department. Almost any small department can lower their
insurance rating by a full ISO grade simply by cleaning up their
paperwork and recordkeeping acts. Obvious and immediate uses
include training and attendance records, hydrant checks, planning,

429

annual reports, standard operating procedures, hose records, engine
maintenance logs, and much more.

-[6]-
We still seem to have no cheap and effective humidity measure
ment scheme. How about going back to square one with an old
fashioned sling psychrometer, only micro controlled and with a fan
instead of the sling? Use the micro to do the involved math conver
sion and give a direct readout of dewpoint, relative humidity, and
temperature.

-[7]-
Here's a real heavy. What happens if you hook up a plotter back
ward, replacing the pen with a photocell? You end up with a flying
spot scanner, that's what. Scan the plotter and read the photocell.
Do either X-Y or edge following scans to capture fancy lettering
fonts and to input data much faster and more accurately than a per
son can by hand.

-[8]-
How can you make a microcomputer meow like a cat?

-[9]-
There are lots of old fashioned DNC numeric machine tools lying
unused in many machine shops. Replace the teletype and the paper
tape with a disk-based micro edited by a modified word processor
and watch these old beasties shine.

-[10]-
Why not use a real joystick? Outfits like jerryco and others still carry
World War II surplus B-17 flight controlling joysticks for around $30,
actually less than your typical game paddles. These sure are impres
sive and rugged looking. But, believe it or not, they might not hold
up to continuous game use. One way to find out.

-[11]-
We've come a long way in microcomputer text compression, but
there are still lots of unexplored possibilities. It is theoretically pos
sible to stash characters in 25 percent of their usual one-character
per-byte space for normal text. But adventure text is much more
repetitive and redundant than typical text. Can you design a code
that match filters the actual text and beat the theoretical limit? The
benefits include getting much more text into the machine and pos
sibly doing away entirely with repeated disk access.

430

-[12]-
Word processing is now old hat. But how about using a microcom
puter for picture processing? I mean much more than the simple
"business graph drawing" software. What you need here is high
level software that lets you create any picture of your choice with a
few dozen to a few hundred keystrokes. For instance, one module
could take a single pattern and make it any size or boldness. A sec
ond module could convert this single pattern into an array of identi
cal patterns so many high by so many wide. Another module could
automatically label this array. Still another could fatten lines into,
say, printed-circuit traces. Yet another module would build up final
code, and so on. Heavy.

-[13]-
There are lots of possible micro uses involving hot tubs and spas.
The mechanical temperature controllers are very crude. They over
shoot, and if you turn the tubs on too early, your heating costs sky
rocket. Why not use a micro to hold the temperature within a quar
ter of a degree by proportional heat control. When needed, it
would turn things on just soon enough to get up to the proper tem
perature for use? And how about a solar booster? The savings on
several month's heating bills should pay for the electronics and
then some.

-[14]-
The chunky, illegible, and abrupt scrolling on most of today's video
screens has got to go. How about retrofit soft scrolling or gentle
scrollers that let text roll up a screen quickly and smoothly. Or, for
that matter, roll down, right, or left, equally quickly and smoothly.

-[15]-
There is a sneaky way to expand the address space on an 8-bit
microprocssor way beyond 64K without the usual bank switching
limits. What you do is key on certain op codes to select which part
of memory you are using. For instance, you can have 64K worth of
files that are read with special or obscure commands, and another
64K worth of everything else that is read in the usual way. You can
extend this "keying on op code" idea to lots of exciting new uses.

-[16]-
What the world really needs is a microprocessor-controlled party
doll. But watch the product liability problems on this one very care
fully. Software bugs could be painful.

431

-[17]-
0ne very useful instrument for energy conservation is a heat flux
meter. Putting one of these against a surface will tell you the heat
flow through the surface, letting you find R values directly and pin
pointing heat loss or gain areas. Can this be done cheaply but with
enough accuracy and resolution to be useful? How?

-[18]-
An obvious limitation of most of today's video games is that they
are just that-video. You have to watch the screen. How about a
total involvement microcomputer game that puts you inside a
moveable housing with many video screens, moving objects, and
whatever else is needed to create a total sensation of being there.
Sort of a flight simulator, only much more. Possibly extend this to
involve two or more people at once.

-[19]-
Can a microcomputer-based speech recognizer be built that can tell
the species of a bird by its call? Can this be made portable enough
and cheap enough to be useful to ornithologists and serious ama
teurs?

-[20]-
Computer touch screens are still outrageously priced. It is abso
lutely inexcusable that they should cost more than five dollars,
computer store retail. Come up with a transparent switching net
work that is nothing but two conducting plastic sheets that stick
onto the video screen and intercept the game port of a keyboard
connector. But watch the effects of static electricity. Big color sets
are super nasty this way.

-[21]-
What are the alternatives to QWERTY? Today's typing keyboard is a
hundred years out of date and was specifically designed to slow
typists down. Other arrangements such as the Dvorak keyboard
have been proved to be much faster, much more accurate, demand
ing of much less effort, much more easily learned, and much more
fun to use. But even Dvorak may not be optimum. How about a
"sculpted" keyboard that optimizes keystrokes to the individual?
Maybe it could even be available in different sizes like gloves.

-[22]-
Liquid crystal displays are finally getting up to decent sizes. Can you
take several 8-line-by-40-character modules and come up with a

432

retrofit flat panel display for existing micros? Call it the VIDLID and
throw away your monitor.

-[23]-
How far are we from a direct micro-to-brain interface? Will this be
read only? Write only? Both? Can it work from a distance? How far?

-[24]-
We have generic medicine and generic groceries, so how about
generic software? What we want here is a meat-and-potatoes word
processor, a no-frills spreadsheet, a communications module, a
data-base manager, and picture drawers, all retailing for $9.99, with
out any fancy advertising, packaging, or blatent overpromotion.
Unlocked, naturally. Authors would make bunches this way, since
you can sell more than ten times as many programs if they are one
tenth the usual selling price. Bootleg copies would be virtually non
existent since they wouldn't be worth the time and effort. Supply
and demand and all that.

-[25]-
Disk access on many microcomputer systems remains very slow.
What can be done in the way of super fast disk access on your
microcomputer? On some systems, you can change the sectoring
order for faster access. On others, you can replace general disk
access software or firmware with specific code that can be much
faster. Text file speedups are especially needed. What are the limits?
Which systems allow this?

-[26]-
1 would like to see a writer's personal computer with some obvious
features not yet available. It must weigh less than five pounds, be
only as big as needed to support a full size keyboard, and have a
built-in but removable full double-page display of at least 70 rows
of 140 characters. It must run off four penlight cells for a month in
total darkness and forever in daylight via built-in recharging photo
cells. It must be waterproof and virtually indestructable. Words and
both stroke and X-Y graphics must be available under a common
program. The non-volatile built-in RAM must hold at least two
books, so a megabyte or better is essential. A fast modem interface
to download to the home system is essential. And, of course, it
should cost under $2,000. Internal hard copy and plotting would
also be nice.

433

-[27]-
What is the cheapest time you can add to a micro? Can you take
one of those $4 stick-on LCD clocks, run it into any old micro port,
and come up with time displays for under ten dollars?

-[28]-
While we are on the subject of time, why not go the other way and
do a real, real-time clock. By "real" real-time I mean National
Bureau Of Standards time. In short, not just a time, but the time.
Use a WWVB time receiver and a clock card, along with some con
trolling software. Never needs resetting and always is accurate.

-[29]-
What kind of new applications can you think up that would com
bine microcomputers with load cells or strain gauges? Weighing
scales are one obvious use. What else can you think of?

-[30]-
lt's high time to move phototypesetting out of the dark ages. Those
totally ridiculous machines with their obscene pricing and their
total incompatibility have got to go. How about a cheap box that
bolts onto any old personal computer that generates camera-ready
text for under $200, along with a completely free public domain
font I ibrary? And how about a service that goes with it, typesetting,
for, say, 50 cents a foot?

-[31]-
There are a number of ultrasonic ranging systems out there. Polaroid

is one overpriced source. What can you do by linking a rangefinder
to a microcomputer that can accurately measure fairly short dis
tances? Handicapped aids and robotics are two obvious uses, but
what else can you come up with?

-[32]-
Biologists and naturalists would like to have a sanely priced wilder
ness data acquisition system. This would be a very small box that
you bury someplace to record a month's worth of weather, stream
height, pollen count, or heaven knows what on its internal non
volatile RAM. Must be small en<;>ugh to backpack and priced very
low, since these people are usually on a non-existent budget. Also
the gathered data must upload into any popular personal computer.

-[33]-
What new micro uses can you dream up that involve home secur
ity? One novel idea is to make a speech synthesizer sound like a

434

barking German Shepherd that starts up a few seconds after the
doorbell is hit. Very convincing. Particularly if you use this to wake
up the real dog.

-[34]-
Can you now simplify hobbyist printed circuit work by plotting
directly onto artwork without all those expensive tape and dot
stick-ons? For that matter, can you directly plot 1 :1 resist onto the
PC board itself? How cheaply can a complete computerized PC lay
out system be of an built up? Among the other benefits, all symbols
would be accurately sized and accurately positioned without any
thing slipping.

-[35]-
There's lots more work to be done in interfacing personal com
puters to videodisks and videotape. We are still some distance from
a widely available, cheap, and easy to use fully interactive video
system under total control by a local personal computer.

-[36]-
How can microcomputers be applied to simplify and improve cave
mapping?

-[37]-
Just around the corner is the multi-player real-time video game.
One way to do this is to connect two personal computers, each
with a display that shows the game condition only from that
player's point of view. Aerial dogfight simulations are one obvious
first possibility. Kriegspei/, or "blind man's chess" is a second. But,
once you get into using a separate second computer, all sorts of
new uses open up.

-[38]-
0ne of the new things to hit video graphics is called run length
encoding. In run length encoding, you tell the display a color and
how many successive pixels (picture elements) of that color are to
be put down. The big advantage of this is that far fewer bytes are
neede(:l to put down a picture, particularly one that has large areas
of one color. You can also combine lots of colors with very high
resolution without using bunches of bytes. So far, the idea is used
mostly on larger minicomputers and specialized studio tv systems.
Now's the time to put this one to use on microcomputers.

435

-[39]-
We are only starting to see interesting alternate micro input devices.
Today, trackballs and "mice" are grossly overpriced and not very
widely available. Can you dramatically lower the cost of these?
What other ways can you come up with that let you enter non-text
commands into your micro quickly, naturally, and easily?

-[40]-
What can you do with a microcomputer on a bicycle? Obvious uses
are measuring speed, cadence, average rate, trip time, wind speed
and direction, percentage grade, completion time, and so on. But
could you get really fancy and tie a micro into a continuously varia
ble transmission that would optimize your effort for the speed you
want to travel?

-[41]-
One interesting piece of hardware would be a retrofit non-volatile
RAM. You would simply take all the old RAM out of your micro and
replace each chip with a module that faked permanent memory.
One good way is to use CMOS memory and small rechargable cells.
The key here is to make no hardware changes except for swapping
chips for chip-like modules.

-[42]-
What happens if you bolt a digitizing sight onto the carriage of a
dot matrix or daisy-wheel printer? This gives you a cheap facsimile
scanner that gives you a fast and easy way to send text or pictures
over the phone line. The sight picks off the white and black areas
on the page and converts them into a series of bytes to be sent to a

·second, remote printer.

-[43]-
Can a microprocessor be used to build a really decent FM car radio?
Something that really pulls in the stations when you are in weak
signal areas? Maybe include a steerable antenna, automatic antenna
matching, variable sensitivity and bandwidth, a scanner that filters
for certain types of programs, and full overload protection.

-[44]-
Can a voice-recognizing modem circuit be built that would prevent
a computer from beeping into someone's ear at 3AM because it got
the wrong number? Can the same circuit tell busy signals and dial
tones from ring signals? What you want is something that keeps
trying until it gets a legal connection without disturbing any people
who inadvertently answer.

436

-[45]-
There is a unique branch of mathematics that involves fractials.
Fractials are a way of defining randomness that pretty much match
es how things turn out in nature. For instance, an entire mountain
range can be defined using only a very few fractial terms. Most frac
tial applications so far have been done on dino machines. What
micro uses for fractials can you find?

-[46]-
Can you fake full-color hard copy by using different color ribbons
and repeat passes through a dot matrix printer or a daisy wheel?
How good can you get? Where do you find a yellow ribbon?

-[47]-
Micros can help in building speed controls for AC induction motors.
These are available, but they aren't nearly as cheap or as flexible as
they should be. Unlike simple dimmers used on AC/DC motors,
they require varying both the frequency and the current to control
an AC only motor, sensing the load as you go.

-[48]-
What interesting things happen when you add your own "periph
eral" to the ignition and emissions computer on a car? For openers,
you should be able to get instant readouts of miles per gallon and
long and short term fuel economy. More importantly, you should
be able to optimize for economy, power, or minimum pollution.

-[49]-
A really cheap and effective remote power interface for micros
doesn't yet exist, although lots of people are working on this one.
What you want here is a long RS-232 connector and cable that goes
to a box with lots of big power relays and/or triacs and a bunch of
optocouplers for inputs. This lets you do very heavy control work
with your micro without having to go inside or near the micro with
noisy or dangerous loads.

-[50]-
l'm continually amazed that pneumatic robotics haven't yet taken
off. Low pressure air is a far better, far cheaper, far stronger, and far
more linear way of producing straight line motion than using sole
noids or stepper motors. Your actuators can be balloons, small bel
low�, or rolling diaphragms, and you can easily deliver force over
distances, around corners, or through a robotic elbow. Suitable
automotive EGR valves cost 50 cents each, surplus, or a buck at the
junkyard; and an aquarium pump is all you need for an air supply.

437

-[51]-
While a few rather poor programs are available involving
microcomputers and the hand weaver, there are lots of opportuni
ties to do the job right. Most of the existing programs concentrate
on synthesis, or going from drawing-down to the final pattern.
Equally important is going the other way and doing analysis, start
ing with an input pattern and finding the threading, tie-up, and
tread I ing needed for that pattern. No complete weaver design pack
age exists at this writing. And nobody yet has added small LED

lamps to show the next pattern needed, directly on the loom.

-[52]-
What is the absolute minimum hardware needed to convert a per
sonal computer into an oscilloscope? There's lots of expensive stuff
out there, but what do you really need? Important advantages of a
personal compu�er over a traditional scope include permanent or
long-term storage, the abi I ity to compare and leisurely measure
waveforms at high accuracy, averaging, least-squaring, filtering,
variable persistence, multiple inputs, and very cheap and easy hard
copy.

-[53]-
While we are at it, how about a cheap paper copier? Combine a
micro with a laser diode and a small scanner and shoot those
expensive copy machines right out of the water. Aim for a $99 final
parts cost. But stick with black and white for now. Full color with
high resolution under $99 might upset too many people too fast.
Culture shock and all that.

-[54]-
Now that the prices of steppers and linear stepping actuators are
dropping down to almost reasonable levels, what new and exciting
uses can you think of for micros and incremental motion?

-[55]-
Practically all microprocessors have illegal or unused op codes.
How can you replace "illegal" micro op codes with your own new
and useful functions? The concept is called microprogramming, and
it's done all the time in fancy bit slice micros. This lets you make the
micro do things that it couldn't do before, picking up new and use
ful instructions along the way.

-[56]-
There are all sorts of exciting new uses for low cost shaft encoders,
ranging from robotics through hand-held "mice" and other new

438

input devices to improved hard copy and plotters. Can you build
something simple, cheap, brand new, and very useful?

-[57]-
What happens when you use a beam splitter to combine a com
puter screen with a slide projector? This gives you a way to mix
computer output with very fancy pictures and graphics, and it is a
super interactive computer aided instruction setup as well. Cost is
far lower than going to fancy videodisks or whatever, and anybody
can lash this sort of thing up simply and quickly. Any takers?

-[58]-
Can you take a few stepper motors and a micro or two and build a
simple programmable animation stand for cartoon and other video
and/or motion picture uses? Real stands cost zillions of dollars.
Think scungy.

-[59]-
Take a personal computer and remove the microprocessor chip.
Replace that CPU chip with a connector that goes to a faster emula
tion microcomputer, so that you end up using a faster computer to
control a slower computer. What you gain is total and absolute con
trol. You can stop any program at any point. Find out what comes
off the disk when, and find out where it goes in memory. Move and
save memory images anywhere you want. Change things on the fly.
And much more.

-[60]-
There's been bunches of work done on 3-D computer graphics but
no clear winners have appeared so far. Four popular approaches are
to use a vibrating mirror on a woofer, to split the screen and route
half to each eye, to use special switching glasses that match one
field to the left eye and the other field to the right eye, and to use
the usual red-and-green comic book glasses. Try some of these and
see if you can come up with something newer and better.

-[61]-
Many computer graphics applications need fast multiplications and
trig calculations. One way to do this is with special add-on chips,
but for many uses even this is too slow. Can you use plain old table
lookup out of files to do fast multiplications and trig calculations
that are just barely accurate enough for the results you need? This
approach should be much faster and much cheaper than any other
route, yet it has not seen very much micro use so far.

439

- [62]-

Lots of opportun1t1es exist in cable television for new uses of
microcomputers. Two-way communication and subscriber controls
are only two of many possible uses. Can UARTs help out here?
What is possible? Keep down the costs of anything that goes on the
subscriber end while you do this.

- [63]-

Each aware home and business should have current-sensing trans
formers on all incoming power lines connected to a micro-con
trolled power-usage monitor. This would give you an instantaneous
readout of how much energy you are using along with your pro
jected total monthly bills. The power saved in conservation should
quickly pay for the system.

�

�'-

440

�·�·-�·-·-·-·-·-·-·-·-·-·-·-·-·

I .-·-i I i f things they never tell you in computer school i i
i ' i i • ' i • I 1 • I . . ' .
I I i I . ' . .
I I I I . ' ' .
I ' PLAYING FOR THOSE FIVE i I • . i • I I I I . ' .
I i At a recent rock concert, the opening act_was a single flute player, per- �� e • forming in front of the closed stage curtains. His job was to warm up

• 1

I
the audience for the high priced help to follow. i 1

• He was good. Very good. i • ! But as he went along, the music started getting strange and finally i ! downright weird. He was playing chords on his flute, along with notes •
I 1 with unbelievably strong tonal structures. Eventually, the music turned I ! i •

into bunches of impossible sounding, god-awful squawks. i I
•

Almost all of the audience got bored and restless as the music seemed 1 • I to deteriorate. Just then, I happened to notice a friend beside me who
I 1

•
had played in and had taught concert band. He was on the edge of his • • I chair with his mouth open. f 1 • He turned to me and said very slowly, "You can't do that with a flute." r e

I Of the thousands of people in the audience, at most only five realized • I • they were witnessing a once-in-a-lifetime performance involving the

1
•· I absolute mastery of a very difficult musical instrument To nearly every-

• one else, it just sounded like a bunch of god-awful squawks. •
I Alw•y• pl•y fm th�• fl�. ��
• i. I .I
• ••
I . •
. I ·

I ·I
• •• I . I . I· I . ! . '
I i! i t_·---·-'1
·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·

441

APPENDIX

Here's that blank form you can rip off when you do your own
simplified 1/0 diagram (see page 345) ...

SIMPLIFIED 1/0 DIAGRAM

r --,

L

r

L

.

.
_j

-, .

J
� Use o�e h?rizontal line for each available port line. Use arrows to s

_
how po

_
rt

line directiOns. Name the connections. along With the integrated c•rcuits m

use. Show the addresses involved. Show the use rules at the bottom. See the
diagram worked out for the HP 5036 on page 345

443

Bus
address, 37, 39
control, 41, 43
data, 37-38
lines, 43
multiplexed, 39

Byte
high address (page), 17, 38
low address (position), 17, 38

c

Cards, those#$!$#, 125,130
ADC, 300
AND, 239
BIT, 248
BNE, 180
BRK, 302
CLC, 178
CMP, 246
DEX, 192
JMP absolute, 136
JSR, 208
LOA, 158, 261
NOP, 135
PHA, 202
ROR, 243
RTI, 290
RTS, 209
STA, 159, 217
TAX, 156

Carry flag, 175
Chips

serial 1/0, 365
"more than a port," 368

Circuit level amplifiers, 373
Circuit level interface, 312, 371,

391
Circuits

CMOS, 315, 354
integrated, safety rules, 317
LSTTL, 315, 354
signal levels, 316

CLC, 66
CLC card, 178
Clock

cycle, 168
frequency, 168

CMOS circuits, 315, 354
CMP card, 246
Code

designer friendly, 220
position independent, 79
user friendly, 220

446

Coding, straight line, 187
Cold start, 288
Commands

absolute long addressing, 72
immediate addressing, 69
implied addressing, 66

logic, 238, 242
relative addressing, 78
teaching, 329

Conditional instruction, 136
Control bus, 41, 43
Contact bounce, 396
Converter, AID input, 399
Converter, D/ A, 387
CPU, 34, 46

D

Dl A converter, 387
companding, 390
multiplying, 390

Darlington transistors, 377
Data blocks, 115
Date bus, 37-38
Data files, 222
Debouncing, 393
Debugging, 147, 210
Decoding, 44
Decrementing, 192
Delay loop, 188
Delimiter, 267
DEX card, 192
Dice project, 360
Direct 1/0, 14
Disassembly, 146
Discovery Modules, 126, method,140

1. Tail Byter, 140
2. Figure Eight, 150
3. Square Deal, 155
4. Audio Tone, 186
5. Pitch Reference, 206
6 . . Y Time Delay, 219
7. Nite Lite, 251
8. Text Outenblatter, 257
9. Burglar Interrupt, 283

Dumping, 144

8080, 345
8085, 56

E

8048, lmsai, 53, 59
Electronic hand tools, 109

F

Fancy ports, 327
Figure Eight (Discovery Module 2), 150
File, 115
Files, kinds of, 258

data, 222
random access, 259
sequential access, 259
use hints, 265

Flags, 172
carry, 175
negative, 174-175
6502's, 176-177
zero, 174

Flowchart, 127
Forms

assembler, 104
hex dump, 105, 145
machine language programming, 103
simplified 1/0 diagram, 345, 443

Frequency, 165
clock, 168
units, 165

Frobozz, 115-116

Glomper, 108
Grabber, 108

Halt, 43

G

H

Hand tools, electronic, 109
Handshaking, 281, 287, 399-341
Hex dump forms, 105, 145
HP 5036, 345

If instruction, 180, 185
Immediate addressing, 68, 69, 88
Implied addressing, 65, 66, 87
lmsai 8048, 53, 59
Incrementing, 192
Index value, 84, 261
Indexed addressing; 83-85, 93
Indexed indirect address mode, 277
Indexed sequential access method,

276
Indirect addressing, 80-81, 92

Indirect indexed address mode, 277
Initialization, 161, 2%, 327, 344
Input conditioning, 392, 3%
Instruction

conditional, 136
machine, 115
unconditional, 136

Instruction times, 169
Integrated circuit safety rules, 317
Integrated circuit signal levels, 315
Intel 8212, 335-339
Interface, 311

circuit level, 312, 371, 391
input and output, 366
micro level, 313, 314
people level, 313
system level, 313

Interrupt, 43, 280
addresses (6502), 288
masked, 281
non-maskable, 281
polled, 282, 284
prioritized, 282, 285
program parts, 300

1/0
diagram, simplified, 345, 443
direCt, 14
memory mapped, 14

JSR card, 208
Jump, 135
JMP absolute card, 136

K

Keyboard, scanning, 353

L

LAN controllers, 369
LDA card, 158, 261
Listener probe, 195
Listing, 144
Load, 156
Logic analysis, 153
Logic commands, 238, 242
Loop, 188

delay, 188
use rules, 189
within loop, 220

447

LSTTL circuits, 315, 354

M

Machine language programming, 114
form, 103

Marker, 267
Masked interrupt, 281
Memory map, 32

detailed, 48, 54
simplified, 48

Memory mapped 1/0, 14
Menu driven program, 121-122
Micro Applications Attack, 407-422
Micro level interface, 312, 314
Micro toolkit, 99

Mnemonic, 132
Modules, Discovery, .126, 140, 150, 155,

186, 206, 219, 251, 257, 283
Move, 156
Multiplexed bus, 39
MYTH-1 discovery trainer, 126

N

Negative flag, 174-175
Nesting, 190
Nile Lite (Discovery Module 7), 251
Non-maskable interrupt, 281
NOP, 130
NOP card, 134
NPN transistors, 376
Numeric analysis, 230

0

Op code, 131
Open collector outputs, 370-371
Operand, 132

symbols, 132
Optocoupler, 383, 394
OR instructions, 241
Oscilloscope, 107, 163
Output conditioning, 392, 396
Output isolation, 383
Outputs, open collector, 370-371

p

Page zero addressing, 208
Parallel ports, 312, 325, 329

448

Passing variables, 231
People level interface, 313
PHA card, 202
Phlag register, 173
Pipelining, 71, 137
Pitch Reference (Discovery Module 5),

206
Pointer, 25
Pointer, stack, 28, 204
Pointer stash, 271
Polled interrupt, 282
Ports

input and output, 325
latched output, 333
parallel, 313, 325, 329
serial, 312, 325, 362
simple and fancy, 327

Port lines, minimizing, 352
Position independent code, 79
Processor status register, 173
Prioritized interrupt, 282, 285
Program, 115, 120

blowups, 123
counter, 27
form rules, 141
menu driven, 121-122

Programmer's model, 32, 55
Programming

bottom-up, 423
machine language, 114
stickiest box, 415, 423
top-down, 423

Protecting diode, 379
Protocol, 339
Popping, 203
Pulling, 203
Pushing, 203

Q

Q option, 190

R

RAM, 14
Random access file, 259
Reading, 12
Re-entrant code, 208
Register indirect addressing, 81
Relative addressing, 76-77, 78, 91
Relative branch timing, 184
Relative branch value, 181

block counting method, 182-183

Relative branch value-cant
official math freak method, 184

Resolution, 388
Resource sheet, 97
ROM, 14
ROR card, 243
RTI card, 290
RTS card, 209
Registers, types of, 21

address, 26
data direction, 344
flag, 29
index, 23
phlag, 173
processor status, 173

Registers, working, 10, 20-21

s

Scanning keyboard, 353
Schmidt triggers, 397-398
Serial 1/0 chips, 365
Serial ports, 312, 325, 362
Sequential access file, 259
Settling time, 388
Setup time, 334-335
Sideways shovers, 238, 245
Signetics 490, 381
Simple ports, 327
Simplified 1/0 diagram, 345

form, 443
Single stepping, 147
6551, 366
6800, 58
6502, 57, 114, 168, 288
6530, 348, 368
6522, 342-345, 348, 351
Sneak path, 357
Soft switch, 179, 319, 322
Spike protector, 378
Sprague 2813, 381
Square Deal (Discovery Module 3), 155
ST A card, 159, 217
Stack, 198

use rules, 200
Stack pointer, 28, 204
Start, cold, 288
Stash, 115
Stickiest box programming, 423
Store, 156
Straight line coding, 187
Subroutine, 206

uses, 207
Subroutines, utility, 274

SYM-1, 51, 347
System level interface, 313
System reset, 281

T

Tail Byter (Discovery Module 1), 140
Task times, 169
TAX card, 156
Teaching commands, 329
Testers, 238
Text compression, 268
Text Outenblatter (Discovery Module 8),

257
Time measurements, 166
Time multiplexing, 357
Time period, 165
Toolkit, micro, 99
Top-down programming, 423
Trainers, 101

MYTH-1, 126
Transfer, 156
Trap, 137
Triac, 385
Tri-state drivers, 331

u

Unconditional instruction, 136

Value, index, 261
Variables

global, 233
local, 233, 298
passing, 231

rules, 232
Von Neumann, 117

v

w

Warm restart, 288
Working registers, 10, 20-21
Writing, 12

X

X-Y matrix circuits, 357

449

OSt

vLl 'lle11 oJaz
L6 'zs-'oo-z 6lZ '(9 a1npow A.JaAo::>sro) Ae1ao awr1 ;..-

Z A

Previous chapters 6 and 7

of this eBook may be found at

http://www.tinaja.com/eBooks/MLP1cb.PDF

SYNERGETICS SP PRESS
3860 West First Street, Thatcher, AZ 85552 USA

(928) 428-4073 http://www.tinaja.com

http://www.tinaja.com/ebksamp1.asp
http://www.tinaja.com/ebooks/MLP1cb.pdf
http://www.tinaja.com

-

-

-

• Start with the concepts of addressing and address space.

• Work your way up to microcomputer architecture addressing

modes and become familiar with a toolkit you will need for

machine language programming.

• Do actual programming on nine discovery modules by using

the "those #$!$# cards" method.

• Get a detailed look at input/ output.

• Solve real world shirtsleeve problems In the micro appllcatlor

attack.

• Obtain Ideas that you can Immediately put to creative and

profitable use from the collection of 63 new and exciting

possible microcomputer applications.

SYtiERGETICS SP PRESS

3860 West First Street, Thatcher, AZ 85552 USA
(928) 428-4073 http:/ /www.tinaja.com

-

-

